
HAL Id: hal-00707575
https://hal.science/hal-00707575

Submitted on 16 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Method Enhancement by Scenario Based Techniques
Jolita Ralyte, Colette Rolland, Véronique Plihon

To cite this version:
Jolita Ralyte, Colette Rolland, Véronique Plihon. Method Enhancement by Scenario Based Tech-
niques. International Conference on Advanced information Systems Engineering, 1999, Germany.
pp.1. �hal-00707575�

https://hal.science/hal-00707575
https://hal.archives-ouvertes.fr

CREWS Report Series 99 - 10

METHOD ENHANCEMENT WITH

SCENARIO BASED TECHNIQUES

Jolita Ralyté
1
, Colette Rolland

1
, Véronique Plihon

2

1
CRI, Université de Paris1- Sorbonne, 90, rue de Tolbiac, 75013 Paris

(ralyte, rolland)@univ-paris1.fr

2
PRISM, Université de Versailles Saint-Quentin 45, av. des Etats-Unis, 78035 Versailles

Veronique.Plihon@prism.uvsq.fr

To appear in : Proceedings of CAISE 99, 11th Conference on

Advanced Information Systems Engineering Heidelberg, Germany

June 14-18, 1999

1

Method Enhancement with Scenario Based Techniques

Jolita Ralyté
1
, Colette Rolland

1
, Véronique Plihon

2

1
CRI, Université de Paris1- Sorbonne, 90, rue de Tolbiac, 75013 Paris

(ralyte, rolland)@univ-paris1.fr
2
PRISM, Université de Versailles Saint-Quentin 45, av. des Etats-Unis, 78035 Versailles

Veronique.Plihon@prism.uvsq.fr

Abstract. Scenarios have proven useful to elicit, validate and document

requirements but cannot be used in isolation. Our concern in this paper is to

integrate scenario-based techniques in existing methods. We propose a set of

operators to support such an integration. This set is classified in two sub-sets:

the one dealing with the integration of the product models of the two initial

methods and the one concerned with the integration of their process models.

The operators are used to integrate the CREWS-L'Ecritoire approach with the

OOSE method. This leads to enhance the use case model construction of the

OOSE method with on one hand, the linguistic techniques for scenario

authoring and formalisation and on the other hand, the discovery strategies to

elicit requirements by scenario analysis of the CREWS-L'Ecritoire approach.

1 Introduction

The aim of analysis methods is to define the specification of a future system. In the

new generation of such analysis methods ([1], [2], [3]) scenario-based approaches

have been introduced to bridge the gap between the user view and the functional view

of the future system and therefore ensure that the future system will meet the

requirements of its users. In the CREWS1 project, four different scenario-based

approaches have been developed with the aim of supporting requirements acquisition

from real world scenes [4] and from natural language scenario descriptions [5], [6]

and requirements validation though scenario walkthrough [7] and scenario animation

[8]. The hypothesis of the project is that each of the approaches might be useful in

specific project situations which are not well tackled by existing analysis methods and

therefore, that it is worth looking for the integration of such approaches in current

methods. This shall lead to an enhancement of the existing methods with scenario-

based techniques.

In this paper we propose an approach for such a method extension. The CREWS

approach that we consider is the one allowing to "acquire requirements from natural

language scenario descriptions". In this approach (denoted CREWS-L’Ecritoire), the

1 The work described in this paper is support by the European ESPRIT project CREWS

standing for "Co-operative Requirements Engineering With Scenarios".

2

key concept is the couple (goal, scenario), where the goal is viewed as "something

that some stakeholder hopes to achieve in the future", whereas a scenario is defined as

"a possible behaviour limited to a set of purposeful interactions taking place among

several agents" [6]. The paper illustrates how the CREWS-L’Ecritoire technique is

integrated to the part of the OOSE method dealing with the use case model definition.

The approach for method integration is based on the one hand, on a method meta-

model which conforms to the traditional view of a method been composed of a

product model and a process model and, on the other hand, of a set of operators with

associated rules to integrate product model elements and process model elements.

The proposed approach is part of the Method Engineering domain [9], [10].

However whereas assembly approaches focused on the grouping of method fragments

belonging to methods which complement one the other [11], [12] we are dealing with

the problem of integrating methods which are partially overlapping. In the case at

hand, it is obvious that both the CREWS-L’Ecritoire approach and the OOSE

approach have the concept of "scenario" but with different meanings. Thus, whereas

situational method engineering deals with the assembly of disjoint method fragments,

our problem is closer to schema integration in the database area [13].

This paper is organised as follows. We present in the next section our method meta

model which is instantiated for both the OOSE method and the CREWS-L’Ecritoire

approach. Section 3 is dedicated to method integration dealing first with the product

models integration and then with the process models integration. In both cases we

present and exemplify the operators used to perform the integration. Finally, in

section 4 some conclusions are drawn.

2 The Method Meta Model

We represent a method as composed of two elements : the Product Model and the

Process Model. The product model represents the class of products obtained as

outputs of the use of the method in specific applications. The process model

represents the product development process.

2.1 Process Model

We view the process model as composed of two parts : Map and Guidelines. The map

provides a strategic view of the process telling what can be achieved (which process

intention) following which strategy. The guidelines define how to apply the strategy

to achieve the process intention. These three aspects are described in turn.

Map. A map is a labelled directed graph in which the nodes are the intentions and

the edges between intentions are the strategies (see [14] for more detail). The

ordering of intentions and strategies is non-deterministic. The edges in the graph are

directed and show which intentions can follow which one. Fig. 1 shows two examples

of maps for OOSE and CREWS-L' Ecritoire methods respectively.

3

Start

actor-based discovery
strategy

normal case first
strategy

extend strategy

abstraction
strategy

completeness
strategy

Stop

Conceptualise
a Use Case

abstraction strategy

Elicit a
Use Case

The OOSE Map

alternative
discovery
strategy

composition
discovery
strategy

goal structure driven
strategy

Stop

template driven
strategy

Conceptualise
a Scenario

template driven
strategy

free prose
strategy

computer
supported strategy

manual strategy
completeness
strategy

linguistic
strategy

Write a
Scenario

initial goal
identification strategy

Elicit a Goal

Start

The CREWS-L’Ecritoire Map

Fig. 1. The OOSE Use Case Model map and the CREWS-L’Ecritoire map

As shown in Fig.1, a map consists of a number of sections each of which is a

triplet <i
i
,i

j
,s

j
> where i

i
 is a source intention, i

j
is a target intention ant s

ij
 is a strategy

defining the way to go from the source to the target intention. There are two distinct

intentions called Start and Stop that represent the intentions to start navigating in the

map and to stop doing so. Thus, it can be seen that there are a number of paths in the

graph from Start to Stop. We assume requirements engineering processes to be

intention-oriented. At any moment, the requirements engineer has an intention, a goal

in mind that he/she wants to fulfil. To take this characteristic into account the map

identifies the set of intentions I that have to be achieved in order to solve the problem

at hand. An intention is expressed as a natural language statement comprising a verb

and several parameters, where each parameter plays a different role with respect to

the verb [15]. For example, the OOSE [1], [16] map (Fig. 1) contains two

intentions in addition to "Start" and "Stop" : "Elicit a Use Case" and "Conceptualise

a Use Case".

A strategy is an approach, a manner to achieve an intention. The strategy, as part

of the triplet <i
i
,i

j
,s

j
>, characterises the flow from the source intention i

i
to the target

intention i
j
 and the way i

j
can be achieved. The map identifies the set of strategies S

which allows to construct different paths in the map.

The specific manner in which an intention can be achieved is captured in a section

of the map whereas the various sections having the same intention i
i
 as a source and i

j

as target show the different strategies that can be adopted for achieving i
j
 when

coming from i
i
. Similarly, there can be different sections having i

i
 as source and i

j1
, i

j2
,

....i
jn
 as targets. These show the different intentions that can be achieved after the

achievement of i
i
. The OOSE map is composed of six sections. The triplet <Elicit a

Use Case, Conceptualise a Use Case, Normal case first strategy> is an example of

the section in the OOSE map.

4

The few strategies available in the OOSE map reflects the sequential nature of the

process suggested by this method. There is for example, only one possibility to start

the Use Case model development which is embedded in the section <Start, Elicit a

Use Case, Actor based strategy>. OOSE indeed, proposes to identify the actors of the

system as a means to identify use cases. The two sections : <Elicit a Goal,

Conceptualise a Use Case, Normal case first strategy> and <Elicit a Goal,

Conceptualise a Use Case, Abstraction strategy> reflect the two OOSE possibilities :

to conceptualise each elicited use case by writing a normal case scenario at first and

then, writing all alternative and exceptional scenarios or conceptualise a use case by

reusing abstract use case descriptions. Then, when the intentions Elicit a Use Case is

achieved, three sections can be selected : <Conceptualise a Use Case, Conceptualise

a Use Case, Abstraction strategy> which permits to conceptualise an abstract use case

from a set of concrete use cases, <Conceptualise a Use Case, Elicit a Use Case,

Extension strategy> which permits to identify an extension use case, and

<Conceptualise a Use Case, Stop, Completeness strategy> which terminates the

development process if the obtained use case model is complete.

As shown in the CREWS-L’Ecritoire [6], [14] method map (Fig. 1), there are

several flows between two intentions each corresponding to a specific strategy. For

example, there are two strategies to "Write a Scenario" and two others to

"Conceptualise a Scenario". In this sense the map offers multi-thread flows. There

might also be several strategies from different intentions to reach some intention. For

example, there are six strategies ("initial goal identification", "template driven",

"linguistic", "goal structure driven", "alternative discovery" and "composition

discovery") coming from different intentions to the intention "Elicit a Goal". In this

sense the map offers multi-flow paths to achieve an intention.

The CREWS-L’Ecritoire method map represents a process to conceptualise a set of

scenarios which describe functional system requirements. The complete set of

scenarios obtained by this method covers the set of use cases that could be obtained

when using the OOSE method. However as illustrated above, the CREWS-L’Ecritoire

method map provides more strategies to achieve the process intentions and therefore,

offers more flexibility in the scenario conceptualisation process. As depicted in

Fig. 1, goal elicitation can be followed by the elicitation of another goal or by

scenario writing. Three strategies: "linguistic", "goal structure driven" and "template

driven" are proposed to elicit a new goal. Scenario writing is supported by two

strategies, namely the "template driven strategy" and the "free prose strategy". The

first proposes to write a scenario following a template whereas following the second

strategy, the scenario author writes in full prose. Style and content guidelines are

proposed in this case to support the scenario writing. Scenario writing can be

followed by the scenario conceptualisation. The map proposes two possibilities to

conceptualise scenarios : manually (manual strategy) or in a computer supported

manner (computer supported strategy). Finally, scenario conceptualisation can be

followed by the elicitation of new goals using two different strategies : "alternative

discovery strategy" and "composition discovery strategy", or the termination of the

development process by verifying the completeness of the obtained model

"completeness strategy". The elicitation of new goals using "alternative discovery

5

strategy" permits to identify all alternative goals to a given one. The set of

corresponding scenarios contains one normal case scenario and all alternative and

exceptional scenarios and therefore composes one use case. The elicitation of the new

goals using "composition discovery strategy" permits to identify the complementary

goals to a given one and therefore helps identifying the family of use cases for a

given system.

To sum up, a map is a navigational structure in the sense that it allows the

application engineer to determine a path from Start intention to Stop intention. The

requirements engineer selects dynamically the next intention and /or strategy among

the several possible ones offered by the map. The guidelines associated to the map

help the engineer in his/her choice. Guidelines are presented in the next section.

Guidelines. Three kinds of guidelines are attached to the map: "Intention

Achievement Guideline" (IAG), "Intention Selection Guideline" (ISG) and "Strategy

Selection Guideline" (SSG). An IAG helps to fulfil the intention selected by the

requirements engineer, whereas ISG and SSG help him/her to progress in the map and

to select the right section. For every section <i
i
,i

j
,s

ij
> in the map there exists one IAG.

The IAG supports the requirements engineer in the achievement of intention i
j

according to the strategy s
ij
. This IAG corresponding to the section <Elicit a Use

Case, Conceptualise a Use Case, Normal case first strategy> from the OOSE map is

shown in Fig. 2. It provides an operational means to fulfil the intention

"Conceptualise a Use Case".

IAG: <(Use case objective), Conceptualise a use case with normal case first strategy>

<(Use case objective),

Write a normal case scenario >

<(Use case objective ,

Normal case scenario),

Identify an exceptional scenario objective>*

<(Exceptional scenario objective),

Write an exceptional scenario >

Fig. 2. The example of the intention selection guideline

A number of actions must be performed on the product under development to

satisfy this intention. The IAG decomposes the initial intention into a set of sub-

intentions which themselves may be decomposed till intentions executable through

actions on the product are reached. The structure of the guidelines is presented in

[14]. It is based on the NATURE contextual approach [17] and its corresponding

enactment mechanism [18].

Given two intentions i
i
, i

j,
 there exists a SSG that determines the set of possible

strategies s
ij1

, s
ij2

, ..s
ijn

 applicable to i
j
 and guides the selection of an s

ijk
 thereby leading

to the selection of the corresponding IAG. For example, given the two intentions

"Elicit a Goal" and "Write a Scenario" from Fig. 1, the SSG <(Goal), Progress to

(Write a Scenario)> is shown in Fig. 3. This SSG presents to the requirements

engineer two strategies "template driven" and "free prose". The engineer picks up the

strategy the most appropriate to the situation at hand. Thus, one of two possible

sections in the map is selected. Since a unique IAG is associated with each section,

the SSG determines this (Fig. 3).

6

SSG: <(Goal), Progress to (Write a Scenario)>

IAG: <(Goal),

Write a scenario with template driven strategy>

IAG: <(Goal),

Write a scenario in free prose>

a1 a2

a1: Scenario author has to be a scenario writing expert, he/she has to fill a linguistic template.

a2: Scenario author writs scenario in free prose. A set of style and content guidelines are

 provided to support scenario writing.

Fig. 3. The example of the strategy selection guideline

For a given intention i
i
, the ISG identifies the set of intentions (i

j1
, i

j2
,..., i

jn
) that can

be achieved in the next step and helps selecting the corresponding set of either IAGs

or SSGs. The former is valid when there is only one section between i
i
 and i

j
 whereas

the latter occurs when there are several sections between i
i
 and i

j
. For example, for the

intention "Elicit a Goal" (Fig. 1) the ISG identifies two possible next intentions

"Write a Scenario" and "Elicit a Goal". The ISG then determines whether there is

only one section between the source and the selected target intention or whether there

are several sections. In the former case, the IAG associated with the section is used by

the enactment mechanism to achieve the target intention. In the second case, the SSG

is invoked to determine the strategy to be used in the situation which leads to the

determination of an IAG and subsequent enactment.

ISG : <(Goal), Progress from (Elicit a Goal)>

SSG : <(Goal), Progress to (Write a Scenario)> SSG : <(Goal), Progress to (Elicit a Goal)>

Fig. 4. The example of the intention selection guideline

In our example, if the intention "Write a Scenario" is selected as target intention,

the ISG determines that there are two sections between the source and target

intentions. The SSG helps to decide which of these strategies shall be used. Thus, the

corresponding IAG is determined and the intention "Write a Scenario" is achieved. If

the intention "Elicit a Goal" is selected as target intention, the ISG determines that

there are tree strategies allowing to fulfil this intention and the corresponding SSG is

determined (Fig. 4).

2.2 Product Model

The product model is composed of a set of concepts which have properties and can

be related through links. We shall use the following notations:

• A concept has name c
i
 and a set of properties (p

i1
, p

i2
, ... p

in
). Thus it will be denoted

c
i
(p

i1
, p

i2
, ... p

in
). For sake of brevity, it is possible to denote a concept only by its

name c
i
. A set of concepts in the product model is described by C.

• The concepts in the product model are related through the links. A link has a label

l
ij
 , it is an association, a composition or an is-a link. The link is a part of the

triplet <c
i
, c

j
, l

i
> where c

i
 is a source concept,

c

j
 is a target concept and l

ij
 is a link

7

between these two concepts. A set of the links in the product model is denoted by

L. Therefore, the product model is PM ⊆ C * C * L .
The product models of the OOSE method and of the CREWS-L' Ecritoire method

are shown in Fig. 5 and Fig. 6 respectively using ER like notations. "Actor(Actor

Name, Description)" is an example of the concepts in the OOSE method. The link

between the "Actor" and the "Use Case Model" in OOSE product model is denoted

<Use Case Model, Actor, composed_of>.

Actor

executes

supports

Use Case

Model

Scenario

Concrete

Use Case

Abstract

Use Case#
composed
of

composed of composed of extends

is a

is a

1,N 1,N

0,N

2,N

1,1 1,1

1, N

1,1

1,11,N

0,N 0,N

0,N

1,1

Description

Normal Scenario Exeptional Scenario

UseCase
Description

uses

Use Case

Objective

ActorName

Extension

Fig. 5. The OOSE Use Case product model.

OR

Goal

AND

is a

Normal Scenario

ExceptionalScenario

Flow of Actions AtomicAction

composed of

described by

Agent

from

to

1,1 1,N

1,N
1,1

State

initial state1,1

1,1

1,N

1,Nfinal state

IdGoal

Verbe

Target

Direction

Way

Beneficiary

1,N

1,N

Action

Requirement

Chunk
Scenario

is a

Fig. 6 : The CREWS-L’Ecritoire product model.

The OOSE product model is centred on the concept of a use case. A use case is

composed of a set of scenarios. It can be either concrete of abstract. It can also be

extended by extensions which are themselves considered as use cases. The actor

interacting with the system is related to the use case. Finally, the use case model is a

collection of use cases with their associated actors.

The CREWS-L’Ecritoire product model is centred on the concept of a requirement

chunk, i.e. the coupling of a goal to be achieved and a scenario explaining how the

system will interact with the agents to achieve the goal. The description of a scenario

is based on the notion of action and agent. The definition of a scenario in the

8

CREWS-L’Ecritoire product model is more detailed than the definition provided in

the OOSE product model. We will see in the next section how this two product

models can be integrated.

3 Method Integration

The integration of two methods consist in integrating their product and process

models. We deal with these two aspects in turn. Clearly the goal in the example at

hand is to take advantage of the authoring facilities and goal discovery strategies of

the CREWS-L’Ecritoire approach which do not exist in the current OOSE method

and vice versa, to import in the integrated method the OOSE abstraction and extend

strategies which have no equivalent in CREWS-L’Ecritoire. Therefore, by integrating

the two methods, the resulting method will represent an enhancement of each isolated

one. We shall present in turn the operators for Product and Process integration. For

sake of space, rules to check the consistency and completeness are not included.

3.1 Product Integration

Product Integration Operators. Let C be a set of concepts, L a set of links and PM a

product model, where PM ⊆ C* C * L. The set of operators is as follows:

• ADD_CONCEPT : PM *C → PM; ADD_CONCEPT(pm, c
i
) = pm ∪ c

i.
 Adding a

concept consists in creating a new concept in the product model. Such an addition

is sometimes required to make the integration of two concepts possible. Adding a

concept in the product model requires to add at least one link connecting this

concept to a concept of the product model.

• ADD_LINK : PM * C *C * L → PM; ADD_LINK(pm, c
i
, c

j
, l

ij
) = pm ∪ <c

i
, c

j
, l

ij
>.

This operator creates an association, a composition or an is-a link between two

concepts of the product model. It is absolutely needed that the concepts which are

going to play the role of the source and target of the link exist in the product model

prior to the creation of the link.

• ADD_PROPERTY : PM * C → PM; ADD_PROPERTY(pm, c
i
(p

i1
, p

i2
,..., p

in
), p

ik
) =

pm ∪ c
i
(p

i1
, p

i2
,..., p

ik
,..., p

in
). This operator permits to add a new property to an

existing concept.

• DELETE_CONCEPT : PM * C → PM; DELETE_CONCEPT(pm, c
i
(p

i1
, p

i2
,..., p

in
))

= pm \ c
i
(p

i1
, p

i2
,..., p

in
). This operator removes a concept c

i
(p

i1
, p

i2
,..., p

in
) from the

schema. Deleting a concept consists in deleting the concept c
i
 and all its properties

p
i1
, p

i2
,..., p

in
. The concept can be removed from the product model only if all links

which were connecting them concept to other concepts have been removed.

• DELETE_LINK : PM * C * C * L → PM; DELETE_LINK(pm, <c
i
, c

j
, l

ij
>) = pm\

<c
i
, c

j
, l

ij
>. This operator removes a relationship <c

i
, c

j
, l

ij
> from the product

model. If one of the related concepts does not have any more links to other

concepts, this concept must be removed from the product model or another link

must be added to relate this concept to the rest of the schema.

9

• DELETE_PROPERTY : PM * C → PM; DELETE_PROPERTY(pm, c
i
 (p

i1
, p

i2
,...,

p
ik
,..., p

in
), p

ik
) = pm ∪ c

i
 (p

i1
, p

i2
,..., p

in
). This operator removes a property p

ik
 of a

concept c
i
.

• OBJECTIFY : PM * C * C* L * C *L * L → PM; OBJECTIFY(pm, <c
i
, c

j
, l

ij
>, c

k
,

l
ik
, l

kj
) = pm \ <c

i
, c

j
, l

ij
> ∪ <c

i
, c

k
, l

ik
> ∪ <c

k
, c

j
, l

kj
>. The OBJECTIFY operator

transforms a relationship <c
i
, c

j
, l

ij
> into an concept c

k
 and two new links

connecting this concept with the two other concepts.

• RENAME_CONCEPT: PM * C → PM; RENAME_CONCEPT(pm, c
i
, c

i

1
) = pm | c

i

= c
i

1
. This operator changes the name of a concept. This operator is useful in the

integration of two overlapping product models.

• RENAME_LINK: PM * C * C * L * L → PM; RENAME_LINK(pm, <c
i
, c

j
, l

ij
>, l

ij

1
)

= pm ∪ <c
i
, c

j
, l

ij
= l

ij

1
>. This operator changes the name of a link. If two concepts

are related by two links having the same name, one of the links must be renamed.

• RENAME_PROPERTY: PM * C → PM; RENAME_PROPERTY(pm, c
i
(p

i1
, p

i2
,...,

p
ik
,..., p

in
), p

ik

1
) = pm ∪ c

i
 (p

i1
, p

i2
,..., p

ik
= p

ik

1
,..., p

in
). This operator changes the name

of a property of a concept c
i
 from p

ik i
to p

ik

1
. If the integrated concept has two

properties with the same name and different semantics, one of these properties

must be renamed. If these properties have the same name and the same semantic

one of these properties must be removed.

• SPECIALISE : PM * C * C * C → PM; SPECIALISE(pm, c
i
, c

k
, c

l
) = pm ∪ c

k
 ∪ c

l

∪ <c
k
, c

i
, is-a> ∪ <c

l
, c

i
, is-a>. This operator specialises the concept c

i
 into two

new concepts c
k
 and c

l
. The two concepts c

k
 and c

l
 that play the role of sub-type for

c
i
 are created first and then, the is-a links between c

i
 and c

k
 and between c

i
 and c

l

are created. In this definition we make the hypothesis that the concepts c
k
 and c

l
 do

not exist yet in the product model.

• GENERALISE : PM * C * C * C → PM; GENERALISE(pm, c
i
, c

j
, c

k
) = pm ∪ c

k
 ∪

<c
i
, c

k
, is-a> ∪ <c

j
, c

k
, is-a>. This operator permits to generalise two concepts c

i

and c
j
. into a new concept c

k
. A new concept c

k
 is created first and then, two Is-A

links are created. One of them connects c
i
 with the generalised concept c

k
 and the

second one connects c
j
 with the generalised concept c

k
. Common properties of c

i

and c
j
 are deleted from these concepts and added to the concept c

k
.

• MERGE: PM * C * PM * C *PM * C → PM; MERGE(pm
1
,c

1
, pm

2
,c

2
, pm

3
,c

3
) =

pm
3
 ∪ c

3
. The MERGE operator integrates two concepts c

1
and c

2
 from different

product models pm
1
 and pm

2
 respectively into a third one called c

3
 in the integrated

product model pm
3
. The concepts c

1
and c

2
must have the same name prior to their

integration. The properties and the links of each merged concept are kept in the

new concept.

Example. The application of the product integration operators to the integration of

OOSE and CREWS - L’Ecritoire product models is shown in Fig. 7. Some of the

concepts of the integrated product model are directly derived from the initial product

models, while others are the result of the application of the operators. We comment

some examples of concept integration in the following.

10

Use Case

Family

OR

AND
is a

Normal Scenario

Exceptional

Scenario

composed of

described by

Actor

from

to

Concrete Use Case

#

extends

is a
uses

Informal
Goal

Goal

Use Case

Model

satisfies

Description

is a

is a

executes

supports

is a

composed of

composed of

State

initial state

final state

IdGoal

Verbe

Target

..

Use Case

Requirement

Chunk
Formal
Goal

Scenario

Action

Abstract Use Case

Flow of Actions AtomicAction

Extension

Fig. 7. The integrated product model.

The "Actor" concept in the OOSE product model (Fig. 5) and the "Agent" concept

in the CREWS-L' Ecritoire product model (Fig. 6) have the same semantic but

different names. We can rename one of these concepts and then merge them into a

new concept in the product model of the integrated method (IM).

• RENAME_CONCEPT (CREWS-L'Ecritoire, Agent, Actor)

• MERGE((CREWS-L'Ecritoire, Actor), (OOSE, Actor), (IM, Actor))

The concept of "Use case" exists only in the OOSE method. However the set of

scenarios related through "OR" relationships in the CREWS-L’Ecritoire approach is

equivalent. The operator OBJECTIFY allows us to transform the "OR" relationship

between two "RC" concepts into a new concept called "Use Case".

• OBJECTIFY(CREWS-L'Ecritoire, <RC, RC, OR>, Use Case)

Therefore, the "Use Case" concept in the integrated method is obtained by

merging the "Use Case" concept from the OOSE method and the "Use Case" concept

from the CREWS-L’Ecritoire method.

• MERGE((CREWS-L'Ecritoire, Use Case), (OOSE, Use Case), (IM, Use Case))

A similar reasoning than the one applied above to the CREWS-L' Ecritoire "OR"

relationship leads to the reification of the "AND" relationship as the concept of "Use

case Family". The transformation is as follows :

• OBJECTIFY(CREWS-L'Ecritoire, <RC, RC, AND>, Use Case Family)

Finally, the concept of a "Use Case Model" is part of the OOSE method but does

not exist explicitly in the CREWS-L’Ecritoire product model. However there is a

relationship between the use case model and the use case family which leads to add a

new Is-A link in the integrated model between the concept "Use Case Model" and the

concept "Use Case Family" .

• ADD_LINK(IM, < Use case Family, Use Case Model, is-a>)

The concept of "Scenario" belongs to both product models. Merging the two

concepts leads to create a new concept whose properties are the union of the

properties of both concepts. All the links relating these concepts with the rest of the

11

product model are kept in the new product model. The same operation is applied on

the concepts "Normal Scenario" and "Exceptional Scenario".

• MERGE((CREWS-L' Ecritoire, Scenario), (OOSE, Scenario), (IM, Scenario))

However, the analysis of the properties and the relationships of the obtained

"Scenario" concept shows that the role of the "Description" property on the one hand

and the link "described-by" with the concept "Action" and the links "initial-state",

and "final-state" with the concept "State" on the other hand, have the same meaning.

As a matter of fact, in the CREWS-L' Ecritoire method, a scenario has a set of actions

and a final and an initial state. Thus, keeping all these features in the integrated

concept of scenario would introduce redundancy. This suggested to us to delete the

property "Description" from the "Scenario" concept.

• DELETE_PROPERTY (IM, Scenario (Description), Description)

Finally, the notion of "Goal" in the CREWS-L' Ecritoire method represents the

objective of the use case in a similar way the property "Objective" in the OOSE

method does. Therefore, the "Objective" must be replaced by the concept "Informal

Goal" because its structure is different from the "Goal" structure in the CREWS-

L' Ecritoire method. These two concepts cannot be merged into one single concept. To

avoid ambiguities, it was decided to rename the concept "Goal" into "Formal Goal"

and then, to generalise the concepts "Formal Goal" and "Informal Goal" into the

concept "Goal".

• ADD_CONCEPT (IM, Informal Goal)

• ADD_LINK (IM, <Use Case, Informal Goal, Has>)

• RENAME_CONCEPT (IM, Goal, Formal Goal)

• GENERALISE (IM, Informal Goal, Formal Goal, Goal)

2.2 Process Integration

Process Integration Operators. The integration of the process models consists in

integrating their maps and adapting the corresponding guidelines accordingly. Let I

be a set of intentions and S a set of strategies. The map is Map ⊆ I * I * S . The set of

operators for integrating maps is as follows:

• RENAME_INTENTION : Map * I * I → Map; RENAME_INTENTION(m, i
i
, i

j
) =

m | i
i
 = i

j

• RENAME_SECTION : Map* I * I * S * S → Map; RENAME_ SECTION(m, <i
i
, i

j
,

s
ij
>, s

ij

1
) = m | <i

i
, i

j
, s

ij
= s

ij

1
>

These two operators allow to unify the terminology of two overlapping maps by

renaming some intentions or strategies of each map. Two intentions from different

maps having the same target product must be unified; however, the two intentions

must have the same name before their integration. The RENAME_INTENTION

operator allows to choose the more appropriate intention name. The same kind of

operation must be performed on two sections from different maps having the same

source and same target intentions. If the corresponding IAGs have the same situations

(input products) and produce the same target products in the same manner, these

sections shall be unified and renamed.

12

• ADD_SECTION : Map * I * I * S → Map; ADD_ SECTION(m, i
i
, i

j
, s

ij
) = m ∪ <i

i
,

i
j
, s

ij
>. This operator allows us to add a new section in the map. More precisely, it

permits to introduce a new strategy between two existing intentions. The addition

of a new section consists in adding a new IAG which defines a new way to achieve

the target intention following the new strategy. If there are already several sections

having the same input and output intentions, the SSG allowing to select one of

these sections is modified accordingly. In the contrary, if the added section is the

only one between these two intentions, the ISG of the source intention must be

modified.

• REMOVE_ SECTION: Map * I * I * S → Map; REMOVE_ SECTION(m, <i
i
, i

j
,

s
ij
>) = m \ <i

i
, i

j
, s

ij
>. This operator permits to delete one section from the map if

its strategy is not relevant in the integrated map or if this section will be replaced

by a more appropriate one. The removing of the section from the map consists in

removing the corresponding IAG. If there are several sections having the same

input and output intentions, the corresponding SSG must be modified. If the

removed strategy was the only strategy available between these two intentions, the

corresponding ISG must be modified.

• ADD_INTENTION : Map * I → Map; ADD_INTENTION(m, i) = m ∪ i. This

operator permits to add a new intention in the map. The addition of a new intention

in the map implies to add at least one input and one output strategy. Therefore, two

sections at least must be added in the map.

• REMOVE_INTENTION : Map * I → Map; REMOVE_INTENTION(m, i) = m \ i.

This operator allows to remove an intention from the integrated map if this

intention is not appropriate or if it is replaced by another one. As the intention

might be connected to several other intentions of the map, this operator can be

applied only if all sections connecting this intention with other intentions have

been removed before. The ISGs concerning this intention are modified.

• MERGE_SECTION : Map * I *I * S * Map * I *I * S * Map * I *I * S → Map;

MERGE_SECTION (m
1
, <i

1i
, i

1j
, s

1ij
>, m

2
, <i

2i
, i

2j
, s

2ij
>, m

3
, <i

3i
, i

3j
, s

3ij
>) = m

3
 ∪

<i
3i
, i

3j
, s

3ij
>. This operator allows to merge two sections originating from different

maps into one section of the integrated map. The merge of two sections is possible

if these sections have the same input and the same output intentions and if the

strategies have the same name. The merge of two sections consists in selecting the

more complete IAG or to merge the two IAGs into an integrated IAG. In the first

case one of two IAGs is selected, in the second case a new IAG is defined.

• MERGE_INTENTION: Map * I * Map * I * Map * I → Map; MERGE_

INTENTION(m
1
, i

1
, m

2
, i

2
, m

3
, i

3
) = m

3
 ∪ i

3.
This operator allows to merge two

intentions from different maps having the same name. All the sections having this

intention as source or target intention are preserved and the corresponding ISG is

modified. The both MERGE operators are especially useful in the integration of

two overlapping maps. They allow to integrate two maps without the addition of a

new intention or a new section.

• SPLIT_SECTION : Map * I * I * S * S * S → Map; SPLIT_SECTION(m, <i
i
, i

j
,

s
ij
>, s

ij

1
, s

ij

2
) = m \ <i

i
, i

j
, s

ij
> ∪ <i

i
, i

j
, s

ij

1
> ∪ <i

i
, i

j
, s

ij

2
>. This operator allows to

decompose a section into two parallel sections. It is applicable in the case where

13

the strategy of this section provides two different tactics to satisfy the target

intention. The two obtained sections have the same source intention and the same

target intention. The IAG of this section is decomposed into two IAGs and the SSG

is modified or a new SSG is created if it does not existed before.

It shall be noticed that the presented lists of operators for both product and process

models integration might be not exhaustive ones.

Example. The application of the operators for integration of the OOSE map and the

CREWS-L‘Ecritoire map is presented in Fig. 8.

alternative
discovery
strategy

composition
discovery
strategy

goal structure
driven
strategy

template
driven
strategy

template driven
strategy free prose

strategy

computer supported
strategy

manual strategy

linguistic strategy

Write a
Scenario

initial goal
identification strategy

actor-based discovery strategy

normal case first
strategy

extend strategy

abstraction
strategy

completeness
strategy

Stop

Conceptualise
a Use Case

abstraction strategy
Elicit a Goal

Start

Conceptualise
a Scenario

integration
strategy

Fig. 8. The integrated map

In the first step of the integration process an effort shall be done to unify the

terminology used in the two maps. We need to verify if there are two concepts

(intentions or/and strategies) in the different maps having the same name, or similar

semantic and thus rename one of the two concepts. We need also to unify the names

of concepts having the same semantics but different names. In the case at hand, the

intentions "Elicit Goal" from the CREWS-L‘Ecritoire map and "Elicit Use Case"

from the OOSE map have different names but are similar in nature. The two

intentions refer in fact to the functionality' s that the system must provide to its users.

The latter emphasises the term "use case" whereas the former prefers to put the light

of the "goal" corresponding to the function. Thus, we rename the intention "Elicit a

Use Case" of the OOSE map as "Elicit a Goal" and then apply the MERGE

operator :

• RENAME_INTENTION(OOSE, Elicit Use case, Elicit Goal)

• MERGE_INTENTION((OOSE, Elicit Goal), (CREWS-L' Ecritoire, Elicit Goal),

(IM, Elicit Goal))

 The intentions "Start" and "Stop" should be also merged in the integrated map:

• MERGE_INTENTION((OOSE, Start), (CREWS-L' Ecitoire, Start), (IM, Start))

• MERGE_INTENTION ((OOSE, Stop), (CREWS-L' Ecitoire, Stop), (IM, Stop))

The intention obtained by applying the operator MERGE_INTENTION preserves

all sections from the OOSE map and all sections from the CREWS-L' Ecritoire map

having the same intention as a source intention. A new ISG is constructed for each

14

application of this operator. For example, the merge of "Elicit a Goal" intentions

implies the construction of a new ISG which contains the corresponding ISG from the

CREWS-L' Ecritoire map and is completed by the progression to the use case

conceptualisation, which corresponds to the sections coming from the OOSE map.

The merge of the "Start" intentions does not lead to a new ISG, because in the two

maps, the sections from "Start" have the same target intention, namely "Elicit a

Goal". In this case a new SSG is constructed guiding the selection of one of the two

strategies (one strategy from the OOSE map and one strategy of CREWS-L' Ecritoire

map).

In the current situation, the integrated map proposes two different results : a set of

conceptualised scenarios and a set of use cases. In the integrated map we must obtain

only one result. The addition of a new section allowing to integrate a set of scenarios

into a use case can be the solution of our problem. Therefore, we add a new section

with an "integration strategy" which connects the intention "Conceptualise a

Scenario" with the intention "Conceptualise a Use Case". This section performs the

integration of scenarios obtained using the CREWS-L’Ecritoire process into use cases

equivalent to the use cases obtained using the OOSE process. The corresponding IAG

providing the guidelines to integrate a set of scenarios into a use case must be

defined. Moreover, the section <Conceptualise a Scenario, Stop, Completeness

strategy> must be removed from the integrated map and the ISG defining the progress

from the intention "Conceptualise a Scenario" is modified : the possibility to progress

to the "Stop" intention is removed and the possibility to flow to the intention

"Conceptualise a Use Case" is added. The following operators are applied on the

integrated map :

• ADD_SECTION (IM, <Conceptualise a Scenario, Conceptualise a Use Case,

Integration strategy>)

• REMOVE_ SECTION (IM, <Conceptualise a Scenario, Conceptualise a Use Case,

Completeness strategy>)

As the objective of the integration of two maps is to enhance the OOSE process,

the section <Elicit a Goal, Conceptualise a Use Case, Normal case first strategy> can

be removed from the resulting map. This section is replaced by the CREWS-

L’Ecritoire <goal elicitation, scenario conceptualisation> process which provides

richer guidelines than the IAG of the section <Elicit a Goal, Conceptualise a Use

Case, Normal case first strategy>.

• REMOVE_ SECTION(IM, <Elicit a Goal, Conceptualise a Use Case, Normal case

first strategy>)

The application of this operator implies to delete the corresponding SSG because

there is now only one section coming from the intention "Elicit Goal" to the intention

"Conceptualise a Use Case".

Discussion on the Map Integration. The representation of the process model by a

map and a set of guidelines allows us to provide a strategic view of processes. This

view tells what can be achieved (the intention) and which strategy can be employed to

achieve it. We separate the strategic aspect from the tactical aspect by representing

the former in the method map and embodying the latter in the guidelines. By

15

associating the guidelines with the map, a smooth integration of the strategic and the

tactical aspects is achieved.

Traditional stepwise process models have difficulty to handle the dynamically

changing situation of a process. The map contributes to solve this problem by

constructing the process model dynamically. Therefore, it is easier to represent a

process allowing several different ways to develop the product by a map and a set of

guidelines than by a set of steps. In the former approach, each step can be performed

in several different manners. In the map it is represented by an intention to achieve

and a set of strategies. Each strategy describes a different manner to achieve the

intention.

Integrating maps is easier than integrating the stepwise process models, especially

in the case where the process models overlap. The enhancement of a stepwise process

model by another one requires to construct a new process model. On the contrary, the

enhancement of a map by an another map does not require to modify all guidelines.

Only the guidelines involved in the overlapping parts are modified.

3 Conclusion and Future Work

In this paper we have proposed and illustrated an approach for integrating a scenario-

based technique into an existing industrial method. The approach is built upon :

− a set of operators to integrate the product aspects of the two methods on one hand,

and to integrate their process aspects in the other hand and,

− a set of rules to check whether if the integrated method is consistent or not.

The motivation for developing such an approach was twofold : first, scenarios

have proven useful to requirements engineering but cannot be used in isolation and,

secondly, existing methods which cover the entire system life cycle might be

enhanced by integrating scenario-based techniques in the requirements engineering

step. The paper has shown how to enhance the use case model construction of the

OOSE method by integrating the goal discovery and scenario authoring features of

the CREWS-L' Ecritoire approach. Vice-versa the rest of the analysis and design

process of the OOSE method remains usable.

The approach needs to be validated and improved in other cases. Our goal is to do

so in the first place, by integrating the four CREWS scenario-based techniques one

with the other and with the OOSE method. We are currently working on the

development of a computerised support for facilitating such an integration and to

connect this facility with the method base query facilities presented in [19].

Acknowledgements : the authors would like to thank the CREWS project members for

their contributions to the development of the ideas presented in the paper.

References

1. I. Jacobson, M. Christerson, P. Jonsson and G. Oevergaard, Object Oriented Software

Engineering: a Use Case Driven Approach. Addison-Wesley, 1992.

16

2. Rational Software Corporation, "Unified Modelling Language version 1.1". Available at

http://www.rational.com/uml/documentation.html, 1998.

3. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented

Modeling and Design. Prentice Hall, 1991.

4. P. Haumer, K. Pohl, K. Weidenhaupt, Requirements Elicitation and Validation with real

world scenes. IEEE Transactions on Software Engineering, Vol. 24, N°. 12, Special Issue

on Scenario Management, December. 1998.

5. C. Rolland, C. Ben Achour, Guiding the construction of textual use case specifications.

Data & Knowledge Engineering Journal Vol. 25 N° 1, pp. 125-160, (ed. P. Chen, R.P. van

de Riet) North Holland, Elsevier Science Publishers. March 1997.

6. C. Rolland, C. Souveyet, C. Ben Achour, Guiding Goal Modelling Using Scenarios. IEEE

Transactions on Software Engineering, special issue on Scenario Management, 1998.

7. A. G. Sutcliffe, Scenario-based Requirements Analysis. Requirements Engineering Journal,

Vol (3) N° 1, (ed. P. Loucopoulos, C. Potts), Springer Verlag. 1998.

8. E. Dubois, P. Heymans, Scenario-Based Techniques for supporting the Elaboration and the

Validation of Formal Requirements, Submitted to RE Journal, 1998.

9. M. Saeki, K. Wen-yin, Specifying Software Specification and Design Methods. Proceedings

of Conference on Advanced Information Systems Engineering, CAISE' 94, Lecture Notes in

Computer Science 811, Springer Verlag, pp. 353-366, Berlin, 1994.

10.C. Rolland, N. Prakash, A proposal for Context-Specific Method Engineering, IFIP TC8

Working Conference on Method Engineering, Atlanta, Gerorgie, USA, 1996.

11.S. Brinkkemper, M. Saeki, F. Harmsen, Assembly Techniques for Method Engineering.

Proceedings of the 10
th
 Conference on Advanced Information Systems Engineering,

CAiSE’98. Pisa Italy, 8 -12 June, 1998.

12.X. Song, A Framework for Understanding the Integration of Design Methodologies. In:

ACM SIGSOFT Software Engineering Notes, Vol. 20, N°1, pp. 46-54, 1995.

13.M. Bouzeghoub, I. Comyn, View Integration by Semantic Unification and Transformation

of Data Structures, Proceedings of the Conference on Requirements Engineering, RE' 90,

Lausanne, 1990.

14.C. Rolland, N. Prakash, A. Benjamen, A multi-model view of process modelling. To appear

in the RE journal, 1999.

15.N. Prat, Goal formalisation and classification for requirements engineering. Proceedings of

the Third International Workshop on Requirements Engineering: Foundations of Software

Quality REFSQ’97, Barcelona, pp. 145 -156, June 1997.

16.I. Jacobson, The use case construct in object-oriented software Engineering. In ‘Scenario-

based design: envisioning work and technology in system development’, John M. Carroll

(ed.), John Wiley and Sons, 309-336, 1995.

17.G. Grosz, C. Rolland, S. Schwer, C. Souveyet, V. Plihon, S. Si-Said, C. Ben Achour, C.

Gnaho, Modelling and Engineering the Requirements Engineering Process : an overview of

the NATURE approach. Requirements Engineering Journal 2, pp. 115-131, 1997.

18.S. Si-Said, C. Rolland, G. Grosz, MENTOR :A Computer Aided Requirements Engineering

Environment. Proceedings of CAiSE' 96, Crete, GREECE, May 1996.

19.C. Rolland, V. Plihon, J. Ralyté, Specifying the reuse context of scenario method chunks.

Proceedings of the 10
th
 Conference on Advanced Information Systems Engineering,

CAiSE’98. Pisa Italy, 8 -12 June, 1998.

