
HAL Id: hal-00707565
https://hal.science/hal-00707565v1

Submitted on 17 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enterprise Knowledge Development: the Process View
Colette Rolland, Selmin Nurcan, Georges Grosz

To cite this version:
Colette Rolland, Selmin Nurcan, Georges Grosz. Enterprise Knowledge Development: the Process
View. Information and Management Journal, 1999, pp.165 - 184. �hal-00707565�

https://hal.science/hal-00707565v1
https://hal.archives-ouvertes.fr

 1

Enterprise Knowledge Development: the Process View (1)

Colette Rolland*, Selmin Nurcan*�, Georges Grosz*

*
University Paris 1 - Panthéon - Sorbonne

Centre de Recherche en Informatique

90, rue de Tolbiac 75634 Paris Cedex 13 France

� University Paris 1 - Panthéon - Sorbonne

IAE de Paris (Business Administration Institute)

162, rue Saint Charles 75740 Paris Cedex 15 France

Original submittal: February 28, 1998; Accepted: January 29, 1999

Abstract

Enterprise Knowledge Development (EKD) is a method for reasoning on change in organisations. It

tackles different aspects of organisations : who does what, how and why. Applying EKD is an iterative,

non-linear and guided process. Guidance is based on a decision making pattern that promotes a situation

and decision-oriented view. The claim is that EKD engineers are repeatedly faced with situations that

need them to make decisions. Thanks to the use of the decision making pattern together with domain

specific, EKD specific or generic knowledge, the EKD process systematically provides guidance. Generic

guidance is the default option that includes the co-operative aspects of decision making.

Keywords: Enterprise Knowledge Engineering, Design Process, Change Process, Decision Making,

Guidance, Co-operative Work.

1. Introduction

 It is traditional to look at any engineering activity from both a product and process point of

view. The product is the desired result, the process is the route followed to reach that result.

Methods have classically focused on the product aspect of systems development and have paid

less attention to the description of formally defined ways-of-working which could be supported

by CASE environments. Clearly, there is an important demand for methods and tools where

process guidance is offered to provide advice on what activities are appropriate to which

situations and how to perform them [16], [46], [52], [62].

(1) This work is partially supported by the ESPRIT project ELEKTRA (N° 22927) funded by the EEC in the context
of the Framework 4 programme.

Corresponding author : Selmin Nurcan
University Paris 1 - Panthéon - Sorbonne, Centre de Recherche en Informatique
90, rue de Tolbiac 75634 Paris Cedex 13 France
Tel : (33) 1 40 77 46 34 Fax : (33) 1 40 77 19 54 e-mail : nurcan@univ-paris1.fr

 2

 The Enterprise Knowledge Development (EKD) method [9] attempts to provide such

guidance by splitting it into three complementary elements:

(1) a set of models used for describing the system to be constructed and the organisation in

which it is to operate,

(2) a way-of-working (a set of rules and heuristics) supporting the usage of concepts, and

(3) a set of tools supporting the way-of-working.

 This method is currently being applied in the context of the ESPRIT project ELEKTRA

[17] for re-organising electricity companies and designing new solutions [49], [50], [51].

 This paper presents the EKD way-of-working. The way-of-working allows a user to manage

the EKD process in a structured way rather than by intuition. It provides advise on what should

be considered during this process (goals, actors, resources, etc.), why and how it should be

analysed (goal decomposition, actors dependency study, etc.) by following some relevant

techniques (brainstorming, goal templates, etc.). It also suggests which problem should be

tackled next and provides some arguments to help in making the most appropriate design

decisions. Finally, it includes means to support co-operative work processes. Thus, some

process automation is possible and there are tracing facilities to ensure the recording of the

rationale for the decisions.

 This paper is organised as follows. Section 2 sets the terminology and the background of

our proposal. Section 3 presents an overview of the EKD way-of-working. Section 4 presents

the guidance in the EKD process. Section 5 focuses on the global and incremental view of the

EKD process. Examples presented in this report are based on the F3 Air Traffic Control (ATC)

case study [22].

2. Background and Terminology

2.1. Terminology

 A product is the desired output of the design process. Within EKD, the product is a set of

elements describing the system to be constructed and the organisation in which it will operate.

 A process describes the order and decisions made in constructing the product. It shows how the

product has been constructed in a descriptive manner. If the product comprises the goal "Improve

customer satisfaction" and this goal is decomposed into a set of sub-goals (such as "Improve desk

services", "Improve time response to customer request", etc.), the process comprises elements stating

that "Improve customer satisfaction" has been identified first and then, two sub-goals have been

identified and associated with the goal.

 A process and its related product are specific to an application, they are defined at an

instance level.

 3

 A product model defines the set of concepts and constraints used by an engineer for

defining a product together with their properties and relationships. A product model is an

abstraction of many similar products.

 A process model is a description of processes at the type level. It may serve two distinct

purposes: descriptive or prescriptive [11], [34]. A descriptive process model aims at recording

and providing a trace of what happens during the development process. Examples of

descriptive process model can be found in [23] and [44]. A prescriptive process model is used

to describe "how things must/should/could be done". Prescriptive process models are often

referred to as ways-of-working [56].

 A process model and its related product model are specific to a method, they are defined at

the type level.

 A product meta-model is a set of generic concepts that represent any product model. For

instance, a product meta-model would describe a product model as a set of "concepts" having

"properties" and "constraints", and a set of "relationships" between the concepts.

 A process meta-model provides a set of generic concepts to represent any process model.

This ensures the process representations constructed from the meta-model to be generic and,

when combined with the product meta-model, ensures method independence. Examples of

process meta-models can be found in [26], [36] and [47]. A simple process meta-model would

define the concept of "action" and a "precedence" relationship between actions. It could be

related to the example of product meta-model by stating that an "action" creates or deletes a

"concept", a "constraint", a "relationship", etc..

 A process meta-model and its related product meta-model are method independent, they are

defined at the meta-type level.

 The abstraction levels for products have been standardised in [28]. The IRDS (Information

Resource Dictionary Systems) is organised along the dimension of data models abstraction

with four levels. Level n+1 (called the defining level) constitutes a type system for the level n

(the defined level). Level n+1 defines the language in which level n can be specified. In

increasing order of abstraction, the four levels are: the Application level, the IRD level, the

IRD definition level and the IRD definition schema level. At the Application level, data (e.g.

the aircraft pilot is named "Jones") are recorded by database application programs. At the IRD

level, the product is defined (e.g. the actor "Pilot" has the goal "Minimise the risk of the

aircraft crashing"). The IRD definition level is where a product model (e.g. the concepts of

"actor", "goal") is defined, whereas the IRD definition schema level is where the product meta-

model is defined. With regard to our terminology, the IRD level corresponds to the instance

level, the IRD definition level corresponds to the type level and the IRD definition schema

 4

level corresponds to the meta-type level.

 There is still no standard for process abstraction. However, it is possible to contrast it with

the IRDS standard and levels of abstraction for processes. As shown in figure 1, a process is an

instance of a process model defined at the instance level. For instance, the process records that

the goal "Minimise the risk of aircraft crashing" is identified first and then it is decomposed

into a set of sub-goals. The underlying process model is described at the type level, it states that

decomposing a goal can be performed after the identification of the goal. A process model is an

instance of a process meta-model. A process meta-model is defined at the meta-type level.

Based on this, the previous example of process model is an instance of a process meta-model

allowing a description of concepts that can be identified in sequence.

 Putting those examples together highlights the relationships between process and product.

The process keeps track of how the product has been constructed in a descriptive manner.

Similarly a process model defines how to use the concepts defined within a product model.

Finally, a process meta-model refers to the meta-types of the product meta-model.

2.2. Background

 A study of the state-of-the-art suggests that existing process models can be classified into

three categories [14]: activity-oriented models, product-oriented models, and decision-oriented

models. Each category has an underlying paradigm that may be examined in terms of its

appropriateness to change process modelling.

 2.2.1. Activity-oriented models

 Activity-oriented models are dominant in the literature, probably because they advocate an

intuitive way of problem solving: establish a plan of actions and apply the actions following the

order prescribed in the plan. These models attempt to describe the development process as a set

of activities with conditions constraining the order of the activities. The difference between

these models relies on the variety of ways that they allow the designer to express the system

and the associated languages. Refer to [20] for a comprehensive survey of activity-oriented

models.

 Activity-oriented models were inspired by generic system development approaches (e.g. the

Waterfall model [54], the Spiral model [7], the Fountain model [25], etc.). The underlying

paradigm is one of hierarchical decomposition of activities. Initially, the aim of such process

models was to define a general framework for system definition and implementation by

providing a process description at a very high level of granularity (the different steps of the

development and their linking). However, such models can also be used for decomposing

macro-activities from a large step into micro-activities of smaller steps. Practically, a large

 5

number of methods have been using this type of model. The OMT method [55], for instance,

suggests the following sequence of activities: 1) establish an initial description of the problem,

2) construct an Object Model, 3) construct a Dynamic Model and 4) construct a Functional

Model. Each of these activities is decomposed into smaller activities.

 The process meta-model corresponding to this class of models is based on the two concepts

of activity and activity linking condition.

 In addition, these models have often used informal means for process description such as

natural language or diagrams with informal semantics. This has made them hard to analyse, to

improve or to follow systematically.

 The recent emergence of formal software process models (e.g. [3], [20]) is likely to make

activity-oriented process models better suit the new goals of process engineering. However,

very few modelling approaches rely on "formal foundations"; most define how to operate more

or less informally. This new generation of process models remains activity-oriented even

though the initial activity decomposition paradigm has been extended in various ways: Petri

nets in EPOS [29] and SPADE [4], rule based in MERLIN [18], ALF [6], Marvel [31], EPOS,

and triggers in ADELE [5] and MVP-L [20]. It is interesting to notice that formality relates to

the underlying programming languages: Smalltalk for E3, various Prolog dialects for EPOS,

Oikos [1] and PEACE [20], PS-Algol for PWI [29].

 Most of these models were inspired by the programming process introduced in [41] which

makes an analogy between computer programs and the development processes : a development

process should be described as a program and expressed in one or several languages, similar to

programming languages. Once described, the process program (or model) can be enacted. The

process model is then used to control the execution of the process from which it is an instance

of. Bandinelli et al state that "In a process centred environment, a process plays the role of a

program to be executed in order to control and manage the process". Many activity-oriented

process models are based on this hypothesis in despite of the criticism of [33], which argues

that process programming only allows one to represent the well assimilated parts of processes

not the creative parts essential to development, for instance in the use of heuristic, the choice of

alternatives, back tracking decision, etc..

 Activity-oriented process models do not explain how the product is constructed, what the

input and output of the activities are, and why activities are performed. The linear view of

activity decomposition promoted by this paradigm is inadequate to model the change process,

because of all the alternatives that must be considered. Procedural representations cannot

incorporate the rationale underlying the process and therefore do not permit reasoning about

engineering choices based on existing alternatives. It is unrealistic to plan what will happen in

 6

an entirely sequential manner. Finally, the linear view is also inadequate for ways-of-working

which have to support backtracking, reuse of previous designs, and parallel engineering. These

are necessary in the context of EKD.

 2.2.2. Product-oriented models

 The product-oriented process models define the development process through the evolution

of the product. They promote a view of a development process which is centred around a

development activity but, additionally, link development activities to the product. Furthermore,

the conditions for triggering activities are specified over the life of the product. The underlying

process meta-model is built on three concepts: product state, activity and state transition.

 Product-oriented models do not put forward the activities of a process but rather the result

of these activities. They establish an explicit link between the activities and the resulting

product. The ViewPoints model [19] and the development process model proposed in the

European Software Factory (ESF) project [21] belong to this category. Others product models

have been proposed in the literature [37], [59]. We illustrate this class of models with the EPM

model [27] which considers development processes as successions of state transitions of

product elements called entities. At a given point in time, an entity is in a unique state. For

example, a program module can be in the "none" state - the initial state - in the "under

development" or "tested and transferred" state - the final state. States are either active, if the

entity is currently under transformation - e.g. "under development" - or passive - e.g. "tested

and transferred". State transitions are triggered by events, possibly under conditions. A state

can be decomposed into sub-states, leading to internal state transitions. Thus, the model

includes the meaningful elements of a process model, the product elements, and permits an

accurate measure of the level of progress in the process. Analysing the states allows the

designer to consider completed entities rather than a vague and partial progress measurement of

an activity, such as that suggested by activity-oriented process models. State diagrams are used

in the specification and design phases of large and complex event-driven systems which have to

continuously interact on internal and external stimuli [24].

 A positive aspect of the product-oriented approaches is that they model the evolution of the

product and couple the product state to the activities that generate this state. They are useful for

tracing the transformations performed and their resulting products. However as far as guidance

is concerned, and considering the highly non-deterministic nature of the EKD process, it is

probably difficult to write down a realistic state-transition diagram that adequately describes

what has to happen during the EKD process.

 2.2.3. Decision-oriented models

 7

 The most recent class of process models follows a decision-oriented paradigm. The

successive transformations of the product are looked upon as consequences of decisions.

According to these models, a way-of-working does not only specify the linking of activities or

product states but also the intention behind the execution of activities and their linkings.

 The process models of the IBIS [43], DAIDA [30], [53] and NATURE [48] projects fall

into this category. Such models are semantically more powerful than product-oriented models

because they explain not only how the process proceeds but also why transformations happen.

The concept of Action or Activity is put in the background while the intention that results in a

decision is pushed into the foreground. For example, while constructing an actor model, the

creation of the actor "Pilot" becomes secondary, whereas the intention : "we need to represent

pilots", becomes predominant. The intentions are often motivated by arguments that strengthen

or refute them. In the example, pro and con arguments will be associated with the decision to

create the actor "Pilot". The fact that pilots are responsible for the execution of the take off,

landing, etc. is a pro argument for this decision.

 The IBIS model put the emphasis on decision making and its rationale, the development

process is modelled by showing reasons why each decision was made. The purpose is to

represent a decision process as a network, essentially composed of issues, positions, and

arguments. The IBIS model and its derivatives - the REMAP model [45], the PDS model [13]

from the ESPRIT II project MACS and its associated language DRL (Decision Representation

Language) [32] - focus on tracing processes, they are descriptive models.

 This type of models allows a user to capture more process knowledge than the two other

approaches. Decision-oriented models are not only able to explain how but also why the

process proceeds. Their enactment should control the performance of actions -as activity and

product-oriented models can do-, and also be able to (a) guide the decision making process that

shapes the development, (b) help reasoning about the rationale of decisions, and (c) record the

associated deliberation process.

 2.2.4. Discussion

 Putting aside the different expression formalisms, activity and product-oriented models

have similar expressiveness capabilities. Though this expressiveness suits the modelling of

program development and test processes, it is not sufficient for modelling analysis processes

where human reasoning is a major component. The execution of the activities of such processes

are the consequence of human decisions. Decision-oriented models allow the user to trace

processes, highlighting why decisions were made and thus facilitating the introduction of

change in systems requirements.

 8

 Thus a decision-oriented modelling paradigm seems to be the most appropriate for the EKD

process both for trace and guidance purposes. The addition of a capability to record the design

decisions facilitates understanding of the engineer's intention and thus, better reuse of the

results. However, EKD processes are not adequately covered in existing decision-oriented

models. At any time, an EKD engineer is in a situation that he/she views with some specific

intention. His/her reaction depends on both these factors ; i.e. on the context in which he/she is

placed. He/she reacts contextually, often by analogy with previous situations in which he/she

has been involved [48].

3. An overview of the EKD process

3.1. The EKD process is guided

 First, we consider any EKD process as a decision making one, i.e. non deterministic. It is

performed by responsible agents having the freedom to decide how to proceed according to

their evaluation of their situation. Agents do not necessarily follow a predefined plan of action.

Defining and implementing change requires a number of decisions to be made : what to

consider in the existing organisation ; what shall be improved ; the alternative solutions ; the

selection of the most appropriate solution ; etc..

 Secondly, the EKD process cannot be ad-hoc and chaotic. It cannot be only based on

intuition and personnel behaviour of engineers and stakeholders. We look to it as a repeatable

process made of steps resulting from the application of a pattern for decision making. The

pattern is generic, in the sense that it is applicable to any decision making activity. The

proposed EKD way-of-working is entirely based on this pattern.

 Third, the pattern views a decision as the choice of the way to proceed in a given situation

to achieve an intention. A decision is contextual ; i.e., both situation and intention driven. The

rationale is that, following a decision based approach per se is not enough in our setting. As a

matter of fact, the intention to "reorganising the airport in order to increase passenger traffic",

may be implemented in different ways, depending on the airport to be reorganised. Indeed, an

intention can be fulfilled in different ways depending on the situation being considered. In

order to take this aspect into account, we propose to fully associate the intention and the

situation in a context.

 Definition 1 : A situation is a part of the product it makes sense to make decision on. A

situation can be defined at various levels of granularity, it can be a single element of the

product - for example a class in an OMT object model [55] - or a composition of product parts -

for example a complete object model representing the Paris-Roissy Airport today.

 9

 Definition 2 : An intention expresses what the engineer wants to achieve, it is a goal. An

intention can be strategic or operational allowing various levels of granularity in the decision

making process. For instance, a strategic intention can be "define an object model" or "increase

passenger traffic" whereas an operational intention can be "add a new attribute to a class" or

"add a check-in desk". A strategic intention corresponds to a high level requirement that needs

to be further decomposed into more detailed intentions whereas an operational intention can be

implemented into a sequence of actions.

 Definition 3 : A context is the association of a given situation and an intention that the

EKD engineer wants to achieve in this very situation. We use this concept as the basic building

block for describing an EKD process.

 In the remaining the paper, the terms "situation", "intention" and "context" will be used

with these specific meanings.

 Therefore, within EKD, any process element is described as a couple <situation, intention>,

such as:

<The Paris-Roissy Airport today, Operationalise goal "increase passenger traffic">,

<Goal G1: "Maintain separation standards between planes", Find design model satisfying goal

G1>, etc..

 Thus, any process model is described as a set of context types -situations are described at

the type level. We could define context types such as:

<Goal X, Operationalise goal X>,

<Goal Y, Find design model satisfying goal Y>, etc..

 Therefore, if we visualise the decision making pattern (figure 2) as having an input, a body

and an output, the input is a couple <situation, intention>, i.e. a context. In some sense the

pattern is bounded by the situation and the associated intention. It is close to the notion of

context used in Artificial Intelligence [58].

 Change engineering requires a complex process to take place. However, there are some

steps during the performance of this process that are grounded on knowledge.

 First, there is heuristical knowledge that consists of the know-how of EKD engineers. For

instance, when trying to operationalise the goal "increase passenger traffic in an airport" in the

context of the Roissy airport, he/she may refer to the experience gained during the

reorganisation of London’s Heathrow airport and recall that the goal "increase passenger traffic

in an airport" was articulated into two complementary sub-goals.

 10

 Secondly, an engineer may try to reuse knowledge independent of any particular domain but

specific to EKD. For instance, while classifying a goal, he/she refers to some existing and well

understood categories, the elements guiding his/her selection of the appropriate class are

known a priori, they are reused for the classification of every goal. Similarly, the

operationalisation of a goal follows some patterns: a goal can be reduced to a set of alternatives

or to concomitant goals or it can be expressed through a business rule. This type of knowledge

is specific to EKD and can be used in any organisational setting.

 Finally, when an engineer has to solve a new design problem, he/she could structure his/her

reasoning by looking for alternative ways to solve the problem or by decomposing the problem

into smaller problems. This type of knowledge is fully generic and not tailored to EKD.

 The body of the decision making pattern provides the knowledge to make the decision. The

pattern is intended to provide guidance on how to proceed to achieve the intention in the given

situation.

 Our approach provides, three types of guidance: generic guidance, EKD guidance and

domain specific guidance. Generic guidance is independent of any specific methodology

supporting decision making; e.g. not specific to EKD. It can be seen as the common set of rules

for guiding decision making and is based on generic method knowledge. The rule "proceed in

the achievement of a goal by identifying alternative choices that make this goal executable

through actions" is an example of generic guidance.

 EKD guidance is tailored to the way EKD envisions a change process to occur. Providing a

rule for “classifying a business objective into one of the objective classes : "achieve", "avoid",

"cease", "extend" or "maintain"” is specific to EKD. It is based on EKD method knowledge.

 Domain specific guidance depends on the application domain. Any guideline related to Air

Traffic Control belongs to this type. It is based on domain specific method knowledge.

 As depicted in figure 3, the three types of guidance can be related to the levels of

abstraction.

 The output of the decision making pattern is of two different types : an action performed on

the product being designed or a new situation coupled to an intention. It is the nature of

intention that determines the output type.

 Intentions such as “Operationalise the goal "increase passenger traffic"” are high level

objectives that cannot be immediately implemented through actions in one step of the process.

The refinement of the intention might require several steps, each of them contributing to the

operationalisation of the goal. The decision making in one of these steps consists of generating

a new context, i.e. a couple <situation, intention>. “Operationalise the goal "increase passenger

 11

traffic"” might for example, require “Operationalise "Decrease plane turn-around time"” and

therefore, the step having as input the context <Roissy airport today, Operationalise goal

"increase passenger traffic"> will have as output the context <Roissy airport plane movement

description, Operationalise goal " Decrease plane turn-around time">.

 It could also happen that the EKD engineer knows exactly how to “Operationalise goal X”,

by reducing the goal into sub-goals X1 and X2, etc.. The decision made by the EKD engineer

at this step s1 will consist of an action to replace goal X by a new structure. However, the

change in the product raises new situations. For example, step s2 can contribute to the

emergence of the two contexts: <Goal X1, Associate design model to X1> and <Goal X2,

Operationalise X2>.

3.2. The EKD process is incremental and dynamic

 The suggested way-of-working makes the EKD process iterative, each step of the process

repeating the EKD decision making pattern. As a consequence, the product (i.e., the new

business processes of the company) is incrementally constructed. This suggests a spiral

representation of the process. In addition, the sequencing of steps is not fixed. Steps

dynamically follow one another. This is brought about by the decision making pattern, which

does not impose any predefined sequence of the decision making process but allows EKD

engineers to switch from one context to another, depending on new situations and changes.

3.3. The EKD process is supported by software tools

 Both the information system and the software community have automated their methods

and now use tools. So is the EKD approach. The support provided by the EKD tool

environment comprises three aspects (1) guidance based on the EKD way-of-working; (2) trace

of the EKD process; and (3) backtracking and replay facilities. The generic tool MENTOR (co-

developed by one of the authors) supports the three aspects [57]. It is currently being

customised to EKD.

 3.3.1. Automated guidance support

 The EKD environment provides guidance in the performance of the process by using the

Dowson's framework [15] (figure 4). The framework introduces three interacting domains: process

modelling, process performance, and process enactment.

 Process modelling captures all activities performed for modelling the software development

processes: process model definition, process model specialisation, etc.. Process enactment

encompasses what takes place in a process to support process performance, based on the

process definitions. This is essentially an interpretation of an instantiated process model that

 12

guides, enforces, or partly automates process performance. The relationship between the

process modelling and the process enactment domains is the instantiation of the process model.

Process performance involves the set of activities conducted by human and non-human agents

(e.g., the computer). The relationship between the process performance and the process

enactment domains is twofold : (1) support, control, and monitoring of activities of the process

performance domain, and (2) the feedback performance for process adjustment.

 The process model supporting the EKD way-of-working comprises three classes of process

model fragments : generic method chunks ; EKD method chunks ; and domain specific method

chunks. All chunks are stored in the repository of the EKD environment and accessible at any

time.

 3.3.2. Tracing support

 Empirical studies [35] have shown that analysts and developers know very little about the

process they go through. Process traceability is therefore an important issue in design. It can be

divided into three parts: process execution, product evolution, and their relationships.

Traceability has many uses in the design process, especially in the early phases of development

where the requirements for the system are elicited and defined [42].

 Within EKD, the trace comprises both process and product aspects. The process trace itself

keeps track of the application of the decision making pattern at each step. The step by step

evolution of the product are stored as versions of the product, thus providing configuration

management material. The relationship between the product and the process traces allows us to

relate decisions to their effects on the product.

 3.3.3. Backtracking and replay support

 Backtracking to a previous step in the process may help by replaying the process in a

different way. Replay is often necessary to support changes occurring during the process itself

or later. Replay is another form of process enactment which is made possible by the enactment

mechanism of the EKD tool.

4. Guiding the EKD process

 This section deals with the brief presentation of the process meta-model (see [39], [40] and

[52] for a detailed presentation) underlying the decision making pattern and the way it provides

guidance.

4.1. The EKD decision making pattern

 13

 The EKD decision making pattern is a reasoning mechanism supporting decision making by

providing a set of predefined concepts, a library of guidelines and a set of predefined rules (see

figure 5). The concepts identify the elements supporting the reasoning. The rules play a dual

role. First, they help in the retrieval of the appropriated guidelines from the library. Second,

rules are used to guide the decision making according to the guideline. Input and output of the

rules are contexts.

 The pattern can be compared to an expert system matching facts (the input context) to fact

types (the guidelines) in order to generate new facts (the output contexts). The rules of the

decision making pattern play a role similar to the inference engine of an expert system. When the

EKD process is under the control of the tool environment, the matching activity is automated,

whereas an EKD engineer working manually must remember or look up rules by hand.

4.2. Concepts underlying the EKD decision making pattern: an overview of the process

meta-model

 Figure 6 depicts the core elements of the EKD process meta-model. As defined in section

3.1, a context tightly couples a situation to an intention. A context corresponds to one step of

the EKD process. A situation is built from an EKD product part and sets the product elements

considered during one step of the process. An intention expresses the goal the EKD engineer

has in mind, it has a target describing what should be the result of the decision made in this

context. Similarly, a target is built from EKD product parts. Both situation, target and intention

can be described at different levels of granularity from coarse to fine grain.

4.3. Generic guidance

 4.3.1. Using the generic guidance

 The method repository has only one generic guideline : the generic method chunk or

generic chunk.

 The chunk is applicable in situations where the two other types of guidelines do not hold ;

i.e. when there is no domain specific guideline available, nor EKD guideline meeting the

current situation and intention. The guideline aims to fulfil the "help me" request. It proposes

an help strategy for progressing in the EKD process that offers three options: do, plan, and

choose. Each will correspond to a given type of context : executable, plan and choice context,

respectively. Accordingly, the generic chunk provides three options:

• do, which corresponds to a straightforward resolution strategy. It is chosen when the

engineer knows exactly what needs to be done in order to fulfil the intention of the

context. The EKD engineer is required to specify the design action(s) and their effects on

the design product. We call this type of context executable.

 14

• choose, which corresponds to a resolution strategy that requires the exploration of

alternative paths. It is selected when the engineer thinks about different alternatives but

has not make up his/her mind about the one to select. The engineer shall specify all

possible alternatives and elaborate an argumentation for each of them. Based on the

proposed arguments, the enactment leads to the selection of an alternative path that seems

most appropriate. This is termed a choice context.

• plan, which follows a planning strategy. The engineer already has a plan for achieving the

intention. In this case, following a divide and conquer tactics, the EKD engineer will

progress by building a plan consisting of decisions to be made. This is called a plan

context.

 Note that the two last options correspond to the classical reduction operator in the problem

reduction approach to problem solving [38].

 Working with the do strategy means that the EKD engineer is able to specify the actions

that operationalise the process goal and to execute them immediately. One should notice that

the process is constructed dynamically, the generic chunk helping in identifying the case in

hand (the do strategy) and providing the procedure to be followed (specifying actions and their

impact on the product).

 The plan context corresponds to a well-known approach in strategic decision making : state

a plan and then execute the plan [61]. Again, this is dynamic. The EKD engineer working in a

plan context will state the components of the plan he/she has in mind as new contexts and will

enact them immediately.

 4.3.2. Revising the process meta-model

 While presenting the use of generic knowledge we refined the notion of context by defining

three types of context : executable, choice, and plan. These are generic properties of contexts

that we introduce in the meta-model. Figure 7 summarises the different concepts completing

the first version of the process meta-model.

 The different types of contexts are modelled as sub-types of the concept of context and

therefore share the same structure <situation, decision>. The different components

(respectively alternatives) of a plan context (respectively choice context) are contexts too. This

provides the means of constructing hierarchies of contexts that are needed to represent complex

decision based processes.

 There are some major differences between the various types of contexts. There is no

alternative in an executable context. The execution of a choice context has no direct

 15

consequence on the product under development. A choice context allows progress in the

change process by refining the intention whereas an executable context directly implement the

intention. Plan contexts provide a different type of progress. They help in decomposing a high

level intention into sub-intentions and therefore simplify the given context by decomposing it.

 It may be argue that this process meta-model is too complex. However, one principle at the

core of several machine learning system [60] is : "The more knowledge at the meta level, the

more knowledge based guidance can be provided to acquire requirements fragments at the

domain level."

 4.3.3. Extending the decision making pattern for supporting co-operative work processes

 Parts of the EKD process are dealing with ill-defined problems for which even the generic

guidance provided by the decision making pattern might be found to be too inflexible. The

elicitation of goals is an example. Setting the opportunities, weaknesses, threats and strengths

for a change process is another. As pinpointed in [2] and [12], finding goals is very hard and

there is not yet a way of solving this problem efficiently. Organising co-operative work

sessions and brainstorming are probably the best approaches to deal with this kind of highly

creative activity. The problem is therefore, to be able within the EKD way-of-working, to

support both ill-structured and well (or better)-structured procedures.

 However, the decision making pattern proposes different types of guidance that could be

too inflexible. These observations leads us to extend the decision making pattern in order to

support also the creative part of work processes.

 4.3.4. Extending the process meta-model

 Since there are a number of participating users in ill-structured co-operative activities, there

is a need to have a way to represent conversations in the process meta-model. Additionally, it is

necessary to explicitly bring the notion of a role to the process meta-model.

 4.3.4.1. The concept of role

 In the EKD approach, we are dealing with co-operative design processes. Acting within a

context corresponds to a step in the co-operative process to which various stakeholders

participate with well defined roles: in a given situation, the EKD engineer has an intention, and

that makes him/her enter into a co-operative process.

 A role is the definition of the needs shared by the collection of users, all of whom have the

same privileges and obligations to a set of work processes in an organisation. We introduce the

 16

concept of role, and then, specialise it into individual role and group role (figure 8). Each

context is attached to a role.

 In the ATC case study, examples of roles are as follows:

- Airport manager (individual role)

- ATC centre manager (individual role)

- Risk elucidation group (group role containing the airport manager, the ATC manager, and

other individual roles)

 4.3.4.2. Specialisation of the action and product concepts

 We are dealing with group activities, in the sense that several participants can

synchronously act together by exchanging messages. In the context of the EKD process, we

represent ill-structured and highly creative co-operative work sessions by using the

conversation concept and introduce a conversational action. This leads us to classify actions

into two types : individual and conversational.

 Performing an action changes the product and may generate a new situation which is itself,

subject to new intentions. Individual actions perform transformations of design objects while

conversational actions create messages. In order to take account for this distinction, we classify

the concept of product into design object and message (figure 9).

 We must represent conversational activities during the EKD process and keep track of the

conversations. We introduce the message concept as the basic component of the conversational

activity. A message may deal with several design objects.

 The conversational action is performed by a group role. It creates several messages, each

being produced by an individual role contained by the previous group role.

 From any conversational action may emerge new contexts (figure 10). These can be

executable and associated with actions that might be conversational and then trigger new

contexts and so on.

 We propose a further refinement of the concept of message based on works on Design

rationale [10], etc. The refinement introduces a classification of messages into expression,

argumentation and position (figure 11). An expression can suggest argumentations. These can

support several positions. Finally, an expression can be suggested by any position.

 4.3.5. Extending the generic guidance

 We extend the generic method chunk in order also to provide co-operative activities.

Indeed, the three previous options (do, choose, plan) must have a fourth option : brainstorm.

This is supported by an argument "the current situation requires co-operative brainstorming".

The associated alternative is an executable context <Input context, Use the brainstorm strategy,

 17

EKD engineer>.

 4.3.6. Illustrating the conversational action

 We use an example from Air Traffic Control as a case study. Consider the context C: <(G1

"minimise risks of accidents", Operationalise G1), Help me> attached to EKD engineer.

Assume the EKD engineer does not know how to proceed and none of the three choices offered

by the generic chunk is appropriate. In this case, he/she shall consider the option of calling a

group of experts (we name it the "risk elucidation group") for a brainstorming session.

Thus, the strategy needed for context C in the generic chunk is "brainstorm". The guidance

provided by this strategy suggests the following tactics:

(1) define the group role required,

(2) execute a conversational action within the previously defined group role with the initial

input context as its situation.

The Risk elucidation group may be a role that contains stakeholders such as airport

manager, ATC centre manager, a representative of airlines managers, a representative of pilots,

and a local authority.

The executable context is applied by a conversational action leading to the creation of

several messages (figure 12).

Possibly the flow of messages is:

Message 1: (ATC centre manager)

Have we got a report about reasons of world-wide accidents in the last five years ?

Message 2: (Airport manager)

No, we don't. But we have some information about the last three major accidents.

Message 3: (ATC centre manager)

So, what were the reasons ?

Message 4: (Airport manager)

In Strasbourg, France, it was a human error.

At Delhi, it was due to two factors : heavy air traffic and human error. Due to his poor

knowledge of the English language, the pilot misunderstood the message of the control

tower.

In the US, it was a confusion about the airport. The pilot made an error in ‘typing’ the

airport and the computer understood the airport code as Bogota in South America, while

the aircraft was to land in California.

Message 5: (Representative of airlines managers)

 18

So if we want to minimise risks of accidents we have to decrease risk of human error.

Message 6: (Pilots representative)

Sometimes what is called human error is not really that. How can you decrease the

human error in the accident in the US. You must consider computer systems errors.

Message 7: (ATC centre manager)

It's more convenient to talk about Human-Computer interface for this accident.

So, our goals are to decrease risk of human error and review all human-computer

interactions.

Message 8: (Pilots representative)

And what about the accident in Delhi ? The human error was not the unique reason, was

it ?

Message 9: (ATC centre manager)

The number of aircraft allowed to cross the controlled airspace is too high in Delhi.

Message 10: (Local authority)

Precisely, for 2 years local authorities have been arguing that this number must be

decreased here too. People living near the airport are disturbed because of the noise

especially during late/early take offs and landings. In order to minimise risks of

accidents we must limit the number of aircraft allowed to cross the controlled airspace.

As a conclusion of this message exchange, the conversational action generates three

contexts as follows:

- < Message 5, Create G2 : "decrease risk of human error">

- < Message 7, Create G3 :"review human-computer interactions">

- < Message 10, Create G4 :"limit the number of aircraft allowed to cross the controlled

airspace">. The new contexts are inserted in the contexts pile for further processing.

 4.3.7. Formalising the generic method chunk

 We advocate a formal representation of the generic chunk based on the process meta-model.

Figure 13 visualises the generic chunk as a choice context using our graphical notations. The

four strategies are the four alternative choices proposed by the context together with their

related arguments. The guidance provided by the generic chunk can be simply summarised by

four questions to the EKD engineer :

 - Is your intention operationalisable through design actions?

 - Can you set alternative ways for fulfilling your intention?

 - Do you need a plan for making up your mind and achieving your intention?

 - Do you need a co-operative work session for fulfilling your intention?

 19

 The alternative contexts are executable; their associated actions guide the EKD engineer in

performing things according to the option he/she chooses.

 Our proposal is for a representation of all method chunks (generic, EKD dependent or

domain dependent) in the EKD method base using the concepts of the process meta-model.

4.4. EKD guidance

 EKD guidance is based on EKD knowledge. Thus knowledge is needed for supporting EKD

engineers in specifically undertaking the change process in an organisation using the EKD

models. Using this knowledge allows us to speed up EKD processes because it concentrates on

the resolution of EKD specific problems.

4.4.1. Modelling EKD Knowledge

 EKD knowledge supports the construction of different models representing the initial (the

initial product) as well as the future state of the organisation (the design product), the

expression of alternative strategies for change, as well as the evaluation of these strategies, and

other kinds of activity, such as brainstorming, co-operative work, etc..

 We express this knowledge by using the process meta-model and the different types of

context : executable, plan, and choice. However there is one major difference: the EKD

knowledge is expressed at the type level ; i.e., the level of specific classes of EKD phenomena

such as "identifying goals", "operationalising goals", "finding design models meeting specific

goals", etc.. The type level is distinct from the instance level where one speaks of a specific

goal or of a specific design model. It has also, to be differentiated from the meta-level dealing

with generic concepts, such as 'product part' and 'intention'. The generic knowledge is at the

meta-level whereas the EKD knowledge is at the type level.

 More generally, the EKD knowledge can be re-used for decision based guidance in many

different participative design processes within different companies.

4.4.2. Using EKD guidance

 The way EKD knowledge is used within the EKD decision making pattern is similar that for

the generic guidance. The main difference lies in the retrieval of the method chunk. The

retrieval of an EKD method chunk is based on matching: assuming that the engineer has chosen

the input context, he/she must select an EKD method chunk where (1) the situation type

matches the situation of the input context and (2) the intention of the method chunk matches

that of the input context. Of course, this selection is greatly facilitated by the use of a software

tool.

 20

 The remaining part of the reasoning loop associated with the application of the EKD

decision making pattern is similar to that previously discussed, but the EKD engineer is more

guided.

 We use a matrix presentation to overview the collection of chunks included in the EKD

knowledge base. The chunks are the matrix elements. The columns of the matrix are intentions

that arise during the EKD process. The rows of the matrix are techniques. The same technique

can be used in different ways for different chunks. For example, a brainstorming strategy may

be used for both satisfying the intention of "Detect goal conflict" and for "Solve goal conflict".

 The essential benefit the EKD engineer gains is in its guidance. By following the heuristical

knowledge embedded in the method chunk, the engineer is constantly aided. Part of the

solution he/she has to find is provided by the chunk. Suggestions are made on the alternative

strategies, predefined plans, etc..

4.5. Domain specific guidance

 EKD domain specific guidance is based on EKD domain specific knowledge. The domain

specific knowledge aims at providing guidance for solving very well focused problems in a

specific domain. It is grounded on experience based knowledge and suggests reuse and

adaptation of previously tested solutions. The benefits of using this type of knowledge is that it

considerably shortens the decision process.

 4.5.1. Modelling domain specific knowledge

 In the context of Air Traffic Control, domain specific knowledge could suggest that the

operationalisation of the goal G1: "Minimise risk of crashes" can be achieved in two ways : a

decomposition of G1 into G2: "Maintain separation standards" and G3: "Decrease risk of

human error" or a decomposition with G3 and G4: "Limit the number of aircrafts allowed to

cross a controlled airspace".

 4.5.2. Using domain specific guidance

 The use of domain specific knowledge within the EKD decision making pattern is relatively

unchanged from before. The difference lies in the fact that domain specific method chunks are

defined at the instance level and therefore do not have to be instantiated when used.

5. Global view of the EKD process

5.1. An incremental design process

 We view the EKD process as consisting of the iterative application of the decision making

pattern. This leads to an incremental production of the EKD product ; i.e., of the various

 21

models suggested in our approach. Consider a synthetic view of the key parts of the EKD set of

models as depicted in figure 14.

- the Enterprise Model provides a view of the current situation, its goals, problems,

actors, activities and concepts;

- the Goal Model represents the objectives for the new system;

- the Design Model represents the solutions to meet the objectives;

- Scenarios help in the validation of the solutions, particularly in illustrating how a

given design model achieves the goals.

 The incremental dimension of the process means that the Enterprise Model does not need to

be completed before some goals for change are stated and even associated with some design

model. In terms of decision making, it means that decisions are not made in a linear fashion.

We can then split the process into :

 - Model the current enterprise state

 - Acquire goals

 - Operationalise goals

 - Generate design models

 - Validate design models

 In order to illustrate the non linearity of the process, consider two sequences in figure 15.

As used in other approaches [7], [8], we propose a spiral representation. As illustrated in

figure 16, the angular dimension shows the degree of completeness achieved by the current

process. The radial dimension shows the progress that has been achieved and might be

associated to a measure of the effort spent in the process.

 Obviously, there is a logical order to be followed for some decisions. For example an

"operationalisation" decision cannot be made if the corresponding "acquiring" decision has not

be made. But it will be a constraining to force ; for example, all "acquiring" typed decisions to

be made before any "operationalisation" decision.

 Taking into account the ordering constraint between the five types of decision (Model -

Acquire - Operationalise - Generate - Validate), the EKD process results in a hierarchy of

spirals, as shown in figure 17. The hierarchy of plans reflects the logical ordering. Every turn

of spiral in a plan might have several turns in the descendant plan which represent the

succeeding steps of decisions of a type X performed as sons of the same father decision of type

Y. The hierarchy of plans models the ordering constraint, the spiral movement means a relaxed

completeness constraint on decisions made.

5.2. The flow of EKD decisions is dynamically constructed

 22

 Another interesting feature of the EKD process is its dynamic nature. The flow of decisions

is not defined "a priori" but constructed dynamically. Therefore, the EKD engineer can switch

from context to context depending on the changes. The output of one application of the pattern

is one or more contexts that associate an intention to the situation in which it must be achieved.

 The number of possible contexts that can be selected at a particular step s may be more than

two. In fact, there is a pile of pending contexts. The pile represents the set of decisions that

have to be made for the process to be completed. The pile is originally empty, grows in the

beginning of the process as it proceeds and progressively reduces to an empty set at the end.

Roughly speaking the process pushes and pulls decisions (in their contexts) from the pile. Each

step makes a decision and may generate new decisions.

 The selection of one context in the pile at a given point of time t is free. It is a choice that is

offered to the involved stakeholders. They are free to proceed from step to step according to

their view of the contexts to be pulled from the pile. Some guidance may be provided to help

the EKD engineer making the choice. A situation matching mechanism is one example, a query

language is another. The matching mechanism allows the user to select contexts in the pile that

match existing EKD or Domain dependent chunks. Using the query language, the EKD

engineer is able to select those contexts which match the current needs.

6. Conclusion

 The EKD decision making pattern is a reasoning mechanism supporting decision making by

providing a set of predefined concepts, a library of guidelines and a set of predefined rules.

First, rules help in the retrieval of the appropriated guideline from the library supporting

decision making at that particular stage of the process ; i.e. in the current situation at hand.

Secondly, rules are used to guide the decision making according to the guidelines.

 The decision making pattern is tailored to provide guidance for all cases. In some cases, the

pattern offers domain specific guidance. This happens when the library contains knowledge

about the domain of the project that matches the current context.

 The library also contains EKD specific guidelines that describe how to work with different

EKD models following the EKD approach. These guidelines are independent of any particular

domain but are based on EKD Method Knowledge.

 Finally, if none of the two types of guidelines matches the current context of work, the

generic guideline may operate ; it is the default option in some sense. Clearly, making guidance

more specific increases its efficiency. However, the generic guideline allows the EKD process

to be entirely based on guidance.

 23

 We can view the reasoning mechanism offered by the decision making pattern as consisting

of two main steps: selecting the relevant guideline from the library for the current situation and

intention and then making a decision according to the guideline. Currently, we are

implementing these guidelines in an electronic handbook which will eventually be made

available on the World Wide Web.

 24

References

[1] V. Ambriola and M.L. Jaccheri, Definition and Enactment of Oikos software entities, in: Proceedings

of the First European Workshop on Software Process Modelling, Milan, Italy, 1991.

[2] A. Anton, Goal-Based Requirements Analysis, ICRE '96, IEEE, Colorado Springs, Colorado USA,

(1996).

[3] P. Armenise, S. Bandinelli, C. Ghezzi and A. Morzenti, A survey and assessment of software process

representation formalisms, International Journal of Software Engineering and Knowledge

Engineering, 3(3) (1993).

[4] S. Bandinelli, A. Fugetta and S. Grigoli, Process Modelling in the large with SLANG, in: Proceedings

of the 2nd International Conference on Software Process, Berlin, Germany, (1993) 75-93.

[5] N. Belkhatir and W.L. Melo, Supporting Software Development Processes in Adele2, Computer

Journal, 37(7), (1994) 621-628.

[6] K. Benali, N. Boudjlida, F. Charoy, J. C. Derniame, C. Godart, Ph. Griffiths, V. Gruhn, P. Jamart, D.

Oldfield and F. Oquendo, Presentation of the ALF project, in: Proceedings of the International

Conference on System Development Environments and Factories (1989).

[7] B. Boehm, A Spiral Model of Software Development and Enhancement, IEEE Computer 21(5), 1988.

[8] J. Bubenko, C. Rolland, P. Loucopoulos and V. DeAntonellis, Facilitating "Fuzzy to Formal"

Requirements Modelling, in: Proceedings of the IEEE First International Conference on

Requirements Engineering, ICRE'94 (1994) 154-158.

[9] J. A. Bubenko jr., J. Stirna, D. Brash, EKD User Guide, Dpt. Of Computer and Systems Sciences,

Royal Institute of Technology, Stockholm, Sweden, 1997.

[10] E.J. Conklin and M. Begeman, gIBIS: A Hypertext Tool for Exploratory Policy Discussion, ACM

Transactions on Office Information Systems, 6(4) (1988) 303-331.

[11] B. Curtis, M. Kellner, J. Over, Process Modelling, Communications of ACM, 35(9) (1992) 75-90.

[12] A. Dardenne, A.v. Lamsweerde and S. Fickas, Goal-directed Requirements Acquisition, Science of

Computer Programming, Vol. 20 (1993) 3-50.

[13] C. Desclaux, A. Guthauser, T. Pécoud, J. Pomian, P. Storr and A. Thierry, Design & Maintenance

Process Rationale under MACS, Conférence Le génie logiciel et ses applications, Toulouse, France

(1990).

[14] M. Dowson, Iteration in the Software Process, in: Proceedings of the 9th International Conference

on Software Engineering (1987).

 25

[15] M. Dowson, Consistency Maintenance in Process Sensitive Environments, in: Proceedings of the

Process Sensitive SEE Architecture Workshop, Boulder, CO (1992).

[16] M. Dowson and C. Fernstrom, Towards requirements for Enactment Mechanisms, in: Proceedings of

the European Workshop on Software Process Technology (1994).

[17] ELectrical Enterprise Knowledge for TRansforming Applications, The ELEKTRA Project

Programme, ELEKTRA consortium (1996).

[18] W. Emmerich, G. Junkermann and W. Schafer, MERLIN: Knowledge-based process modelling, in:

Proceedings of the First European Workshop on Software Process Modelling, Milan, Italy, 1991.

[19] A. Finkelstein, J. Kramer and M. Goedicke, ViewPoint Oriented Software Development, in:

Proceedings of the Conference "Le Génie Logiciel et ses Applications", Toulouse (1990) 337-351.

[20] A. Finkelstein, J. Kramer and B. Nuseibeh (eds), Software Process Modelling and Technology,

(John Wiley Pub., 1994).

[21] M. Franckson and C. Peugeot, Specification of the Object and Process Modelling Language, ESF

Report n° D122-OPML-1. 0, 1991.

[22] F3 Consortium, The F3 Hand Book, SISU, Box 1250, S-164 40, Kista, Sweden (1993).

[23] O. Gotel, A. Finkelstein, An Analysis of the Requirements Traceability Problem, in: Proceedings of

the First IEEE International Conference ICRE'94, Colorado Springs, USA (1996).

[24] D. Harel, On visual formalism, Communication of ACM, Vol 31, N° 5, May 1988, pp 514 - 530.

[25] B. Henderson-Sellers and J.M. Edwards, The Object-oriented Systems Life-Cycle, Communications

of the ACM, September (1990).

[26] A.H.M. Hofstede, T.F Verhoef, G.M. Wijers and S. Brikkemper, The SOCRATES project, in:

Proceedings of NGCT'90 , Noordwijkerhout, The Netherlands, April 1990.

[27] W.S. Humphrey, Managing the Software Process, (Addison-Wesley, 1989).

[28] Information Technology - Information Resource Dictionary System (IRDS) - Framework, ISO/IEC

International Standard, 1990.

[29] L. Jacherri, J.O. Larseon and R. Conradi, Software Process Modelling and Evolution in EPOS, in:

Proceedings of the 4th International Conference on Software Engineering and Knowledge

Engineering (SEKE'92), Capri, Italy (1992).

[30] M. Jarke, J. Mylopoulos, J.W. Schmidt and Y. Vassiliou, DAIDA - An Environment for Evolving

Information Systems, ACM Transactions on Information Systems, 10(1) (1992).

[31] G.E. Kaiser, N.S. Barghouti, P.H. Feiler and R.W. Schwanke, Database Support for Knowledge-

Based Engineering Environments, IEEE Expert, 3(2) (1988) 18-32.

 26

[32] J. Lee, Extending the Potts and Bruns Model for Recording Design Rationale, in: Proceedings of the

IEEE 13th International Conference on Software Engineering, Austin, Texas, May 1991.

[33] M.M. Lehman, Process Models, Process Programs, Programming Support, in: Proceedings of the 9th

International Conference on Software Engineering, (1987).

[34] J. Lonchamp, A structured Conceptual and Terminological Framework for Software Process

Engineering, in: Proceedings of the International Conference on Software Process (1993).

[35] M. Lubars, C. Potts and C. Richter, A Review of the State of the Practice in Requirements

Modelling, in: Proceedings of the International Symposium on Requirements Engineering (1993).

[36] P. Marttiin, Methodology Engineering in CASE shells: Design Issue and current Practice, PhD

thesis, Computer science and information systems reports, Technical report TR-4, 1994.

[37] M. Nadin, M. Novak, MIND: A Design Machine, Conceptual Framework, Intelligent CAD Systems I

(Springer Verlag, 1987).

[38] N. Nilsson, Problem Solving Method in Artificial Intelligence, (McGraw Hill, 1971).

[39] S. Nurcan, C. Gnaho and C. Rolland, Defining Ways-of-Working for Cooperative Work Processes,

in: Proceedings of the First International Conference on Practical Aspects of Knowledge

Management (PAKM) Workshop on Adaptive Workflow, Basel, Switzerland, October 1996.

[40] S. Nurcan and C. Rolland, Meta-modelling for co-operative processes, in: Proceedings of the 7th

European-Japanese Conference on Information Modelling and Knowledge Bases, Toulouse, France,

May 1997.

[41] L. Osterweil, Software processes are software too, in: Proceedings of the 9th International

Conference on Software Engineering, IEEE Computer Society, Washington, DC (1987) 2-13.

[42] K. Pohl and S. Jacobs, Concurrent Engineering: Enabling Traceability and Mutual Understanding,

International Journal on Concurrent Engineering 2 (1994), 279-290.

[43] C. Potts, A Generic Model for Representing Design Methods, in: Proceedings of the 11th

International Conference on Software Engineering (1989).

[44] B. Ramesh, A Model of Requirements Tracebility for Systems Development, Tech. report, Naval

Postgraduate School, Monterey, CA, September 1993.

[45] B. Ramesh and V. Dhar, Supporting Systems Development by Capturing Deliberations During

Requirements Engineering, IEEE Transactions on Software Engineering, 18(6) (1992).

[46] C. Rolland, Understanding and Guiding Requirements Engineering Processes, invited talk, IFIP

World Congress, Camberra, Australie, 1996.

[47] C. Rolland, Modelling the Requirements Engineering Process, Information Modelling and

Knowledge Bases (IOS Press, 1993).

 27

 [48] C. Rolland and G. Grosz , A General Framework for Describing the Requirements Engineering

Process, in: Proceedings of the IEEE Conference on Systems Man and Cybernetics, CSMC94, San

Antonio, Texas, 1994 .

[49] C. Rolland, S. Nurcan and G. Grosz, Guiding the participative design process, Association for

Information Systems Americas Conference, Indianapolis, Indiana, August 1997.

[50] C. Rolland, S. Nurcan and G. Grosz, A way of working for change processes, International research

Symposium: Effective Organisations, Dorset, UK, September 1997.

[51] C. Rolland, S. Nurcan and G . Grosz, A unified framework for modelling co-operative design

processes and co-operative business processes, in: Proceedings of the 31st Annual Hawaii

International Conference on System Sciences, Big Island, Hawaii, USA, January 1998.

 [52] C. Rolland, C. Souveyet, M. Moreno, An Approach for Defining Ways-of-Working, Information

Systems Journal, 20(4) (1995).

[53] T. Rose, M. Jarke, M. Gocek, C. Maltzahn and H.W. Nissen, A Decision-based Configuration

Process Environment, IEEE Software Engineering Journal, 6(3) (1991).

[54] W.W. Royce, Managing the Development of Large Software Systems, in: Proceedings of the IEEE

WESCON (1970).

[55] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Loresen, Object-oriented modelling and

design (Prentice Hall International, 1991).

[56] P.S. Seligmann, G.M. Wijers, H.G. Sol, Analysing the structure of I. S. methodologies, an alternative

approach, in: Proceedings of the First Conference on Information Systems, Amersfoort, The

Netherlands, 1989.

[57] S. Si-Said, C. Rolland, G. Grosz, "MENTOR : A Computer Aided Requirements Engineering

Environment", in the Proceedings of the 8th CAISE Conference on Challenges In Modern Information

Systems, Heraklion, Crete, Greece, May 1996.

[58] J.F. Sowa, Conceptual Structures: information processing in mind and machine (Addison Wesley,

1984).

[59] T. Tomiyama, T. Kiriyama, H. Takeda, D. Xue and H. Yoshikaya, Metamodel: A Key to Intelligent

CAD Systems, Research in Engineering Design,1 (1989) 19-34.

[60] A. Van Lamsweerde, Learning Machine Learning, in Introducing a Logic Based Approach to

Artificial Intelligence, Vol 3, Wiley (1991) 263-356.

[61] R. Wilenski, Planning and Understanding: a computational approach to human reasoning

(Addison Wesley, 1983).

 28

[62] J.D. Wynekoop and N.L. Russo, System Development methodologies: unanswered questions and the

research-practice gap, in: Proceedings of the 14th ICIS (eds. J.I. DeGross, R. P. Bostrom, D. Robey),

Orlando, USA, 1993.

 29

FIGURE LEGENDS

Fig. 1 Relationships between product and process

Fig. 2 The EKD decision making pattern

Fig. 3 Relationship between the different types of guidance and the abstraction levels

Fig. 4 The three domains of process performance

Fig. 5 The EKD decision making pattern

Fig. 6 Overview of the EKD process meta-model

Fig. 7 The revised process meta-model

Fig. 8 The context is attached to a role

Fig. 9 Actions and products that they transform

Fig. 10 The co-operative process meta-model

Fig. 11 Detailed description of the message concept

Fig. 12 An executable context leading to the execution of a conversational action

Fig. 13 Representing the generic knowledge with a choice context

Fig. 14 A synthetic view of the key parts of the EKD set of models

Fig. 15 Two possible traces of the decision making process

Fig. 16 The spiral process model

Fig. 17 The hierarchical view of EKD processes

 30

Process
meta-model

Process model
(way-of-working)

Process

Describes how to use
the product model
(prescriptive)

Product
meta-model

Product
model

Product
(Schema)

Instance of

Describes how the
product has been
constructed
(descriptive)notations

Instance level

Type level

Meta-type level
Refers to

Figure 1: Relationships between product and process

 31

Body
input output

Context Product

Figure 2: The EKD decision making pattern

 32

Process
meta-model

Process model
(way-of-working)

Process

Generic
guidance

EKD
guidance

Domain
specific
guidance

Figure 3: Relationship between the different types of guidance and the abstraction levels

 33

Enactment Mechanism

Process Enactment
Domain

Process Modelling
Domain

Process definitions

Instanciation
of process

model

Process support
and control

Feedback

Process Performance
Domain

One must start be investigating the

requ irements, then build a conceptua l

so lu tion. Next bui ld the logical

architecture of the in tended system and

star t imp lementa tion. D o a lo t of testing

before putting any softw are in the hand

of an end-user

TOOL environment

Actual process performance

Figure 4: The three domains of process performance

 34

Input
Context

Library of guidelines

Product

Output
Contexts

RULES

Figure 5: The EKD decision making pattern

 35

1,N

Situation

Context

1,N

1,N

0,N

is built
over

Target
Product

Part is built over

0,N 1,N

has

1,1

1,N

Intention

1,1

Product

1,N

0,N

is
made

of Initial
enterprise

state

Future
enterprise

state

is_a is_a

Figure 6: Overview of the EKD process meta-model

 36

1,N

Situation

Context

1,N

1,N

0,N

is
 built
over

Target
Product

Part
is built over

0,N 1,N

has

1,1

1,N

Executable
Context

Choice
Context

Plan
Context

Intention

1,1

Composed
of

1, N

0,N

Alternative

2, N

0,N0,N

0,N

0,N

Arguments

supports

objects to

1,1

1, N

is
implemented

with

Action

modifies

1, N

1, N

is a

is a
is a

1,1

0,N

Figure 7: The revised process meta-model

 37

1,N

SituationIntention

Context

1,N
attached to

1,1 1,N Role

#isa isa

1,N0,N
contains

group
role

individual
role

Figure 8: The context is attached to a role

 38

Conversational
action

#
isa isa

Individual
action

Action

Message

Product
part

Design
object

#
isa isa

concerns

0,N0,Nmodifies

creates

1,1

1,1 1,N

#
isa isa

Complex
action

Simple
action

composed
of

1,N

1,N

0,N

Figure 9: Actions and products that they transform

 39

1,N

SituationIntention

Context

built on1,N

0,N

Conversational
 action

isa isa

Individual
action

Complex
action

Simple
action

isa isa
1,N

0,N
composed

by

1,N

Action

applied
by

1,1

1,N

0,N

leads to the
emergence of

0,N

Message

Product
Part

Design
object

isa isa

concerns

0,N0,N

Role

group
 role

individual
 role

#
isa isa

contains

attached to
1,1 1,N

1,1

0,N

performed
by

1,1

1,N

produced
by

1,1

0,N

1,N
0,N

performed
by

changes1,1 1,N

creates

1,N
1,1

Plan
context

Executable
context

Choice
context

#

isa isa

#

#

#

Figure 10: The co-operative process meta-model

 40

Message

Expression PositionArgumentation0,N 1,N

suggests supports
suggests 0,N0,N

0,N 1,N

#
#

Figure 11: Detailed description of the message concept

 41

<(G1 "minimize risks of accidents", operationalise G1), Use the brainstorm strategy>

applied by

Conversational action performed by contains

- Airport manager
- ATC center manager
- 1 representative of airlines managers
- 1 representative of pilots
- 1 local autority

Messages

creates

Group role

EKD engineer
attached to

Figure 12: An executable context leading to the execution of a conversational action

 42

<"Input context", Help me>

<"Input context",
Use the do strategy>

<"Input context",
Use the choose strategy>

<"Input context",
Use the plan strategy>

Alternative 1

Alternative 2

Pro argument for Alternative 1 :
- Fulfilling the input context's intention is possible by specifying design action(s) to be performed on the product

Pro arguments for Alternative 2 :
- It exists several alternative ways to fulfil the input context's intention

Cons arguments for Alternative 2 :
- Fulfilling the input context's intention is possible by specifying design action(s) to be performed on the product

Pro argument for Alternative 3 :
- The achievement of the input context's intention requires a composite decision making process to take place

Cons arguments for Alternative 3 :
- Fulfilling the input context's intention is possible by specifying design action(s) to be performed on the product
- It exists several alternative ways to fulfil the input context's intention

Pro argument for Alternative 4 :
- The achievement of the input context's intention requires cooperative brainstorming

Cons arguments for Alternative 4 :
- Fulfilling the input context's intention is possible by specifying design action(s) to be performed on the product
- It exists several alternative ways to fulfil the input context's intention
- The achievement of the input context's intention can be done through a composite decision making

<"Input context",
Use the brainstorm strategy>

Alternative 3 Alternative 4

Figure 13: Representing the generic knowledge with a choice context

 43

Design
Model

Scenarios

Enterprise
Model

Goal
Model

Figure 14: A synthetic view of the key parts of the EKD set of models

 44

step1 acquisition of goal G1
step2 operationalisation of goal G1

step3 generation of design model M1 and M2
step4 validation and choice of M1
step5 acquisition of goal G2
... etc.

Sequence 1

Sequence 2 step1 acquisition of goal G1
step2 acquisition of goal G2
step3 acquisition of goal G3
... etc.
stepj operationalisation of goal G1
stepk operationalisation of goal G2
... etc.

Figure 15: Two possible traces of the decision making process

 45

step 1 :
Acquisition of

goal G1

step 2 :
Operationalisation of

goal G1

Figure 16: The spiral process model

 46

Operationalise
goals

Generate
design
models

Validate
design
models

Acquire
goals

Model the current
enterprise state

Figure 17: The hierarchical view of EKD processes

