N

N

Enterprise Knowledge Development: the Process View

Colette Rolland, Selmin Nurcan, Georges Grosz

» To cite this version:

Colette Rolland, Selmin Nurcan, Georges Grosz. Enterprise Knowledge Development: the Process
View. Information and Management Journal, 1999, pp.165 - 184. hal-00707565

HAL Id: hal-00707565
https://hal.science/hal-00707565

Submitted on 17 Jun 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00707565
https://hal.archives-ouvertes.fr

Enter prise K nowledge Development: the Process View (1)

Colette Rolland’, Selmin Nurcan™, Georges Grosz

*

University Paris 1 - Panthéon - Sorbonne University Paris 1 - Panthéon - Sorbonne
Centre de Recherche en Informatique IAE de Paris (Business Administration Institute)

90, rue de Tolbiac 75634 Paris Cedex 13 France 162, rue Saint Charles 75740 Paris Cedex 15 France

Original submittal: February 28, 1998; Acceptediuky 29, 1999

Abstract

Enterprise Knowledge Development (EKD) is a metliodreasoning on change in organisations. It
tackles different aspects of organisations : whesdwhat, how and why. Applying EKD is an iterative,
non-linear and guided process. Guidance is baseddatision making pattern that promotes a sitnatio
and decision-oriented view. The claim is that EKiljieeers are repeatedly faced with situations that
need them to make decisions. Thanks to the usheofiécision making pattern together with domain
specific, EKD specific or generic knowledge, theERKrocess systematically provides guidance. Generic

guidance is the default option that includes th®gerative aspects of decision making.

Keywords. Enterprise Knowledge Engineering, Design Proc&snge Process, Decision Making,

Guidance, Co-operative Work.
1. Introduction

It is traditional to look at any engineering aittifrom both a product and process point of
view. The product is the desired result, the predseghe route followed to reach that result.
Methods have classically focused on the productetspf systems development and have paid
less attention to the description of formally definvays-of-working which could be supported
by CASE environments. Clearly, there is an impdride@mand for methods and tools where
process guidancés offered to provide advice on what activities apropriate to which
situations and how to perform them [16], [46], [9BR].

(1) This work is partially supported by the ESPRIT pmjELEKTRA (N° 22927) funded by the EEC in the canhte
of the Framework 4 programme.

Corresponding author Selmin Nurcan

University Paris 1 - Panthéon - Sorbonne, Centrigettherche en Informatique

90, rue de Tolbiac 75634 Paris Cedex 13 France

Tel : (33) 14077 46 34 Fax:(33) 14077 19 54 -mal : nurcan@univ-parisl.fr

The Enterprise Knowledge Development (EKD) meth8l attempts to provide such
guidance by splitting it into three complementagngents:

(1) a set of models used for describing the sydtefme constructed and the organisation in
which it is to operate,

(2) a way-of-working (a set of rules and heurigtgspporting the usage of concepts, and

(3) a set of tools supporting the way-of-working.

This method is currently being applied in the easntof the ESPRIT project ELEKTRA
[17] for re-organising electricity companies andidaing new solutions [49], [50], [51].

This paper presents the EKD way-of-working. Theiawhworking allows a user to manage
the EKD process in a structured way rather thaimtujtion. It provides advise on what should
be considered during this process (goals, actesqurces, etc.), why and how it should be
analysed (goal decomposition, actors dependenayy steic.) by following some relevant
techniques (brainstorming, goal templates, ett.jpldo suggests which problem should be
tackled next and provides some arguments to helmadking the most appropriate design
decisions. Finally, it includes means to supporoperative work processes. Thus, some
process automation is possible and there are tdeitilities to ensure the recording of the
rationale for the decisions.

This paper is organised as follows. Section 2 #esterminology and the background of
our proposal. Section 3 presents an overview of#KB way-of-working. Section 4 presents
the guidance in the EKD process. Section 5 focosehe global and incremental view of the
EKD process. Examples presented in this reporbased on the F3 Air Traffic Control (ATC)
case study [22].

2. Background and Terminology
2.1. Terminology

A product is the desired output of the design process. WiBKD, the product is a set of
elements describing the system to be constructédrenorganisation in which it will operate.

A process describes the order and decisions made in cotisgube product. It shows how the
product has been constructed in a descriptive malirtbe product comprises the goal "Improve
customer satisfaction" and this goal is decompa#eda set of sub-goals (such as "Improve desk
services", "Improve time response to customer itjugtc.), the process comprises elements stating
that "Improve customer satisfaction" has been ffiedtfirst and then, two sub-goals have been
identified and associated with the goal.

A process and its related product are specifi@artoapplication, they are defined at an

instancelevel.

A product model defines the set of concepts and constraints ugednbengineer for
defining a product together with their propertiesl aelationships. A product model is an
abstraction of many similar products.

A process model is a description of processes at thpe level. It may serve two distinct
purposes: descriptive or prescriptive [11], [34]d@scriptiveprocess model aims at recording
and providing a trace of what happens during theeld@ment process. Examples of
descriptive process model can be found in [23] [@ddl A prescriptiveprocess model is used
to describe "how things must/should/could be domréscriptive process models are often
referred to as ways-of-working [56].

A process model and its related product modebkpegific to a method, they are defined at
thetypelevel.

A product meta-model is a set of generic concepts that represent angupt model. For
instance, a product meta-model would describe dyamtomodel as a set of "concepts" having
"properties” and "constraints", and a set of "ref&hips" between the concepts.

A process meta-model provides a set of generic concepts to represgnpestess model.
This ensures the process representations congirfrot® the meta-model to be generic and,
when combined with the product meta-model, ensumethod independence. Examples of
process meta-models can be found in [26], [36] [@@dl A simple process meta-model would
define the concept of "action" and a "precedeneddtionship between actions. It could be
related to the example of product meta-model btingtehat an "action" creates or deletes a
"concept"”, a "constraint”, a "relationship”, etc..

A process meta-model and its related product metdel are method independent, they are
defined at theneta-typdevel.

The abstraction levels for products have beerdstalised in [28]. The IRDS (Information
Resource Dictionary Systems) is organised alongdiheension of data models abstraction
with four levels. Leveh+1 (called the defining level) constitutes a typetsgsfor the leveh
(the defined level). Leveh+1 defines the language in which leuwelcan be specified. In
increasing order of abstraction, the four leveks: dhe Application level, the IRD level, the
IRD definition level and the IRD definition scherwvel. At the Application level, data (e.qg.
the aircraft pilot is named "Jones") are recordgdidétabase application programs. At the IRD
level, the product is defined (e.g. the actor "Piloas the goal "Minimise the risk of the
aircraft crashing"). The IRD definition level is efe a product model (e.g. the concepts of

"actor", "goal") is defined, whereas the IRD defimm schema level is where the product meta-
model is defined. With regard to our terminolodye iRD level corresponds to tlimstance

level, the IRD definition level corresponds to tiype level and the IRD definition schema

level corresponds to thmeta-typdevel.

There is still no standard for process abstractitowever, it is possible to contrast it with
the IRDS standard and levels of abstraction focgsees. As shown in figure 1, a process is an
instance of a process model defined at the instleved. For instance, the process records that
the goal "Minimise the risk of aircraft crashing' identified first and then it is decomposed
into a set of sub-goals. The underlying processahigddescribed at the type level, it states that
decomposing a goal can be performed after theifdeion of the goal. A process model is an
instance of a process meta-model. A process metielms defined at the meta-type level.
Based on this, the previous example of process hisdm instance of a process meta-model
allowing a description of concepts that can betified in sequence.

Putting those examples together highlights thatieiships between process and product.
The process keeps track of how the product has beestructed in a descriptive manner.
Similarly a process model defines how to use thecepts defined within a product model.

Finally, a process meta-model refers to the magiasyof the product meta-model.
2.2. Background

A study of the state-of-the-art suggests thattiexjsprocess models can be classified into
three categories [14]: activity-oriented modelsyduct-oriented models, and decision-oriented
models. Each category has an underlying paradigah ey be examined in terms of its

appropriateness to change process modelling.
2.2.1. Activity-oriented models

Activity-oriented models are dominant in the lgerre, probably because they advocate an
intuitive way of problem solving: establish a plaractions and apply the actions following the
order prescribed in the plan. These models attéongescribe the development process as a set
of activities with conditions constraining the ord# the activities. The difference between
these models relies on the variety of ways thay #iw the designer to express the system
and the associated languages. Refer to [20] foorapcehensive survey of activity-oriented
models.

Activity-oriented models were inspired by genesystem development approaches (e.g. the
Waterfall model [54], the Spiral model [7], the Fdain model [25], etc.). The underlying
paradigm is one of hierarchical decomposition divées. Initially, the aim of such process
models was to define a general framework for systfinition and implementation by
providing a process description at a very high ll@fegranularity (the different steps of the
development and their linking). However, such medehn also be used for decomposing

macro-activities from a large step into micro-aitiés of smaller steps. Practically, a large

number of methods have been using this type of inddee OMT method [55], for instance,
suggests the following sequence of activities:stalelish an initial description of the problem,
2) construct an Object Model, 3) construct a DymaModel and 4) construct a Functional
Model. Each of these activities is decomposedsnmaller activities.

The process meta-model corresponding to this dassdels is based on the two concepts
of activity andactivity linking condition

In addition, these models have often used informe&ns for process description such as
natural language or diagrams with informal semanfithis has made them hard to analyse, to
improve or to follow systematically.

The recent emergence of formal software procestelnde.g. [3], [20]) is likely to make
activity-oriented process models better suit thes ggals of process engineering. However,
very few modelling approaches rely on "formal foatidns"; most define how to operate more
or less informally. This new generation of processdels remainsactivity-orientedeven
though the initial activity decomposition paradidras been extended in various ways: Petri
nets in EPOS [29] and SPADE [4], rule based in MER[18], ALF [6], Marvel [31], EPOS,
and triggers in ADELE [5] and MVP-L [20]. It is iatesting to notice that formality relates to
the underlying programming languages: Smalltalk E@; various Prolog dialects for EPOS,
Oikos [1] and PEACE [20], PS-Algol for PWI [29].

Most of these models were inspired by the programgrmrocess introduced in [41] which
makes an analogy between computer programs ardetredopment processes : a development
process should be described as a program and eggrasone or several languages, similar to
programming languages. Once described, the prgregsam (or model) can be enacted. The
process model is then used to control the executidhe process from which it is an instance
of. Bandinelliet al state thath a process centred environment, a process plaggdle of a
program to be executed in order to control and nignthe process Many activity-oriented
process models are based on this hypothesis inteaedpthe criticism of [33], which argues
that process programming only allows one to reprtette well assimilated parts of processes
not the creative parts essential to developmenin&tance in the use of heuristic, the choice of
alternatives, back tracking decision, etc..

Activity-oriented process models do not explainvhthe product is constructed, what the
input and output of the activities are, and whyivitiés are performed. The linear view of
activity decomposition promoted by this paradignin@dequate to model the change process,
because of all the alternatives that must be censiti Procedural representations cannot
incorporate the rationale underlying the process thierefore do not permit reasoning about

engineering choices based on existing alternativés.unrealistic to plan what will happen in

an entirely sequential manner. Finally, the lingamw is also inadequate for ways-of-working
which have to support backtracking, reuse of previdesigns, and parallel engineering. These

are necessary in the context of EKD.
2.2.2. Product-oriented models

The product-oriented process models define theldpment process through the evolution
of the product. They promote a view of a developi@ocess which is centred around a
development activity but, additionally, link devptoent activities to the product. Furthermore,
the conditions for triggering activities are speifover the life of the product. The underlying
process meta-model is built on three concgptzduct stateactivity andstate transition

Product-oriented models do not put forward théviigts of a process but rather the result
of these activities. They establish an expliciklinetween the activities and the resulting
product. The ViewPoints model [19] and the develepmmprocess model proposed in the
European Software Factory (ESF) project [21] beltmthis category. Others product models
have been proposed in the literature [37], [59]. Wistrate this class of models with the EPM
model [27] which considers development processesuasessions of state transitions of
product elements calleentities At a given point in time, an entity is in a ungjgtate. For
example, a program module can be in the "none'® stahe initial state - in the "under
development” or "tested and transferred" statee-fithal state. States are either active, if the
entity is currently under transformation - e.g. dan development" - or passive - e.g. "tested
and transferred". State transitions are triggeng@\ents, possibly under conditions. A state
can be decomposed into sub-states, leading tonaltestate transitions. Thus, the model
includes the meaningful elements of a process mdhdel product elements, and permits an
accurate measure of the level of progress in tleegss. Analysing the states allows the
designer to consider completed entities rather ¢heague and partial progress measurement of
an activity, such as that suggested by activitgrtied process models. State diagrams are used
in the specification and design phases of largecangplex event-driven systems which have to
continuously interact on internal and external stirf24].

A positive aspect of the product-oriented appreaak that they model the evolution of the
product and couple the product state to the aigs/that generate this state. They are useful for
tracing the transformations performed and theiultegy products. However as far as guidance
is concerned, and considering the highly non-detestic nature of the EKD process, it is
probably difficult to write down a realistic stat@nsition diagram that adequately describes

what has to happen during the EKD process.

2.2.3. Decision-oriented models

The most recent class of process models followdeeaision-oriented paradigmThe
successive transformations of the product are lkbolkgon as consequences of decisions.
According to these models, a way-of-working doesaordy specify the linking of activities or
product states but also the intention behind tleeeation of activities and their linkings.

The process models of the IBIS [43], DAIDA [3053] and NATURE [48] projects fall
into this category. Such models are semanticallyenpmwerful than product-oriented models
because they explain not only how the process pasbut also why transformations happen.
The concept ofAction or Activity is put in the background while the intention thegults in a
decision is pushed into the foreground. For exampldle constructing an actor model, the
creation of the actor "Pilot" becomes secondarereas the intention : "we need to represent
pilots", becomes predominant. The intentions aterofnotivated by arguments that strengthen
or refute them. In the example, pro and con argusneiil be associated with the decision to
create the actor "Pilot". The fact that pilots aesponsible for the execution of the take off,
landing, etc. is a pro argument for this decision.

The IBIS model put the emphasis on decision making its rationale, the development
process is modelled by showing reasons why eaclsidecwas made. The purpose is to
represent a decision process as a network, edberttanposed of issues, positions, and
arguments. The IBIS model and its derivatives -REMAP model [45], the PDS model [13]
from the ESPRIT Il project MACS and its associatmiguage DRL (Decision Representation
Language) [32] - focus on tracing processes, tteegescriptive models.

This type of models allows a user to capture nwoeess knowledge than the two other
approaches. Decision-oriented models are not ohlg & explain how but also why the
process proceeds. Their enactment should conteopéinformance of actions -as activity and
product-oriented models can do-, and also be able)tguide the decision making process that
shapes the development, (b) help reasoning abeuttfonale of decisions, and (c) record the

associated deliberation process.

2.2.4. Discussion

Putting aside the different expression formalismastjvity and product-oriented models
have similar expressiveness capabilities. Though e¢lpressiveness suits the modelling of
program development and test processes, it isuftitient for modelling analysis processes
where human reasoning is a major component. Theuére of the activities of such processes
are the consequence of human decisions. Decisiented models allow the user to trace
processes, highlighting why decisions were made thog facilitating the introduction of

change in systems requirements.

Thus a decision-oriented modelling paradigm setenfie the most appropriate for the EKD
process both for trace and guidance purposes. ddliian of a capability to record the design
decisions facilitates understanding of the engiseigtention and thus, better reuse of the
results. However, EKD processes are not adequamlgred in existing decision-oriented
models. At any time, an EKD engineer is isituationthat he/she views with some specific
intention His/her reaction depends on both these factoes pn the context in which he/she is
placed. He/she react®ntextually often by analogy with previous situations in white/she

has been involved [48].

3. An overview of the EKD process
3.1. The EKD processis guided

First, we consider any EKD process aglecision makingne, i.e. non deterministic. It is
performed by responsible agents having the freetibhecide how to proceed according to
their evaluation of their situation. Agents do netessarily follow a predefined plan of action.
Defining and implementing change requires a numifedecisions to be made : what to
consider in the existing organisation ; what shallimproved ; the alternative solutions ; the
selection of the most appropriate solution ; etc..

Secondly the EKD process cannot be ad-hoc and chaoticaninot be only based on
intuition and personnel behaviour of engineers stateholders. We look to it as a repeatable
process made of steps resulting from the applicatiba pattern for decision makingrhe
pattern is generic, in the sense that it is apbleeao any decision making activity. The
proposed EKD way-of-working is entirely based ois fhattern.

Third, the pattern views a decision as the choice ofsMéngto proceedn a givensituation
to achieve arnntention A decision is contextual ; i.e., both situatiordantention driven. The
rationale is that, following a decision based apphper seis not enough in our setting. As a
matter of fact, the intention to "reorganising tigoort in order to increase passenger traffic",
may be implemented in different ways, dependindghenairport to be reorganised. Indeed, an
intention can be fulfilled in different ways depémgl on the situation being considered. In
order to take this aspect into account, we progostully associate the intention and the

situation in a context.

Definition 1 : A situationis a part of the product it makes sense to makésida on. A
situation can be defined at various levels of glanity, it can be a single element of the
product - for example a class in an OMT object nhflg] - or a composition of product parts -

for example a complete object model representiadtris-Roissy Airport today.

Definition 2 : An intention expresses what the engineer wants to achieve aitgoal. An
intention can be strategic or operational allowiagious levels of granularity in the decision
making process. For instance, a strategic intert@anbe "define an object model" or "increase
passenger traffic" whereas an operational intenti@m be "add a new attribute to a class" or
"add a check-in desk". A strategic intention cqoesls to a high level requirement that needs
to be further decomposed into more detailed inbeistiwvhereas an operational intention can be

implemented into a sequence of actions.

Definition 3 : A contextis the association of a given situation and aentibn that the
EKD engineer wants to achieve in this very situat/e use this concept as the basic building

block for describing an EKD process.

In the remaining the paper, the terms "situatidimtention" and "context" will be used

with these specific meanings.

Therefore, within EKD, any process element is dbed as a couplesituation, intention,
such as:
<The Paris-Roissy Airport today, Operationaliseloerease passenger traffic">,
<Goal G1: "Maintain separation standards betweangd", Find design model satisfying goal
G1>, etc..

Thus, any process model is described as a seiméxt types -situations are described at
the type level. We could define context types sash
<Goal X, Operationalise goal X>,

<Goal Y, Find design model satisfying goal Y>, etc.

Therefore, if we visualise the decision makingerat (figure 2) as having an input, a body
and an output, thinput is a couple <situation, intentionzi.e. a context. In some sense the
pattern is bounded by the situation and the aswwtimtention. It is close to the notion of
context used in Atrtificial Intelligence [58].

Change engineering requires a complex processkt filace. However, there are some
steps during the performance of this process teagji@unded on knowledge.

First, there isheuristical knowledgehat consists of the know-how of EKD engineers. Fo
instance, when trying to operationalise the goatriéase passenger traffic in an airport" in the
context of the Roissy airport, he/she may referthe experience gained during the
reorganisation of London’s Heathrow airport andatethat the goal "increase passenger traffic

in an airport" was articulated into two complemeytsub-goals.

10

Secondly, an engineer may try to reuse knowleddegendent of any particular domain but
specific to EKDFor instance, while classifying a goal, he/shenefo some existing and well
understood categories, the elements guiding hisgleéction of the appropriate class are
known a priori, they are reused for the classification of evemalg Similarly, the
operationalisation of a goal follows some patteengoal can be reduced to a set of alternatives
or to concomitant goals or it can be expresseditiira business rule. This type of knowledge
is specific to EKD and can be used in any orgaiuisat setting.

Finally, when an engineer has to solve a new dgsigblem, he/she could structure his/her
reasoning by looking for alternative ways to sdlve problem or by decomposing the problem

into smaller problems. This type of knowledge iyfgenericand not tailored to EKD.

The body of the decision making pattern provides the knogdetb make the decision. The
pattern is intended to provide guidance on howrtzged to achieve the intention in the given
situation.

Our approach provides, three types of guidameeric guidance, EKD guidancand
domain specific guidanceGeneric guidancds independent of any specific methodology
supporting decision making; e.g. not specific tolEH can be seen as the common set of rules
for guiding decision making and is based on genmethod knowledge. The rule "proceed in
the achievement of a goal by identifying alternatohoices that make this goal executable
through actions" is an example of generic guidance.

EKD guidancas tailored to the way EKD envisions a change psede occur. Providing a

rule for “classifying a business objective into arfehe objective classes : "achieve”, "avoid",

non

"cease", "extend" or "maintain™” is specific to EKDis based on EKD method knowledge.
Domain specific guidancgepends on the application domain. Any guidelglated to Air
Traffic Control belongs to this type. It is baseddpmain specific method knowledge.
As depicted in figure 3, the three types of guatartan be related to the levels of

abstraction.

Theoutput of the decision making pattern is of two differgyes : an action performed on
the product being designed or a new situation @mupb an intention. It is the nature of
intention that determines the output type.

Intentions such as “Operationalise the goal "iases passenger traffic™” are high level
objectives that cannot be immediately implemenkedugh actions in one step of the process.
The refinement of the intention might require saveteps, each of them contributing to the
operationalisation of the goal. The decision makingne of these steps consists of generating

a new context, i.e. a couple <situation, intentici@perationalise the goal "increase passenger

11

traffic"” might for example, require “Operationatis'Decrease plane turn-around time"” and
therefore, the step having as input the contextisdyoairport today, Operationalise goal
"increase passenger traffic"> will have as outjiat ¢ontext <Roissy airport plane movement
description, Operationalise goal " Decrease planmedround time">.

It could also happen that the EKD engineer knoxacty how to “Operationalise goal X”,
by reducing the goal into sub-goals X1 and X2,.€ékbe decision made by the EKD engineer
at this step s1 will consist of an action to replgoal X by a new structure. However, the
change in the product raises new situations. Famgke, step s2 can contribute to the
emergence of the two contexts: <Goal X1, Associisign model to X1> and <Goal X2,

Operationalise X2>.
3.2. The EKD processisincremental and dynamic

The suggested way-of-working makes the EKD prodesative, each step of the process
repeating the EKD decision making pattern. As aseguence, the product (i.e., the new
business processes of the companyjniementally constructed. This suggests a spiral
representation of the process. In addition, theusecgng of steps is not fixed. Steps
dynamicallyfollow one another. This is brought about by theisien making pattern, which
does not impose any predefined sequence of theidecinaking process but allows EKD

engineers to switch from one context to anothgoedding on new situations and changes.
3.3. The EKD processis supported by softwaretools

Both the information system and the software comitguhave automated their methods
and now use tools. So is the EKD approach. The atipprovided by the EKD tool
environment comprises three aspects (1) guidareedban the EKD way-of-working; (2) trace
of the EKD process; and (3) backtracking and refdailities. The generic tool MENTOR (co-
developed by one of the authors) supports the tlasgects [57]. It is currently being

customised to EKD.

3.3.1. Automated guidance support

The EKD environment provides guidance in the parémce of the process by using the
Dowson's framework [15] (figure 4). The framewankrdduces three interacting domaipscess
modelling, process performanegdprocess enactment

Process modellingaptures all activities performed for modelling $oftware development
processes: process model definition, process msgetialisation, etc.Process enactment
encompasses what takes place in a process to suppaess performance, based on the

process definitions. This is essentially an intetation of an instantiated process model that

12

guides, enforces, or partly automates process ipeafice. The relationship between the
process modelling and the process enactment dorisaiing instantiation of the process model.
Process performanc@volves the set of activities conducted by huraad non-human agents
(e.g., the computer). The relationship between phecess performance and the process
enactment domains is twofold : (1) support, contmold monitoring of activities of the process
performance domain, and (2) the feedback performémcprocess adjustment.

The process model supporting the EKD way-of-wagkimmprises three classes of process
model fragments generic method chunk€EKD method chunksanddomain specific method
chunks All chunks are stored in the repository of the EKBvironment and accessible at any

time.

3.3.2. Tracing support

Empirical studies [35] have shown that analystd developers know very little about the
process they go through. Procasgeabilityis therefore an important issue in design. It can b
divided into three parts: process execution, prodewolution, and their relationships.
Traceability has many uses in the design procepgogally in the early phases of development
where the requirements for the system are elicitetidefined [42].

Within EKD, the trace comprises both process amdiyct aspects. The process trace itself
keeps track of the application of the decision mgkpattern at each step. The step by step
evolution of the product are stored as versionshef product, thus providing configuration
management material. The relationship between tbéugt and the process traces allows us to

relate decisions to their effects on the product.

3.3.3. Backtracking and replay support

Backtracking to a previous step in the process help by replaying the process in a
different way. Replay is often necessary to suppbanges occurring during the process itself
or later. Replay is another form of process enacstmaich is made possible by the enactment

mechanism of the EKD tool.

4. Guiding the EKD process

This section deals with the brief presentatiohef process meta-model (see [39], [40] and
[52] for a detailed presentation) underlying theigion making pattern and the way it provides

guidance.

4.1. The EKD decision making pattern

13

The EKD decision making pattern iseasoning mechanissupporting decision making by
providing aset of predefined conceptslibrary of guidelinesand aset of predefined rulegsee
figure 5). The concepts identify the elements sutpg the reasoning. The rules play a dual
role. First, they help in the retrieval of the ammiated guidelines from the library. Second,
rules are used to guide the decision making acegridi the guideline. Input and output of the
rulesare contexts.

The pattern can be compared to an expert systewhimg facts (the input context) to fact
types (the guidelines) in order to generate nevsféihe output contexts). The rules of the
decision making pattern play a role similar toitiference engine of an expert system. When the
EKD process is under the control of the tool envinent, the matching activity is automated,

whereas an EKD engineer working manually must relnegrar look up rules by hand.

4.2. Concepts underlying the EKD decision making pattern: an overview of the process
meta-model

Figure 6 depicts the core elements of the EKD ggeaneta-model. As defined in section
3.1, acontexttightly couples a situation to an intention. A tmxt corresponds to one step of
the EKD process. Aituationis built from an EKDproduct partand sets the product elements
considered during one step of the processimention expresses the goal the EKD engineer
has in mind, it has target describing what should be the result of the denishade in this
context. Similarly, a target is built from EKD pnact parts. Both situation, target and intention

can be described at different levels of granuldrityn coarse to fine grain.
4.3. Generic guidance

4.3.1. Using the generic guidance

The method repository has only one generic guidelithegeneric method chunkr
generic chunk.

The chunk is applicable situationswhere the two other types of guidelines do not hold
i.e. when there is no domain specific guidelineilatée, nor EKD guideline meeting the
current situation and intention. The guideline atmgulfil the "help mé& request. It proposes
an help strategy for progressing in the EKD prodess offers three optionsto, plan and
choose Each will correspond to a given type of contegkecutableplan andchoice context,
respectively. Accordingly, the generic chunk pr@ddhree options:

e do, which corresponds to a straightforward resolutstrategy. It is chosen when the
engineer knows exactly what needs to be done ierora fulfil the intention of the
context. The EKD engineer is required to specify design action(s) and their effects on

the design product. We call this type of contexgcutable

14

« choose which corresponds to a resolution strategy tlejuires the exploration of
alternative paths. It is selected when the engitigieks about different alternatives but
has not make up his/her mind about the one to tseld®e engineer shall specify all
possible alternatives and elaborate an argumentdtio each of them. Based on the
proposed arguments, the enactment leads to thetisel®f an alternative path that seems
most appropriate. This is termedl@icecontext.

» plan, which follows a planning strategy. The engindezay has a plan for achieving the
intention. In this case, following a divide and qaer tactics, the EKD engineer will

progress by building a plan consisting of decisitms®e made. This is called @an

context.

Note that the two last options correspond todlassical reduction operator in the problem
reduction approach to problem solving [38].

Working with thedo strategy means that the EKD engineer is able égi§pthe actions
that operationalise the process goal and to exdbeta immediately. One should notice that
the process is constructed dynamically, the gerdrimk helping in identifying the case in
hand (thedo strategy) and providing the procedure to be folld\specifying actions and their
impact on the product).

The plan context corresponds to a well-known agagindan strategic decision making : state
a plan and then execute the plan [61]. Again, ihidynamic. The EKD engineer working in a
plan context will state the components of the fplafshe has in mind as new contexts and will

enact them immediately.

4.3.2. Revising the process meta-model

While presenting the use of generic knowledge etmed the notion of context by defining
three types of contextexecutablechoice andplan. These are generic properties of contexts
that we introduce in the meta-model. Figure 7 surnsea the different concepts completing
the first version of the process meta-model.

The different types of contexts are modelled dstgpes of the concept of context and
therefore share the same structugsituation, decision> The different components
(respectively alternatives) of a plan context (extively choice context) are contexts too. This
provides the means of constructing hierarchieotexts that are needed to represent complex
decision based processes.

There are some major differences between the warigpes of contexts. There is no

alternative in an executable context. The executddna choice context has no direct

15

consequence on the product under development. Acehmontext allows progress in the
change process by refining the intention whereasxagutable context directly implement the
intention. Plan contexts provide a different tyfeomgress. They help in decomposing a high

level intention into sub-intentions and therefdare@ify the given context by decomposing it.

It may be argue that this process meta-modelastmplex. However, one principle at the
core of several machine learning system [60] ihe' more knowledge at the meta level, the
more knowledge based guidance can be provided qoii requirements fragments at the

domain level."

4.3.3. Extending the decision making pattern for supporting co-operative work processes

Parts of the EKD process are dealing with ill-defl problems for which even the generic
guidance provided by the decision making patterghinbe found to be too inflexible. The
elicitation of goals is an example. Setting the mpmities, weaknesses, threats and strengths
for a change process is another. As pinpointe@Jiraind [12], finding goals is very hard and
there is not yet a way of solving this problem @éntly. Organising co-operative work
sessions and brainstorming are probably the bgsbaphes to deal with this kind of highly
creative activity. The problem is therefore, to d&#e within the EKD way-of-working, to
support both ill-structured and well (or bettemustured procedures.

However, the decision making pattern proposesuifit types of guidance that could be
too inflexible. These observations leads us torektine decision making pattern in order to

support also the creative part of work processes.

4.3.4. Extending the process meta-model

Since there are a number of participating useié-$tructured co-operative activities, there
is a need to have a way to represent conversdtidhge process meta-model. Additionally, it is

necessary to explicitly bring the notion of a rtléhe process meta-model.

4.3.4.1. The concept of role

In the EKD approach, we are dealing with co-opeeatlesign processes. Acting within a
context corresponds to a step in the co-operatiaegss to which various stakeholders
participate with well defined roles: in a giverusition, the EKD engineer has an intention, and
that makes him/her enter into a co-operative pces

A role is the definition of the needs shared l®y ¢bllection of users, all of whom have the

same privileges and obligations to a set of wodcpsses in an organisation. We introduce the

16

concept ofrole, and then, specialise it infadividual role and group role (figure 8). Each
contextis attachedo a role.
In the ATC case study, examples of roles are lka/fe:
- Airport manager (individual role)
- ATC centre manager (individual role)
- Risk elucidation group (group role containing theport manager, the ATC manager, and

other individual roles)

4.3.4.2. Specialisation of the action and product concepts

We are dealing with group activities, in the sertbat several participants can
synchronously act together by exchanging messadgebe context of the EKD process, we
represent ill-structured and highly creative corapige work sessions by using the
conversationconcept and introduce @nversational actionThis leads us to classify actions
into two types individual andconversational

Performing an action changes the product and reagmte a new situation which is itself,
subject to new intentions. Individual actions peridransformations of design objecthile
conversational actions create messages. In ordakéoaccount for this distinction, we classify
the concept oproductinto design objecandmessagéfigure 9).

We must represent conversational activities dutieyEKD process and keep track of the
conversations. We introduce theessageoncept as the basic component of the conversdtion

activity. A message may deal wisleveral design objects.

The conversational actions performed bya group role It creates several messages, each
beingproduced byan individual rolecontained bythe previous group role.

From anyconversational actionrmay emergenew contexts(figure 10). These can be
executable and associated with actions that mightdnversational and then triggeew
contexts ando on.

We propose a further refinement of the concepmetsageébased on works on Design
rationale [10], etc. The refinement introduces asslification of messages in&xpression
argumentatiorand position (figure 11). An expression can suggest argumemsitiThese can

support several positions. Finally, an expressamlme suggested by any position.

4.3.5. Extending the generic guidance

We extend the generic method chunk in order atsgrbvide co-operative activities.
Indeed, the three previous options (do, choosen) ptaust have a fourth optiorbrainstorm
This is supported by an argument "the current 8dnarequires co-operative brainstorming”.

The associated alternative is an executable cortagut context, Use the brainstorm strategy,

17

EKD engineer>.

4.3.6. lllustrating the conversational action

We use an example from Air Traffic Control as aecaridy. Consider the context C: <(G1
"minimise risks of accidents"”, Operationalise GHglp me> attached toEKD engineer.
Assume the EKD engineer does not know how to pebe@e none of the three choices offered
by the generic chunk is appropriate. In this caséshe shall consider the option of calling a

group of experts (we name it the "risk elucidatiwaup") for a brainstorming session.

Thus, the strategy needed for context C in the geebunk is "brainstorm". The guidance
provided by this strategy suggests the followirgits:
(1) define the group role required,
(2) execute a conversational action within the jnasly defined group role with the initial

input context as its situation.

The Risk elucidation groupmay be a role that contains stakeholders suchirpsria
manager, ATC centre manager, a representativelfes managers, a representative of pilots,
and a local authority.

The executable context is applied by a conversatiastion leading to the creation of

several messages (figure 12).

Possibly the flow of messages is:
Message 1: (ATC centre manager)
Have we got a report about reasons of world-widédants in the last five years ?
Message 2: (Airport manager)
No, we don't. But we have some information aboatl#ist three major accidents.
Message 3: (ATC centre manager)
So, what were the reasons ?
Message 4: (Airport manager)
In Strasbourg, France, it was a human error.
At Delhi, it was due to two factors : heavy airftimand human error. Due to his poor
knowledge of the English language, the pilot mismstbod the message of the control
tower.
In the US, it was a confusion about the airporte Pilot made an error in ‘typing’ the
airport and the computer understood the airpore@siBogota in South America, while
the aircraft was to land in California.

Message 5: (Representative of airlines managers)

18

So if we want to minimise risks of accidents wedn&decrease risk of human error

Message 6: (Pilots representative)
Sometimes what is called human error is not rehty. How can you decrease the
human error in the accident in the US. You mussier computer systems errors.
Message 7: (ATC centre manager)
It's more convenient to talk about Human-Computterface for this accident.

So, our goals are wecrease risk of human error and review all humamputer

interactions
Message 8: (Pilots representative)
And what about the accident in Delhi ? The humaarevas not the unique reason, was
it ?
Message 9: (ATC centre manager)
The number of aircraft allowed to cross the cofdbhirspace is too high in Delhi.
Message 10: (Local authority)
Precisely, for 2 years local authorities have kerging that this number must be
decreased here too. People living near the aigsertisturbed because of the noise
especially during late/early take offs and landidgsrder to minimise risks of

accidents we mugimit the number of aircraft allowed to cross thentrolled airspace

As a conclusion of this message exchange, the ceavenal action generates three
contexts as follows:
- < Message 5, Create G2 : "decrease risk of hieman">
- < Message 7, Create G3 :"review human-computerantions">
- < Message 10, Create G4 :"limit the number otrait allowed to cross the controlled

airspace">. The new contexts are inserted in tiéeats pile for further processing.

4.3.7. Formalising the generic method chunk

We advocate a formal representation of the gemduink based on the process meta-model.
Figure 13 visualises thgeneric chunlas achoice contextising our graphical notations. The
four strategies are the four alternative choicesppsed by the context together with their
related arguments. The guidance provided by thergeohunk can be simply summarised by
four questions to the EKD engineer :

- Is your intention operationalisable through dasactions?

- Can you set alternative ways for fulfilling yoatention?

- Do you need a plan for making up your mind acltieving your intention?

- Do you need a co-operative work session foilful§ your intention?

19

The alternative contexts are executable; thein@ated actions guide the EKD engineer in
performing things according to the option he/sheosles.
Our proposal is for a representation of all metlohdnks (generic, EKD dependent or

domain dependent) in the EKD method base usingdheepts of the process meta-model.

4.4. EKD guidance

EKD guidances basedn EKD knowledgeThus knowledge is needed for supporting EKD
engineers in specifically undertaking the changec@ss in an organisation using the EKD
models. Using this knowledge allows us to spee@8Kp processes because it concentrates on

the resolution of EKD specific problems.
4.4.1. Modelling EKD Knowledge

EKD knowledge supports the construction of difféarenodels representing the initial (the
initial product) as well as the future state of theganisation (the design product), the
expression of alternative strategies for changayedkas the evaluation of these strategies, and
other kinds of activity, such as brainstorming,op@rative work, etc..

We express this knowledge by using the processi-metlel and the different types of
context : executable, plan, and choice. Howeveretlie one major difference: the EKD
knowledge is expressed at the type level ; i.e J¢kel of specific classes of EKD phenomena
such as "identifying goals", "operationalising gdal'finding design models meeting specific
goals", etc.. The type level is distinct from timstance level where one speaks of a specific
goal or of a specific design model. It has alsdyedifferentiated from the meta-level dealing
with generic concepts, such as 'product part' emtention’. The generic knowledge is at the
meta-level whereas the EKD knowledge is at the tgpel.

More generally, the EKD knowledge can be re-useddecision based guidance in many

different participative design processes withirfeté#nt companies.
4.4.2. Using EKD guidance

The way EKD knowledge is used within the EKD dixmisnaking pattern is similar that for
the generic guidance. The main difference lieshia tetrieval of the method chunk. The
retrieval of an EKD method chunk is based on maghissuming that the engineer has chosen
the input context, he/she must select an EKD metttaghk where (1) the situation type
matches the situation of the input context andtii2)intention of the method chunk matches
that of the input context. Of course, this selati®greatly facilitated by the use of a software

tool.

20

The remaining part of the reasoning loop assotiatéh the application of the EKD
decision making pattern is similar to that previgudiscussed, but the EKD engineer is more
guided.

We use amatrix presentatiorio overview the collection of chunks included ire tBEKD
knowledge base. Thehunksare thematrix elementsThecolumnsof the matrix aréntentions
that arise during the EKD process. THogvs of the matrix areéechniquesThe same technique
can be used in different ways for different churtksr example, a brainstorming strategy may
be used for both satisfying the intention of "Deégmal conflict" and for "Solve goal conflict".

The essential benefit the EKD engineer gains issiguidance. By following the heuristical
knowledge embedded in the method chunk, the engiiseeonstantly aided. Part of the
solution he/she has to find is provided by the éhiBuggestions are made on the alternative

strategies, predefined plans, etc..
4.5. Domain specific guidance

EKD domain specific guidands based oKD domain specific knowledge. THemain
specific knowledgaims at providing guidance for solving very wealcfised problems in a
specific domain. It is grounded on experience bakeowledge and suggests reuse and
adaptation of previously tested solutions. The btnef using this type of knowledge is that it

considerably shortens the decision process.

4.5.1. Modelling domain specific knowledge

In the context of Air Traffic Control, domain sgic knowledge could suggest that the
operationalisation of the goal G1: "Minimise riskasashes" can be achieved in two ways : a
decomposition of G1 into G2: "Maintain separatidanslards” and G3: "Decrease risk of
human error" or a decomposition with G3 and G4niitithe number of aircrafts allowed to

cross a controlled airspace”.

4.5.2. Using domain specific guidance

The use of domain specific knowledge within thelE#ecision making pattern is relatively
unchanged from before. The difference lies in #et that domain specific method chunks are

defined at the instance level and therefore ddawée to be instantiated when used.
5. Global view of the EKD process

5.1. An incremental design process

We view the EKD process as consisting of the ftegaapplication of the decision making

pattern. This leads to an incremental productiorthef EKD product ; i.e., of the various

21

models suggested in our approach. Consider a ginthew of the key parts of the EKD set of
models as depicted in figure 14.
- the Enterprise Modelprovides a view of the current situation, its gpgisoblems,
actors, activities and concepts;
- theGoal Modelrepresents the objectives for the new system;
- theDesign Modetepresents the solutions to meet the objectives;
- Scenarioshelp in the validation of the solutions, partielyjain illustrating how a

given design model achieves the goals.

The incremental dimension of the process meanghbaEnterprise Model does not need to
be completed before some goals for change aredstai@ even associated with some design
model. In terms of decision making, it means trextisions are not made in a linear fashion.
We can then split the process into :

- Model the current enterprise state
- Acquire goals

- Operationalise goals

- Generate design models

- Validate design models

In order to illustrate the non linearity of theopess, consider two sequences in figure 15.
As used in other approaches [7], [8], we proposspiaal representationAs illustrated in
figure 16, the angular dimension shows the degfesompleteness achieved by the current
process. The radial dimension shows the progreas lihs been achieved and might be
associated to a measure of the effort spent iprtbeess.

Obviously, there is a logical order to be followkst some decisions. For example an
"operationalisation" decision cannot be made ifdbeesponding "acquiring” decision has not
be made. But it will be a constraining to forcer, €&xample, all "acquiring" typed decisions to
be made before any "operationalisation" decision.

Taking into account the ordering constraint betwéee five types of decision (Model -
Acquire - Operationalise - Generate - Validateg #KD process results in a hierarchy of
spirals, as shown in figure 17. The hierarchy afngl reflects the logical ordering. Every turn
of spiral in a plan might have several turns in thescendant plan which represent the
succeeding steps of decisions of a type X perforasesbns of the same father decision of type
Y. The hierarchy of plans models the ordering c@mst, the spiral movement means a relaxed

completeness constraint on decisions made.

5.2. Theflow of EKD decisionsis dynamically constructed

22

Another interesting feature of the EKD procesgsslynamicnature. The flow of decisions
is not defined "a priori" but constructed dynamiigal herefore, the EKD engineer can switch
from context to context depending on the changhe.dutput of one application of the pattern
IS one or more contexts that associate an intetdidime situation in which it must be achieved.

The number of possible contexts that can be saleatta particular stepmay be more than
two. In fact, there is aile of pending contextdhe pile represents the set of decisions that
have to be made for the process to be completeg.pilf is originally empty, grows in the
beginning of the process as it proceeds and prsigedg reduces to an empty set at the end.
Roughly speaking the process pushes and pullsidesién their contexts) from the pile. Each
step makes a decision and may generate new degision

The selection of one context in the pile at a gigeint of timet is free. It is a choice that is
offered to the involved stakeholders. They are freproceed from step to step according to
their view of the contexts to be pulled from theepBome guidance may be provided to help
the EKD engineer making the choice. A situationahitg mechanism is one example, a query
language is another. The matching mechanism allbavsiser to select contexts in the pile that
match existing EKD or Domain dependent chunks. @dime query language, the EKD

engineer is able to select those contexts whiclehrisie current needs.

6. Conclusion

The EKD decision making pattern iseasoning mechanissupporting decision making by
providing aset of predefined conceptalibrary of guidelinesand aset of predefined rules
First, rules help in the retrieval of the approfih guideline from the library supporting
decision making at that particular stage of thecess ; i.e. in the current situation at hand.
Secondly, rules are used to guide the decisionmgakicording to the guidelines.

The decision making pattern is tailored to prowjdédance for all cases. In some cases, the
pattern offers domain specific guidance. This hasp&hen the library contains knowledge
about the domain of the project that matches theenticontext.

The library also contains EKD specific guidelirtbat describe how to work with different
EKD models following the EKD approach. These guited are independent of any particular
domain but are based on EKD Method Knowledge.

Finally, if none of the two types of guidelines tofges the current context of work, the
generic guideline may operate ; it is the defapttan in some sense. Clearly, making guidance
more specific increases its efficiency. Howevee, generic guideline allows the EKD process

to be entirely based on guidance.

23

We can view the reasoning mechanism offered byléuésion making pattern as consisting
of two main steps: selecting the relevant guidefioen the library for the current situation and
intention and then making a decision according e guideline. Currently, we are

implementing these guidelines in an electronic bao#t which will eventually be made
available on the World Wide Web.

24

References

[1] V. Ambriola and M.L. Jaccheri, Definition anch&ctment of Oikos software entities, Proceedings

of the First European Workshop on Software Proddsdelling Milan, Italy, 1991.

[2] A. Anton, Goal-Based Requirements Analy$SRE '96 IEEE, Colorado Springs, Colorado USA,
(1996).

[3] P. Armenise, S. Bandinelli, C. Ghezzi and A.rgknti, A survey and assessment of software process
representation formalisms|nternational Journal of Software Engineering andndwiedge
Engineering 3(3) (1993).

[4] S. Bandinelli, A. Fugetta and S. Grigoli, PreséModelling in the large with SLANG, iRroceedings

of the 2nd International Conference on Softwarecdess Berlin, Germany, (1993) 75-93.

[5] N. Belkhatir and W.L. Melo, Supporting Softwakevelopment Processes in Adelé2omputer
Journal 37(7), (1994) 621-628.

[6] K. Benali, N. Boudjlida, F. Charoy, J. C. Danie, C. Godart, Ph. Griffiths, V. Gruhn, P. Janiart,
Oldfield and F. Oquendo, Presentation of the ALBjgxt, in: Proceedings of the International

Conference on System Development Environments actdries(1989).
[7]1 B. Boehm, A Spiral Model of Software Developrmand Enhancemen&EE ComputeR1(5), 1988.

[8] J. Bubenko, C. Rolland, P. Loucopoulos and \eAbtonellis, Facilitating "Fuzzy to Formal"
Requirements Modelling, in:Proceedings of the IEEE First International Confece on
Requirements Engineering, ICRE'@094) 154-158.

[9] J. A. Bubenko jr., J. Stirna, D. Brash, EKD W<guide, Dpt. Of Computer and Systems Sciences,
Royal Institute of Technology, Stockholm, Swede$97

[10] E.J. Conklin and M. Begeman, gIBIS: A Hypett&ool for Exploratory Policy Discussio®dCM
Transactions on Office Information Syste®(@) (1988) 303-331.

[11] B. Curtis, M. Kellner, J. Over, Process Modwel Communications of ACM5(9) (1992) 75-90.

[12] A. Dardenne, A.v. Lamsweerde and S. Fickasal@irected Requirements AcquisitioB¢cience of
Computer Programmingvol. 20 (1993) 3-50.

[13] C. Desclaux, A. Guthauser, T. Pécoud, J. Pojra Storr and A. Thierry, Design & Maintenance
Process Rationale under MACSonférence Le génie logiciel et ses applicatjofsulouse, France
(1990).

[14] M. Dowson, lteration in the Software Procdss,Proceedings of the 9th International Conference

on Software Engineerin(.987).

25

[15] M. Dowson, Consistency Maintenance in Procgeasitive Environments, irProceedings of the
Process Sensitive SEE Architecture WorksiBmulder, CO (1992).

[16] M. Dowson and C. Fernstrom, Towards requirethéor Enactment Mechanisms, Proceedings of
the European Workshop on Software Process Techn@l®94).

[17] ELectrical Enterprise Knowledge for TRansfongn Applications, The ELEKTRA Project
Programme, ELEKTRA consortium (1996).

[18] W. Emmerich, G. Junkermann and W. Schafer, MR Knowledge-based process modelling, in:

Proceedings of the First European Workshop on Soéwrocess ModellingMilan, Italy, 1991.

[19] A. Finkelstein, J. Kramer and M. Goedicke, Wkoint Oriented Software Development, in:
Proceedings of the Conference "Le Génie LogiciskstApplications'Toulouse (1990) 337-351.

[20] A. Finkelstein, J. Kramer and B. Nuseibeh je@&oftware Process Modelling and Technology
(John Wiley Pub., 1994).

[21] M. Franckson and C. Peugeot, Specificatiothef Object and Process Modelling Language, ESF
Report n° D122-OPML-1. 0, 1991.

[22] F3 Consortium, The F3 Hand Book, SISU, Box1,25-164 40, Kista, Sweden (1993).

[23] O. Gotel, A. Finkelstein, An Analysis of theeRuirements Traceability Problem, Proceedings of
the First IEEE International Conference ICRE'®olorado Springs, USA (1996).

[24] D. Harel, On visual formalism, CommunicatiohACM, Vol 31, N° 5, May 1988, pp 514 - 530.

[25] B. Henderson-Sellers and J.M. Edwards, Thee€@hjriented Systems Life-Cycl€pommunications
of the ACM September (1990).

[26] A.H.M. Hofstede, T.F Verhoef, G.M. Wijers arsl Brikkemper, The SOCRATES project, in:
Proceedings of NGCT'90Noordwijkerhout, The Netherlands, April 1990.

[27] W.S. HumphreyManaging the Software Procegéddison-Wesley, 1989).

[28] Information Technology - Information Resoutd&tionary System (IRDS) - Framework, ISO/IEC

International Standard, 1990.

[29] L. Jacherri, J.0. Larseon and R. Conradi, \8aft Process Modelling and Evolution in EPOS, in:
Proceedings of the 4th International Conference $oftware Engineering and Knowledge
Engineering (SEKE'92 apri, Italy (1992).

[30] M. Jarke, J. Mylopoulos, J.W. Schmidt and Yasgiliou, DAIDA - An Environment for Evolving
Information SystemsACM Transactions on Information Systerb8(1) (1992).

[31] G.E. Kaiser, N.S. Barghouti, P.H. Feiler and\R Schwanke, Database Support for Knowledge-
Based Engineering EnvironmentSEE Expert 3(2) (1988) 18-32.

26

[32] J. Lee, Extending the Potts and Bruns ModeRecording Design Rationale, iARroceedings of the
IEEE 13th International Conference on Software Begring Austin, Texas, May 1991.

[33] M.M. Lehman, Process Models, Process Progr&mramming Support, iffroceedings of the 9th

International Conference on Software Engineerifi®87).

[34] J. Lonchamp, A structured Conceptual and Teofoigical Framework for Software Process

Engineering, inProceedings of the International Conference oftvtare Proces$1993).

[35] M. Lubars, C. Potts and C. Richter, A RevieWtbe State of the Practice in Requirements

Modelling, in:Proceedings of the International Symposium on Rements Engineerin¢l993).

[36] P. Marttiin, Methodology Engineering in CASHedls: Design Issue and current Practice, PhD

thesis, Computer science and information systepwrt® Technical report TR-4, 1994.

[37] M. Nadin, M. Novak, MIND: A Design Machine, Goeptual Frameworkntelligent CAD Systems |
(Springer Verlag, 1987).

[38] N. Nilsson,Problem Solving Method in Atrtificial IntelligencéMcGraw Hill, 1971).

[39] S. Nurcan, C. Gnaho and C. Rolland, Definingy&tof-Working for Cooperative Work Processes,
in: Proceedings of the First International Conference ®ractical Aspects of Knowledge
Management (PAKM) Workshop on Adaptive WorkfBasel, Switzerland, October 1996.

[40] S. Nurcan and C. Rolland, Meta-modelling foraperative processes, iRroceedings of th&th
European-Japanese Conference on Information Maugkind Knowledge BaseSoulouse, France,
May 1997.

[41] L. Osterweil, Software processes are softwhre, in: Proceedings of the 9th International

Conference on Software EngineeritigEE Computer Society, Washington, DC (1987) 2-13

[42] K. Pohl and S. Jacobs, Concurrent Engineetiifitabling Traceability and Mutual Understanding,
International Journal on Concurrent Engineerigg1994), 279-290.

[43] C. Potts, A Generic Model for Representing iDesMethods, in:Proceedings of the 11th

International Conference on Software Engineer{h§89).

[44] B. Ramesh, A Model of Requirements Tracebifity Systems Development, Tech. report, Naval

Postgraduate School, Monterey, CA, September 1993.

[45] B. Ramesh and V. Dhar, Supporting Systems [gweent by Capturing Deliberations During
Requirements Engineerindg EE Transactions on Software Engineeriag(6) (1992).

[46] C. Rolland, Understanding and Guiding Requiata Engineering Processes, invited tafdP
World CongressCamberra, Australie, 1996.

[47] C. Rolland, Modelling the Requirements Engiieg Process,Information Modelling and
Knowledge BasedOS Press, 1993).

27

[48] C. Rolland and G. Grosz , A General Framewfmk Describing the Requirements Engineering
Process, inProceedings of the IEEE Conference on Systems MdnCybernetics, CSMC94%an
Antonio, Texas, 1994 .

[49] C. Rolland, S. Nurcan and G. Grosz, Guiding tharticipative design procesAssociation for

Information Systems Americas Conferenndianapolis, Indiana, August 1997.

[50] C. Rolland, S. Nurcan and G. Grosz, A way ofking for change processésternational research

Symposium: Effective Organisatiom¥orset, UK, September 1997.

[51] C. Rolland, S. Nurcan and G . Grosz, A unifizgdmework for modelling co-operative design
processes and co-operative business processesPraweedings of the 31st Annual Hawaii

International Conference on System ScienBés Island, Hawaii, USA, January 1998.

[52] C. Rolland, C. Souveyet, M. Moreno, An Appecbafor Defining Ways-of-Workinglnformation
Systems JournaP0(4) (1995).

[53] T. Rose, M. Jarke, M. Gocek, C. Maltzahn andVH Nissen, A Decision-based Configuration
Process EnvironmenEEE Software Engineering Journ&(3) (1991).

[54] W.W. Royce, Managing the Development of LaBgftware Systems, iflProceedings of the IEEE
WESCON1970).

[55] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddg W. LoresenQbject-oriented modelling and

design(Prentice Hall International, 1991).

[56] P.S. Seligmann, G.M. Wijers, H.G. Sol, Anahgithe structure of I. S. methodologies, an altérea
approach, in:Proceedings of the First Conference on InformatiBgstems Amersfoort, The
Netherlands, 1989.

[57] S. Si-Said, C. Rolland, G. Grosz, "MENTOR : Gomputer Aided Requirements Engineering
Environment", in the Proceedings of the 8th CAlSEhference on Challenges In Modern Information

Systems, Heraklion, Crete, Greece, May 1996.

[58] J.F. SowaConceptual Structures: information processing imanand machinédAddison Wesley,
1984).

[59] T. Tomiyama, T. Kiriyama, H. Takeda, D. Xuedad. Yoshikaya, Metamodel: A Key to Intelligent
CAD SystemsResearch in Engineering Desidn(1989) 19-34.

[60] A. Van Lamsweerde, Learning Machine Learniiny,Introducing a Logic Based Approach to
Artificial Intelligence Vol 3, Wiley (1991) 263-356.

[61] R. Wilenski, Planning and Understanding: a computational appdvato human reasoning
(Addison Wesley, 1983).

28

[62] J.D. Wynekoop and N.L. Russo, System Develagmeethodologies: unanswered questions and the
research-practice gap, iRroceedings of the 14th IC(®ds. J.I. DeGross, R. P. Bostrom, D. Robey),
Orlando, USA, 1993.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

© 00 N o 0o b~ W DN PP

N L o o o
N~ o o0~ W N B O

29

FIGURE LEGENDS

Relationships between product and process

The EKD decision making pattern

Relationship between the different typegutiance and the abstraction levels
The three domains of process performance

The EKD decision making pattern

Overview of the EKD process meta-model

The revised process meta-model

The context is attached to a role

Actions and products that they transform

The co-operative process meta-model

Detailed description of the message concept

An executable context leading to the exeoutf a conversational action
Representing the generic knowledge with@ae context

A synthetic view of the key parts of the [EKet of models

Two possible traces of the decision makiragess

The spiral process model

The hierarchical view of EKD processes

Meta-type level

Type level

Instance level

Process
meta-model

Process model
(way-of-working)

Process

Product
> meta-model
N Product
model
Product
F == =
(Schema)

e

notations

Instance of
Refers to

Describes how to use
the product model
(prescriptive)

Describes how the
product has been
constructed
(descriptive)

Figure 1: Relationships between product and process

30

Context

input

1

Body

output

> Product

Figure 2: The EKD decision making pattern

31

32

Process . ngerlc
meta-model guidance
EKD

Process model - !
(way-of-working) guidance
Domain

Process -—— specific
guidance

Figure 3: Relationship between the different typeguidance and the abstraction levels

Process Modelling
Domain

Process Performance
Domain

Process definitions E g

ctual process performanc

7
Instanciation Process suppor/ Feedback

of process and control
model

Process Enactment
Domain

Enactment Mechanism

TOOL environment

Figure 4: The three domains of process performance

33

Library of guidelines
I
Input
Context > RULES Output H
Contexts

v
Product

Y
Yy

Figure 5: The EKD decision making pattern

34

oN Product

is :
) s a
made is_a / \—

of Initial Future
enterprise enterprise
state state

1N

oN 1N 1N
Prg:::d [« Target
is built over

| Situation Intention

1N 1N
1,1 1,1

L1 1
Context

Figure 6: Overview of the EKD process meta-model

modifies

is
implemented
with

Oo,N

1,N 1,N
Pg)g#ct —(Target
is built over
Arguments
has
oN O.N
_— 1,1
Situation Intention
1N 1N H
11 11 oO,N objects to
[T 1
Context ON supports
isa E Composed
11 isa isa of ON ON
Executable Choice Plan J)
Context Context Context | 1,N Alternative
I
2,N

Figure 7: The revised process meta-model

36

Intention| | Situation

: 1,N 1N
: . attached to
: (- : >
: Context ‘11 -— 1N | Role
RS RRRRPRRRR 5 isa @Sia
individual group
role role
I]
oN 7
contains

Figure 8: The context is attached to a role

isa isa
© — Product
Conversational | —x— Individual part
action action a / y\isa
composed isa X isa -
of " 11 1N | Design M J
Complex Simple] ™ ’ . essage
action action > object
modifies | ON <1 O.N
N 1 concerns 11
{ P |
creates

Figure 9: Actions and products that they transform

I Intention I ISituation } L P}
1N built on
IN[[N
11 attached to LN
ON Context i 1 Y
isa isa
D, . m
Plan Executable Choice 1°a isa
context context context @
individual group
role role
H leads to the ON 1,N
emergence of ON contains
performed
. b
isa 11 y O.N 1,N
ON performed
Conversational Individual |O,N produced H by
action action composed by H 1,1
isa Wisa by 11
1,N Product
Simple | [Complex Part O,N
action action isV ! isa Y
1,1 changes , ["Design | Message |
1 . object 9
LN ON ON |
1 concerns 11
creates

Figure 10:The co-operative process meta-model

39

Expression

O,N

suggests

Message

N

LN Argumentation

suggests

<3

Position

supports
O,N

Figure 11: Detailed description of the message ephnc

40

41

<(G1 "minimize risks of accidents", operationalise G1), Use the brainstorm strategy> ————3» EKD engineer

l applied by

Conversational action

i creates

Messages

performed by

attached to

Group role
contains

- Airport manager

- ATC center manager

- 1 representative of airlines managers
- 1 representative of pilots

- 1 local autority

Figure 12: An executable context leading to thecaken of a conversational action

<"Input context", Help me>

Alternative 1 / \ \
‘ Alternative 3 Alternative 4
<"Input context”, Alternative 2 \
Use the do strategy> /
<"Input context",

<"Input context", <"Input context", Use the brainstorm strategy>

Use the choose strategy> Use the plan strategy>

Pro argument for Alternative 1 :
- Fulfilling the input context's intention is possible by specifying design action(s) to be performed on the product

Pro arguments for Alternative 2 :
- It exists several alternative ways to fulfil the input context's intention
Cons arguments for Alternative 2 :
- Fulfilling the input context's intention is possible by specifying design action(s) to be performed on the product

Pro argument for Alternative 3 :
- The achievement of the input context's intention requires a composite decision making process to take place
Cons arguments for Alternative 3 :
- Fulffilling the input context's intention is possible by specifying design action(s) to be performed on the product
- It exists several alternative ways to fulfil the input context's intention

Pro argument for Alternative 4 :
- The achievement of the input context's intention requires cooperative brainstorming
Cons arguments for Alternative 4 :
- Fulfilling the input context's intention is possible by specifying design action(s) to be performed on the product
- It exists several alternative ways to fulfil the input context's intention
- The achievement of the input context's intention can be done through a composite decision making

Figure 13: Representing the generic knowledge aithoice context

42

Enterprise
Model

Goal

Scenarios

Model

I

Design
Model

Figure 14: A synthetic view of the key parts of #i€D set of models

43

Sequence 1 stepl acquisition of goal G1
=eduence step2 operationalisation of goal G1
step3 generation of design model M1 and M2
step4 validation and choice of M1
step5 acquisition of goal G2
etc.
Sequence 2 stepl acquisition of goal G1
step2 acquisition of goal G2
step3 acquisition of goal G3
etc.
stepj operationalisation of goal G1
stepk operationalisation of goal G2
etc.

Figure 15: Two possible traces of the decision mgkirocess

step1:
Acquisition of s_tep 2 -
goal G1 Operationalisation of
/ goal G1

Figure 16: The spiral process model

45

Model the current
enterprise state

.

B Acquire
goals
Operationalise
goals

LY

— Generate
design
models

Validate
design

models

Figure 17: The hierarchical view of EKD processes

46

