
HAL Id: hal-00707551
https://hal.science/hal-00707551v1

Submitted on 13 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VariaMos: a Tool for Product Line Driven Systems
Engineering with a Constraint Based Approach

Raul Mazo, Camille Salinesi, Daniel Diaz

To cite this version:
Raul Mazo, Camille Salinesi, Daniel Diaz. VariaMos: a Tool for Product Line Driven Systems Engi-
neering with a Constraint Based Approach. 24th International Conference on Advanced Information
Systems Engineering (CAiSE Forum’12), Jun 2012, Gdansk, Poland. �hal-00707551�

https://hal.science/hal-00707551v1
https://hal.archives-ouvertes.fr

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

VariaMos: a Tool for Product Line Driven Systems
Engineering with a Constraint Based Approach

Raúl Mazo1,2 , Camille Salinesi1, Daniel Diaz1

1 CRI, Université Paris 1 – Sorbonne, 90, rue de Tolbiac, 75013 Paris, France
2 Ingeniería de Sistemas, Universidad de Antioquia, Medellín, Colombia

raulmazo@gmail.com, {camille.salinesi, daniel.diaz}@univ-
paris1.fr

Abstract. The creation of error-free variability models and their usage in prod-
uct line analysis and product derivation is central to product line engineering
(PLE). The complexity of these tasks makes tool support a success-critical fac-
tor. Tools supporting the core activities of PLE are a challenge and a real need
for academics, industrial researchers, and practitioners of the PLE domain. In
this paper, we present a tool for variability modeling, model integration,
verification and analysis, derivation requirements specification and product
derivation.

Keywords: Product line engineering, variability, product line models.

1 Introduction

Variability models are used to specify the variability of software product lines.
These variability models are represented by means of a modeling formalism. In our
literature research, we have found quite a number of variability modeling formalisms,
such as FODA (Feature-Oriented Domain Analysis) [9], Orthogonal Variability Mod-
els (OVM) [13], UML classes [26], DOPLER [5] and Goals [6]. To represent and
reason on these models, a number of approaches and tools exist in the literature.
However, there is a lack of methods and tools that can support modeling, integration,
reasoning and complex configuration on the Product Line (PL) domain. This lack is
more accentuated when the model is composed of a collection of views representing
the same product line. In this paper, we present a tool allowing represent, integrate,
reason and configure product line models.

The paper is structured as follows: Section 2 gives a brief overview of our tool Va-
riaMos. Section 3 describes some functions of VariaMos. Section 4 presents related
tools supporting integration, verification, analysis and configuration of product line
models. Section 5 concludes the paper and describes future works.

Mazo Raúl, Salinesi Camille, Diaz Diaz. VariaMos: a Tool for Product Line Driven Systems En-
gineering with a Constraint Based Approach. 24th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE Forum'12), Springer Press, Gdansk-Poland, 25 – 29 June 2012.

2 VariaMos Architecture

VariaMos (Variability Models) is an Eclipse plug-in for specification, automatic
verification, analysis, configuration and integration of multi-view product line mod-
els. From a deployment point of view, VariaMos is an Eclipse plug-in that communi-
cates with our GNU Prolog [3] by means of a socket. The VariaMos tool, its docu-
mentation and a video training are available online1.

3 Functionalities

VariaMos allows working simultaneously on a set of models in multi-formalism
mode. There are several activities that VariaMos is intended to support: domain en-
gineering with multiple models, integrated verification of the verification criteria
existing in literature [1, 14], analysis [1] and configuration [10, 16]. In additiVn, Ma-
riaMos allows creating/editing Product Line Models (PLMs) that have been imported
as SPLOT XMI 2 or constraint program text files (cf. Figure 1(a)) and export-
ing/importing PLMs using a XMI or a constraint program file. This functionality al-
lows communicating models from and to other applications.

3.1 Integration of Variability Models by means of Constraint Programs

In our approach, each view of the product line system is transformed into a con-
straint program. A constraint program is a collection of constraints without a specific
order. In this way, the constraint programs, representing the different views of the PL
system, can be easily integrated into a single constraint program. The resulted con-
straint program represents the general system and offers a richer view of the PL (than
individual views). VariaMos implements the five integration strategies presented by
[10]. In our approach, two models’ elements referring to the same concept must have
the same name; we do not deal with mismatching of names. Mazo et al. [10] offer a
list of rules to transform the most popular formalisms to represent variability models
into constraint programs. Once each view of the PL system is transformed into CP,
they can be integrated in a single constraint program using the graphical user interface
presented in Figure 1 (b).

3.2 Verification of Variability Models

VariaMos implements the typology of verification criteria presented in [10]. Using
this classification we can detect if the model is void [9], if the model is not a false
PLM [1, 14], if the model does not have errors (like dead variables [1, 9, 14] or va-
riables with wrong domains [1, 14], inconsistencies (like full-mandatory features [1]
requiring optional features [9]) and redundancies (like full-mandatory variables in-

1 https://sites.google.com/site/variabilitymodels/home/downloads/PresentationVariaMos2.js
2 http://www.splot-research.org

cluded by another variable [14] or inclusion of a relative father [14]). A snapshot of
the graphical user interface of VariaMos to implement these verification operations is
presented in Figure 1 (c).

(b)

(e)(c) (d)

(a)

Fig. 1. GUI of VariaMos: (a) Definition/edition of Product Line Models, (b) Integration, (c)

verification, (d) analysis and (e) configuration. Fig. 1 in high resolution is available at:
https://sites.google.com/site/variabilitymodels/home/downloads/GUIofVariaMos.JPG

3.3 Execution of Analysis Operations

All the analysis operations implemented in VariaMos are taken from literature and
from industrial projects with our partners; most of the operations are explained and
referenced on the literature review of Benavides et al. [1]. A small description of each
analysis operation implemented in VariaMos and how they have been implemented
are presented as follows:

1. Calculating the number of valid products represented by the PLM. This operation
may be useful for determining the richness of a PLM. VariaMos implements this
operation with GNU Prolog in the following way: g_assign(cpt,0), pl(_), g_inc(cpt),
fail;g_read(cpt,N), where pl is the fact that represents the product line model. With
this operationalization we avoid the overload of the RAM with each solution gener-
ated and counted by the solver because each time a solution is found, we release the
pile of solutions before the generation of a new one.

2. Obtaining the list of all valid products represented by the PLM, if any exist. This
operation may be useful to compare two product line models. The list of valid prod-
uct is obtained one by one from the solver by means of the backtracking technique.
As the screenshot shows it in Figure 1(d), VariaMos provides users with the possi-
bility to navigate in the list of products using the Next and Previous buttons.

3. Calculating commonality of a set of variables. This is the ratio between the number
of products in which a given set of variables of the PLM is present and the number
of products represented in the PLM. By default, this operation calculates the number
of solutions in which all the variables of the PL are present and divides this number
with the result obtained with operation 1.

4. Calculating Homogeneity: A more homogeneous PLM would be one with few
unique variables in one product (i.e. a unique variable appears only in one product)
while a less homogeneous one would be one with a lot of unique variables.
By definition Homogeneity = 1 - (#unicVariables / #products). This
operation computes the number of variables that appear in only one product by
means of a request to the solver and computes the number of products using the op-
eration 1.

5. Calculating variability factor: This operation takes a PLM as input and returns the
ratio between the number of products and 2n where n is the number of variables
considered. In particular, 2n is the potential number of products represented by a
PLM, assuming that there are not cross-tree constraints on the model and that all
PLM’s variables are Boolean. Variability factor = NProd / 2^ NVar. This function
uses the solver to compute the number of variables and the number of products in
the PLM.

6. Checking validity of a configuration. A configuration is a collection of variables and
may be partial or total (e.g., the partial configuration presented in Figure 2(d)). A
valid partial configuration is a collection of variables respecting the constraints of
the PLM but not necessary representing a valid product. A total configuration is a
collection of variables respecting the constraints of a PLM and where no more vari-
ables need to be added to form a valid product. This operation may be useful to de-
termine if there are or not contradictions in a collection of variables or to determine
whether a given product is available in a product line. To operationalize this func-
tion, the configuration to check is considered as a collection of external constraints
where each constraint corresponds to the assignation of a particular value to each
one of the variables of the PLM. Then, the external constrains and the constraints of
the PLM are executed together in the solver to verify if the whole of constraints is
consistent (i.e., there is a valid solution satisfying all these constraints).

7. Executing dependency analysis or decision propagation. It looks for all the possible
solutions after assigning some fix value to a collection of values and then asking the
solver for almost one solution. This operation is very similar to the operation 6,
however, with this operation we can check the satisfaction of constraints by means
of reification, and not only the satisfaction of variables of the PL as in operation 5.

8. Specifying external requirements specifications for configurations using constraints.
This operation allows the specification of constraints that are not constraints of the
domain, but configuration constraints. To operationalize this function, external con-
straints are defined in GNU Prolog and then added to the constraints of the PLM;
once added, all the constraints are executed in the solver. See [10] for more details
and Figure 1(e) for a snapshot of the implementation of this function in VariaMos.

9. Applying a filter. This operation takes a configuration (i.e., set of variables, each
one with a particular value) and a collection of external requirements and returns the
set of products which include the input configuration and respect the PLM’s con-
straints and the external constraints. Figure 1(e) presents a snapshot of the GUI of
this function in VariaMos.

10. Calculating the number of products after applying a filter. This operation uses the
technique presented in operation 1 to compute the number of products that can be
configured from a PLM in presence of a filter. A filter is presented as a collection of
external constraints and particular assignation of values to the variables of the PL.
To operationalize this function, the filter is added to the collection of the PLM’s
constraints and then executed in the solver. Figure 1(d) presents a snapshot of the
GUI of this function in VariaMos.

11. Find an optimal product with respect to a given attribute like cost (min goal) and
benefit (max goal). Detection of “optimal” products is very important for decision
makers as presented in [10]. To operationalize this function we use the fd_maximize
and the fd_minimize facts offered by the GNU Prolog solver.

3.4 Other Features

According to [8], a tool for automating reasoning on variability models should be
efficient, scalable and with enough expressivity to represent different kinds of varia-
bility constraints. These characteristics are evaluated on VariaMos as follows:

Reasoning efficiency. The execution time of each reasoning operation can be cal-
culated by the solver by means of a request for the current time (by means of the
prolog function user_time(T1)) at the beginning and at the end (by means of the
prolog function user_time(T2)) of each constraint program. The time spent by the
solver to execute the operation at hand, is computed by means of the clause: T is
T2 - T1. We have showed the reasoning efficiency of VariaMos in several works;
for instance: [10, 12, 15] show the efficiency of VariaMos in verification of product
line models and [11] shows the efficiency of VariaMos in transforming PLMs.

Scalability. VariaMos scalability has been validated using a corpus of 54 models
specified in several languages, representing several domains and with sizes from 9 to
10000 variables. In all these cases, VariaMos shows a promising scalability in the

execution of the reasoning operation presented in this paper. The results have been
reported in works like [10, 12, 15].

Expressivity. In VariaMos, product line models can be loaded as XMI or text files
and then, labeled with it particular notation. VariaMos offers several capabilities to
represent and transform different types of product line models into constraint pro-
grams. In addition, models can be edited with XML and text editors furnished by
Eclipse IDE. The power of expression of VariaMos is compared with the one of con-
straint programming to specify PLMs [10, 15].

4 Related Works

The most of the tools for supporting product line engineering focus on one or two
aspects but not in all of the aspects presented in this paper.

For instance, from the point of view of modeling, there are tools like Feature Plu-
gin3, XFeature4, AHEAD Tool Suite5, Pure::variants6 and Requiline7. The most of
these tools were built to graphically construct feature models and to derive products
from these models, not to reason on these models.

From the point of view of analysis and verification, most of the tools found in lite-
rature are formalism-dependent and they only focus on feature models. In addition,
most of them focus on verifying the consistency of a combination of features (a fea-
ture configuration) against the feature model. Tools like FAMA8 and SPLOT9 consid-
er several analysis and verification operations over feature models; however, they
have been targeted in the analysis and verification of models represented by a single
view.

From the point of view of expressivity, modeling tools available in the literature
are just starting to offer some model-to-model transformation capabilities, but these
are still limited and often ad hoc. Some examples of these tools are: Andro-MDA10,
openArchitectureWare11, Fujaba12 (From UML to Java And Back Again), Jamda13
(JAva Model Driven Architecture), JET14 (Java Emitter Templates), MetaEdit+15 and
Codagen Architect16. There are also approaches that do combine multiple variability

3 http://gp.uwaterloo.ca/fmp
4 http://www.pnp-software.com/XFeature/
5 http://www.cs.utexas.edu/~schwartz/ATS/fopdocs/
6 http://www.software-acumen.com/purevariants/feature-models
7 http://www-lufgi3.informatik.rwth-aachen.de/TOOLS/requiline
8 http://www.isa.us.es/fama
9 http://www.splot-research.org
10 http://www.andromda.org.
11 http://www.openarchitectureware.org/
12 http://www.fujaba.de
13 http://sourceforge.net/projects/jamda
14 http://www.eclipse.org/articles/Article-ET/jet_tutorial1.html
15 http://www.metacase.com/
16 http://www.codagen.com/products/architect/default.htm

models, e.g., KumbangTools17 combining the feature and component-based models.
However, none of them deals whit transformation of product line models, where the
semantic of the model represents not only one but an undefined collection of product
models.

From the point of view of configuration, there are several tools in literature that
address this topic. For instance, FAMA, SPLOT and FdConfig [16]; however these
tools do not support as much reasoning operations over product line models as Va-
riaMos do. In addition, they do not support reasoning operations over multiple PLMs.

5 Conclusions and Future Works

In this paper we introduced the first release of VariaMos which is an Eclipse plug-in
for edition, integration, verification, analysis and configuration of PLMs. We intro-
duced the functionalities of the tool and we exposed some of the most relevant design
and implementation details. Finally, we showed the differences between VariaMos
and other tools found in literature and we concluded that VariaMos supports more
variability modeling languages, automatically verifies more criteria than the other
tools, and is the first tool to implement reasoning operations over multi-views PLMs.
Although VariaMos is not a mature tool yet, its promising capabilities of extensibility,
interoperability, scalability, expressivity and efficiency will allow the tool to become
accepted and used by the academic and industrial community in the future.

Several challenges remain for our future work. On the one hand, the implementa-
tion of more verification and analysis functions. For instance, verification against a
meta model defined by users, incorporation of a guided process allowing correcting
anomalies and support incorporation for incremental verification are envisaged for
future releases. On the other hand, it is planned to incorporate, in our tool, a graphical
representation of constraint programs, automation of PLM construction from a collec-
tion of products models, multi-stage configuration of products from complex re-
quirements formulated as constraint programs and also connection with other kind of
solvers; e.g., SAT (SATisfiability), BDDs (Binary Decision Diagrams) and SMTs
(Satisfiability Modulo Theories) in order to improve the efficiency of certain reason-
ing operations.

Acknowledgments

Many thanks to Diego Quiroz, Sebastian Monsalve, and Jose Ignacio Lopez for their
invaluable help with this tool.

17 http://www.soberit.hut.fi/KumbangTools/

References

1. Benavides D., Segura S., Ruiz-Cortés A. “Automated Analysis of Feature Models 20
Years Later: A Literature Review”. Information Systems. Elsevier, 2010.

2. Czarnecki, K., Helsen, S., Eisenecker, U. “Formalizing cardinality-based feature models
and their specialization”. Software Process Improvement and Practice, 10(1):7– 29, 2005.

3. Diaz D., Codognet P. “Design and Implementation of the GNU Prolog System”. Journal of
Functional and Logic Programming (JFLP), Vol. 2001, No. 6, October 2001

4. Djebbi O., Salinesi C. “Towards an Automatic PL Requirements Configuration through
Constraints Reasoning”. Int. Workshop on Variability Modelling of Software-intensive
Systems (VaMoS), Essen, Germany, January 2008.

5. Dhungana D., Grünbacher P., Rabiser R. "The DOPLER Meta-Tool for Decision-Oriented
Variability Modeling: A Multiple Case Study," Automated Software Engineering, 2010 (in
press; doi: 10.1007/s10515-010-0076-6).

6. González-Baixauli B., Laguna M., Sampaio J. “Using Goal-Models to Analyze Variabili-
ty”. First International Workshop VaMoS, 2007.

7. Griss, M., Favaro, J., Allesandro, M. “Integrating Feature Modeling with RSEB”. Proceed-
ings of the 5th International Conference on Software Reuse, Vancouver, Canada, 1998.

8. Hai H. Wang, Yuan Fang Li, Jing Sun, Hongyu Zhang, Jeff Pan. “Verifying feature mod-
els using OWL”. Journal of Web-Semantics (2007) 117–129.

9. Kang K., Cohen S., Hess J., Novak W., Peterson S. “Feature-Oriented Domain Analysis
(FODA) Feasibility Study”. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, November 1990.

10. Mazo R., Salinesi C, Djebbi O., Diaz D., Lora-Michiels A. “Constraints: the Heart of Do-
main and Application Engineering in the Product Lines Engineering Strategy”. Interna-
tional Journal of Information System Modeling and Design IJISMD. ISSN 1947-8186,
eISSN 1947-819. April-June 2012, Vol. 3, No. 2.

11. Mazo R., Salinesi C., Diaz D., Lora-Michiels A. “Transforming Attribute and Clone-
Enabled Feature Models Into Constraint Programs Over Finite Domains”. 6th International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE),
Springer Press, Beijing–China, 8-11 June 2011.

12. Mazo R., Lopez-Herrejon R., Salinesi C., Diaz D., Egyed A. “Conformance Checking with
Constraint Logic Programming: The Case of Feature Models”. In 35th Annual Interna-
tional Computer Software and Applications Conference (COMPSAC), IEEE Press, Mu-
nich-Germany, 18-22 July 2011. Best Paper Award.

13. Pohl K., Böckle G., van der Linden F. “Software Product Line Engineering: Foundations,
Principles and Techniques”. In: Springer-Verlag New York, Inc., Secaucus, NJ, 2005.

14. Salinesi C, Mazo R. “Defects in Product Line Models and how to Identify them”. Software
Product Line - Advanced Topic, edited by Abdelrahman Elfaki, InTech editions, ISBN
978-953-51-0436-0, April 2012.

15. Salinesi C., Mazo R., Diaz D., Djebbi O. “Solving Integer Constraint in Reuse Based Re-
quirements Engineering”. 18th IEEE International Conference on Requirements Engineer-
ing (RE'10). Sydney - Australia. September-October 2010.

16. Schneeweiss D., Hofstedt P. “FdConfig: A constraint-based interactive product configura-
tor”. International Conference on Applications of Declarative Programming and Knowl-
edge Management (INAP) Vienna, Austria. September 28-30, 2011.

