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Abstract: Product line models are important artefacts in product line engineering. One of the most popular languages to 

model the variability of a product line is the feature notation. Since the initial proposal of feature models in 

1990, the notation has evolved in different aspects. One of the most important improvements allows specify 

the number of instances that a feature can have in a particular product. This improvement implies an 

important increase on the number of variables needed to represent a feature model. Another improvement 

consists in allowing features to have attributes, which can take values on a different domain than the 

boolean one. These two extensions have increased the complexity of feature models and therefore have 

made more difficult the manually or even automated reasoning on feature models. To the best of our 

knowledge, very few works exist in literature to address this problem. In this paper we show that reasoning on 

extended feature models is easy and scalable by using constraint programming over integer domains. The aim 

of the paper is double (a) to show the rules for transforming extended feature models into constraint programs, 

and (b) to demonstrate, by means of 11 reasoning operations over feature models, the usefulness and benefits 

of our approach. We evaluated our approach by transforming 60 feature models of sizes up to 2000 features 

and by comparing it with 2 other approaches available in the literature. The evaluation showed that our 

approach is correct, useful and scalable to industry size models. 

1 INTRODUCTION 

Requirements Engineering is the process of 

discovering system purpose by identifying 

stakeholders and their needs, and documenting these 

in a way that is amenable to reasoning, 

communication, and subsequent implementation 

(Nuseibeh and Easterbrook, 2000). When this 

process is achieved in the context of Product Lines 

(PL), its complexity and difficulty is much higher 

since there are several products to consider, which 

imply to manage the relationships of communality 

and variability between them. One of the most 

popular notations to specify the common and 

variable requirements of a software product line is 

the Feature Models (FMs). In the context of PLs, 

FMs are used for product derivation, variability 

reasoning and code generation (Kang et al., 1990), 

(Van Deursen and Klint, 2002). In these contexts, 

FMs are usually transformed to executable code in 

order to reason on them (Batory, 2005), (Benavides 

et al., 2005), (Benavides et al., 2007), (Benavides et 



 

al., 2010), (Van Deursen and Klint, 2002), (Karataş et 

al. 2010), (Salinesi et al., 2010). Since their first 

introduction in 1990 as a part of the Feature-

Oriented Domain Analysis (FODA) method (Kang et 

al., 1990), several extensions have been proposed to 

improve and enrich the expressiveness of FMs. The 

first one was the introduction in the basic FODA 

notation of cross-tree dependencies (requires and 

excludes), to put constraints on features. The second 

and the third extensions consisted in the introduction 

of attributes (Diaz and Codognet, 2001), (Benavides 

et al. 2005b) and cardinalities (feature and group 

cardinalities) (Czarnecki et al. 2005), (Djebbi and 

Salinesi, 2007), (Van Hentenryck, 1989). FMs with 

these three extensions are called extended feature 

models. Despite their pertinence for the industry, 

most of the reasoning approaches on FMs do not 

consider the last two extensions, or at best partially 

(Benavides et al., 2010). In this paper we propose an 

approach based on constraint programming that fills 

this gap by handling reasoning on extended FMs. 
In the last few years, Constraint Programming 

(CP) has attracted attention among experts from 
many areas because of its potential for solving hard 
real life problems. Not only it is based on a strong 
theoretical foundation but it is also attracting a 
widespread commercial interest as well, in 
particular, in areas of modelling heterogeneous 
optimisation and satisfaction problems. In the PL 
domain, several authors have proposed to use CP to 
represent FMs but without attributes and 
cardinalities (Batory, 2005), (Benavides et al., 2005) 
or with lacks on quality representation and 
implementation (Karataş et al., 2010). 

The approach presented in this paper uses 

constraint programming to represent extended 

feature models with the purpose of reasoning on 

them by using an existing constraint solver. Details 

about reasoning operations on FMs are out of scope 

of this paper. We begin describing extended feature 

models and developing a relevant example to 

illustrate the transformation process of extended 

FMs into constraint programs and the subsequent 

reasoning operations that can be executed on them. 

We finally present an initial evaluation of our 

approach. In our evaluation we transform to CP 60 

feature models of sizes up to 2000 features. This 

transformation has been compared with two other 

approaches from the literature. The results obtained 

by this experiment show that our approach is 

pertinent because it fixes errors of one of the 

existing approaches. The results also show that our 

approach is (i) scalable to important size models, 

which can be transformed into CPs in only few 

seconds; and (ii) correct, compared with the already 

state of the art approaches (Benavides 2007), 

(Mendoça et al., 2009). We conclude the paper with 

a discussion of related works, then of open issues 

and we conclude with an outlook on future works. 

2 BACKGROUND AND 

MOTIVATION 

2.1 Extended Feature Models 

A FM defines the valid combinations of features 
in a SPL, and is depicted as a graph-like structure in 
which nodes represent features, and edges the 
relationships between them (Kang et al., 2002). A 
feature is a prominent or distinctive user-visible 
aspect, quality, or characteristic of a software system 
(Kang et al., 1990). A feature can have zero or more 
attributes (Van Deursen and Klint, 2002), (Ziadi et 
al., 2003). Cardinality-based feature models 
(Czarnecki et al., 2005) allow specifying individual 
cardinalities for each feature and group cardinalities 
grouping bundles of features. In this paper, we use 
the semantic of feature models proposed by 
(Schobbens et al., 2007) and cardinality-based 
feature models proposed by (Michel et al., 2011). 
Components of a FM can be related among them by 
means of the following relationships: 

 Feature cardinality: Is represented as a sequence 

of intervals [min..max] determining the 

number of instances of a particular feature that 

can be part of a product. Each instance is called a 

clone. 

 Attribute: Although there is no consensus on a 

notation to define attributes, most proposals agree 

that an attribute is a variable with a name, a 

domain, and a value (consistent with the domain) 

at a given configuration time. 

 Father-child relationship, there are two kinds: 

o Mandatory: Given two features F1 and F2, 

F1 father of F2, a mandatory relationship 

between F1 and F2 means that if the F1 is 

selected, then F2 must be selected too and 

vice versa. 

o Optional: Given two features F1 and F2, F1 

father of F2, an optional relationship between 

F1 and F2 means that if F1 is selected then 

F2 can be selected or not. However, if F2 is 

selected, then F1 must also be selected. 

o Requires: Given two features F1 and F2, F1 

requires F2 means that if F1 is selected in 

product, then F2 has to be selected too. 



 

Additionally, it means that F2 can be selected 

even when F1 is not.  

o Exclusion: Given two features F1 and F2, 

F1 excludes F2 means that if F1 is selected 

then F2 cannot to be selected in the same 

product. This relationship is bi-directional: if 

F2 is selected, then F1 cannot to be selected 

in the same product. 

 Group cardinality: A group cardinality is an 

interval denoted <n..m>, with n as lower bound 

and m as upper bound limiting the number of 

child features that can be part of a product when 

its parent feature is selected. If one of the child 

features is selected,  then the father feature must 

be selected too. 

As a running example, we illustrate cardinality 

and non-cardinality based feature models with a 

hypothetical case of a Movement Control System 

(MCS) of a car. This example is a simplified extract 

of a real FM developed with one of our industrial 

partners. A more complete extract of the model is 

explained in (Salinesi et al., 2010b) and (Salinesi et 

al., 2011). In Figure 1, we present the cardinality-

based FM of the allocation of hardware resources for 

a car MCS. A MCS is composed of one or several 

sensors, one or two processors and one or two slots 

of internal memory. Sensors are used to measure the 

speed and position of a car by means of two features 

called Speed Sensor and Position Sensor, 

respectively. Speed Sensor is represented as a 

mandatory feature (with a feature cardinality 

[1..1]). And Position Sensor is represented 

as an optional feature (with a feature cardinality 

[0..4]). These two features are related by means 

of a requires relationship. To compute the location 

of a car, the MCS uses one or two processors, each 

one associated by means of a mandatory relationship 

with one or two slots of Internal Memory. 

Internal memory can take the values of 128, 512 or 

1024 as specified in its attribute Size. 

 

SpeedSensor 

Movement Control System 

PositionSensor 

Processor [0..4] 

[1..1] [1..2] 

Internal Memory  

[1..2] 

Size:{128,512,1024} 

 

Figure 1.  Example of feature model. Extract of an 

allocation of resources for a movement control system of a 

car.  

2.2 Constraint Programming in a 

Nutshell  

Constraint Programming (CP) emerged in the 
1990’s as a successful paradigm to tackle complex 
combinatorial problems in a declarative manner 
(Van Hentenryck, 1989). CP extends programming 
languages with the ability to deal with logical 
variables of different domains (e.g. integer, real or 
boolean) and specific declarative relations between 
these variables called constraints. These constraints 
are solved by specialized algorithms, adapted to 
their specific domains and therefore much more 
efficient than generic logic-based engines. A 
constraint is a logical relationship among several 
variables, each one taking a value in a given domain 
of possible values. A constraint thus restricts the 
possible values that variables can take.  

A Constraint Satisfaction Problem (CSP) is 
defined as a triple (X, D, C), where X is a set of 
variables, D is a set of domains, i.e. finite sets of 
possible values (one domain for each variable), and 
C a set of constraints restricting the values that the 
variables can simultaneously take. Classical CSPs 
usually consider finite domains for the variables 
(integers) and solvers propagation-based methods 
(Bessiere, 2006), (Van Hentenryck, 1989). Such 
solvers keep an internal representation of variable 
domains and reduce them monotonically to maintain 
a certain degree of consistency with reference to the 
constraints.  

In modern Constraint Programming languages 
(Diaz and Codognet, 2001), (Van Hentenryck, 
1989), many different types of constraints exist and 
are used to represent real-life problems: arithmetic 
constraints such as  X + Y < Z, symbolic 
constraints like atmost(N,[X1,X2,X3],V) 
which means that at most N variables among 
[X1,X2,X3] can take the value V, global 
constraints like alldifferent(X1,X2,…, 

Xn)meaning that all variables should have different 
values, and reified constraints that allow to reason 



 

about the truth-value of a constraint. Solving 
constraints consists in (a) reducing the variable 
domains by propagation techniques that will 
eliminate inconsistent value within domains, then  
(b) finding values for each constrained variable in a 
labeling phase, that is, iteratively grounding 
variables (fixing a value for a variable) and 
propagating its effect onto other variable domains 
(by applying again the same propagation-based 
techniques). The labeling phase can be improved by 
using heuristics concerning the order in which 
variables are considered as well as the order in 
which values are tried in the variable domains. See 
(Diaz and Codognet, 2001) and (Schulte and 
Stuckey, 2008) for more details. 

2.3 Motivating Scenario 

The graphical representation of FMs makes 
reasoning difficult. Proposals have thus been made 
to represent FMs in languages that allow automatic 
reasoning (Batory, 2005), (Benavides et al., 2005), 
(Czarnecki et al., 2005), (Van Deursen and Klint, 
2002), (Salinesi et al., 2010). Our approach uses thi 
strategy and uses constraint programming as the 
language to represent models and configure, analyse 
and verify them. Based on a recent literature review 
of analysis operations (Benavides et al., 2010) and 
on our previous works (Mazo et al., 2011), (Salinesi 
et al., 2010) on product line models verification, we 
implemented a collection of reasoning operations. 
These reasoning operations are completely 
automated in our tool VariaMos. VariaMos is an 
Eclipse plug-in that implements the following 
operations (see  (Benavides et al., 2010) for detailed 
definitions of these operations):  

 Analysis of FMs satisfiability. A FM is 

satisfiable if at least one product is represented 

by the FM. This operation may be helpful for 

managers and engineers because a PLM not 

allowing configure product is a useless model.  

 Calculating the number of valid products 

represented by the FM. This operation may be 

useful for determining the richness of a FM. For 

instance, in our running example, 433 products 

can be configured.  

 Calculating product line commonality. This is 

the ratio between the number of products in 

which the set of variables is present and the 

number of products represented in the FM. In 

our running example Commonality is equal to 1. 

 Calculating Homogeneity. By definition 
Homogeneity = 1 - (#unicFeas / 

#products).  

where #unicFeas is the number of unique 

features in one product and #products 

denotes the total number of products 

represented by the FM. In our running example 

Homogeneity is equal to 1. 

 Detection of errors in a FM. Errors are 

undesirable situations in a FM, as for instance 

features that can never be used in a 

configuration (dead features), redundant 

features and constraints and false optional 

features as in Position Sensor in our 

running example. False optional features are 

represented as optional (feature cardinality 

[0..4] for Position Sensor) but are 

present in all products of the FM (because is 

required by a feature like Speed Sensor 

which appears in all configurations). 
 

The following operations with respect to 
configuration of PLMs: 

 Finding a valid product if any. A valid product 

is a product, derived from the FM, that respects 

all the FM’s constraints. For instance, finding a 

product of the MCS example depicted 

previously in the FM of Figure 1 could retrieve 

the product P1 = {one Speed Sensor, 
two Position Sensors; one 

Processor; one Internal Memory 

of 128; one Internal Memory  of 

1024} 

 Obtaining the list of all valid products 

represented by the FM, if any exist. This 

operation may be useful to compare two product 

line models. For the sake of space, the 

comprehensive list cannot be presented in this 

paper. 

 Checking validity of a configuration. A 

configuration is a collection of features and may 

be partial or total. A valid partial configuration 

is a collection of features respecting the 

constraints of the FM but not necessary 

representing a valid product. A total 

configuration is a collection of features 

respecting the constraints of a FM and where no 

more features need to be added to conform a 

valid product. This operation may be useful to 

determine if there are not contradictions in a 

collection of features. In our running example, 

the product P = {one Position 

Sensor; two Processor; one 

Internal Memory of 512} is not valid 

because the feature Speed Sensor is mandatory 

(feature cardinality [1..1]). 

 Executing a dependency analysis. It looks for all 

the possible solutions after assigning some fix 



 

value to a collection of features. In our running 

example, if we select two clones of Position 

Sensor, the number of products with this 

requirement is 108.  

 Specifying external requirements specifications 

for configurations using constraints (for 

instance, definition of a maximal or minimal 

value, definition of one dependent value among 

to variables such as Size > 512 ⇒ 

2*Position Sensor) 

 
The following application level analysis operations 
was implemented too: 

 Checking if a product belongs to the set of 

products represented by the FM. This operation 

may be useful to determine whether a given 

product is available in a software product line. 

For instance, P1 = {one Speed Sensor, 
two Position Sensors; one 

Processor; one Internal Memory 

of 128; one Internal Memory  of 

1024}, is a valid product of our FM used as 

running example, but P2 = {three Speed 
Sensor, two Position Sensors; 

one Processor; one Internal 

Memory of 128; one Internal 

Memory  of 1024} is not. 

 
Constraint programming is efficient in solving 
optimization problems. Our approach supports the 
specification and analysis of goals such as “identify 
the optimal configuration with respect to cost (min 
goal) and benefit (max goal) feature attributes” to 
detect “optimal” products and support decision 
making during the configuration activity as we 
presented in previous works such as (Djebbi and 
Salinesi, 2007), (Salinesi et al., 2010b). 

3. CONVERTING FEATURE 

MODELS TO CONSTRAINT 

PROGRAMS 

Both, semantic and structure of product line models 
can be specified as constraint logic programs. In this 
paper, we are interested in represent the semantic of 
FMs by means of constraint programs and not the 
structure as do Mazo et al. (2011b). Thus, the 
semantic of a product line model can be specified as 
a constraint program (Salinesi et al., 2010b) by 
means of:  (i) a set of variables X={x1,...,xn}; 
(ii) for each variable xi, a finite set Di of possible 
values (its domain); and (iii) a set of constraints 
restricting the values that they can simultaneously 

assume. A variable in a PLM has a domain of 
values, and the result of the configuration process is 
to provide it a value. In particular, feature models 
are represented in CP with (i) variables, that 
correspond to features, attributes, and instances of 
features defined by a feature cardinality; (ii) 
domains of variables; and (iii) with constraints for 
the relationships among the variables. These 
constraints can be boolean, arithmetic, symbolic and 
reified. The representation of feature models as 
constraint programs applies the following principles: 

 Each feature is represented as a boolean (0,1) 

CP variable. 

 Each attribute is represented as a CP variable, the 

domain of the attribute belongs the domain of the 

CP variable. 

 Each feature cardinality [m..n] determines (i) a 

collection of n variables associated to the feature 

of which this cardinality belongs; and (ii) a 

constraint restricting the minimum (m) and the 

maximum (n) number of variables that can 

belong to a product in a certain moment.   

 The domains of all variables are finite and can be 

composed of integer values. When a variable 

takes the value of zero, it means that the variable 

is not selected, when a variable takes another 

value of its domain (different to zero) the variable 

is considered as selected.  

 Every relationship is implemented as a constraint. 

Our constraint program representation of feature 
models follows the next mapping rules: 

 Feature cardinality: Let P be a feature with a 

feature cardinality [m, n], then we create a CP 

variable P, a collection of n CP variables, one for 

each possible clone of P and an association 

between P and each of its clines. It is:  {P, P1, 

P2, ..., Pn} ∈ {0,1} ˄ (P ⇒ Pi ≥ 

0) ˄ (Pi ⇒ P) for i=1,…,n 

 Attribute: Let P be a feature and A1, A2, ..., 

An a collection of attributes of P, each one with a 

particular domain D1, D2, ..., Dn, 

respectively. The constraints to represent this case 

are: P ⇔ Ai > 0, Ai ∈ Di for i=1…n. 

 Requires: Let P and C be two features, where P 

requires C. If P has a feature cardinality [m..n] 

with {P1, P2, ..., Pn} ∈ {0,1} clones 

of P, the constraint is: P1 ⇒ C, P2 ⇒ C, 
..., Pn ⇒ C. On the contrary, if P does not 

have feature cardinality, the equivalent constraint 

is: P ⇒ C, which means that if P is selected, C 

has to be selected as well, but not vice versa.  



 

 Exclusion: Let P and C be two features, where P 

excludes C. If P has a feature cardinality [m..n] 

with {P1, P2, ..., Pn} ∈ {0,1} clones 

of P, the constraint is: P1 * C = 0, P2 * C 

= 0, ..., Pn * C = 0. In the contrary, if 

P does not have feature cardinality, the equivalent 

constraint is: P * C = 0. Which means that if 

P is selected (value > 0), then C must be equal to 

zero, also both can be not selected (equal to zero).  

 Group cardinality: Let C1, C2, …, and Ck be 

features with domain {0,1}, with the same 

parent P, and <m, n> the group cardinality in a 

decomposition with group cardinality. The 

equivalent constraint is: P ⇒ (m ≤ C1 + C2 + 

… + Ck ≤ n), which means that at least m and 

at most n children features must be selected. Note 

that the dependencies of C1, C2, …, and Ck 

with their parent (with feature cardinality or not) 

are constrained by means of the following father-

child relationship. 

 Father-child relationship: Let C be a feature with 

a feature cardinality [cm, cn] and a parent P 

with feature cardinality [pm, pn]. Then we 

generate by each clone of P ({P1, P2, ..., 

Ppn} ∈ {0,1}), cn boolean CP variables {C1, 

C2, ..., Ccn} ∈ {0,1}, each one 

corresponding to a clone of C.  

The constrains for the clones of P are:  

Pi ⇒ P for i=1,…,pn 

And the constraints among each clone of P and 

the clones of C are: 

P1 ⇒ (Ci ⇒ C) for i=1,…,cn ˄ 

P2 ⇒ (Ci ⇒ C) for i=1,…,cn ˄ … 

Ppn ⇒ (Ci ⇒ C) for i=1,…,cn ˄ 

C ⇒ (cm ≤ C1 + C2 + … + Cn ≤ cn) 

And to finish, we represent the relationship 

between P and C according to its type. Mandatory 

when cm > 0 : 

P ⇔ C 

and optional when cm = 0 : 

C ⇒ P 

This means that in a particular configuration, 

when a clone of the feature P is chosen, at least 

cm and at most cn clones of the child feature C 

must be selected and if at least one clone of C is 

selected, C must be selected as well. In this paper 

we use the semantic of cardinality-based FMs 

proposed by Michel et al., (2011).  

 Let us use the previous rules to represent our 
running example in Figure 1. The first step is to 
create a list with the CP variables of each feature 

according to its feature cardinality and its attributes, 
as follows: 

[MovementControlSystem, SpeedSensor, 

PositionSensor, PositionSensor1, 

PositionSensor2, PositionSensor3, 

PositionSensor4, Processor, 

Processor1, Processor2, 

InternalMemory1, InternalMemory2, 

Size] 

The second step is to constrain the domains of each 
CP variable created in step one, according to its 
corresponding domain, and the value 0 to indicate 
that the variable has the possibility to not be chosen 
in a particular product: 

[MovementControlSystem, SpeedSensor, 

PositionSensor, PositionSensor1, 

PositionSensor2, PositionSensor3, 

PositionSensor4, Processor, 

Processor1, Processor2, 

InternalMemory1, InternalMemory2] ∈ 
{0,1} ˄  

Size ∈ {0, 128,512,1024} 

The next step is to constrain the relationship among 
a feature and its clones as a constraint where each 
clone has the possibility to be selected or not, but if 
on clone is selected the cloned feature must be 
selected as well:  

PositionSensor1 ⇒ PositionSensor ˄ 

PositionSensor2 ⇒ PositionSensor ˄ 

PositionSensor3 ⇒ PositionSensor ˄ 

PositionSensor4 ⇒ PositionSensor ˄ 

Processor1 ⇒  Processor ˄  

Processor2 ⇒  Processor ˄ 

InternalMemory1 ⇒  InternalMemory ˄  

InternalMemory2 ⇒  InternalMemory  

Next, we constrain the clones of each feature 
according to the corresponding feature cardinality:  

PositionSensor ⇒ (0 ≤ 

PositionSensor1 + PositionSensor2 + 

PositionSensor3+PositionSensor4 ≤ 4)˄  

Processor ⇒ ( 1 ≤ Processor1 + 

Processor2 ≤ 2) ˄ 

InternalMemory ⇒ (1 ≤ 

InternalMemory1 + InternalMemory2 ≤2) 

Next we map the father-child relationships among 
features to the following constraints. Features where 
their feature cardinality has the value 0 (e.g., 
Position Sensor with a feature cardinality 
[0..4]), must be represented as optional features. 

MovementControlSystem ⇔SpeedSensor ˄ 

MovementControlSystem ⇔ Processor ˄ 

Processor ⇔ InternalMemory ˄ 

(MovementControlSystem ⇒ 



 

PositionSensor ≥ 0) ˄ (PositionSensor 

⇒ MovementControlSystem) 

Note that we related the variable Processor, and 
not its instances, with InternalMemory. It is 
because Processor and its instances are related 
with a double implication, then every affectation of 
Processor will affect in the same way its 
instances and vice versa. We continue with the 
relations among features and their attributes: 

InternalMemory ⇔ Size > 0 

Indicating that if the InternalMemory is selected 
in a product (= 1, implicit), then the value of Size 
must be also selected (> 0) and vice versa. 
Finally, we map the requires and excludes (there is 
no excludes relations in the model of Figure 1) 
relations to their constraints: 

SpeedSensor ⇒ PositionSensor 

4 IMPLEMENTATION AND 

EVALUATION 

4.1 Feasibility 

With regards to the source of the FMs to 
transform into constraint programs, one of two 
strategies can be used to implement this 
transformation. The first strategy consists on using 
an Application Programming Interface (API) to 
navigate on the FM tree structure and recuperate 
each feature and its associated relationships. Each 
time we gather a feature (with or without attributes) 
or a relationship between two features, we transform 
them into constraint programs by using the 
transformation rules presented in this paper. The 
second approach consists on using a transformation 
engine to transform original FMs into CPs. This 
approach must be used when no API to navigate in 
the FMs is available and when we dispose of the 
well-defined meta-models of the input and the target 
language. Our transformation patterns were 
implemented as Atlas Transformation Language 
(ATL) rules and the output models were transformed 
from XML Metadata Interchange (XMI) files to 
CPs. Both strategies are automated in our tool 
VariaMos (Mazo, 2010) and their use in our 
experiment are explained below. 

 

4.1.1 Fist strategy; by using a navigation API  

48 of our 60 FMs we used to test our approach 
come from SPLOT (Mendça et al., 2009). So, to 
implement the first transformation strategy, we used 

the Mendonca’s parser for SPLOT’s XML-based 
feature models into constraint programs.  

 

4.1.2 Second strategy; by using a 
transformation engine 

12 of our 60 FMs are real world examples from 
our passed and on-going industrial collaboration. 
These models, with sizes up to 180 features, do not 
provide any particular API to navigate on them, so, 
the second strategy must be used to convert them 
into constraint programs. 

This strategy implies the use of two meta-
models, the meta-model of the source language and 
the meta-model of the target language. The meta-
model we used for the source language, it is, for the 
FM language is presented in (Salinesi et al., 2010). 
And the meta-model to represent the CP language is 
depicted in Figure 2.  

 

Figure 2.  CP meta-model. 

According to CP meta-model, a CP is a 
composition of constraints and variables. Variables 
are related among them in one or several constraints 
in the context of a constraint program and can or not 
have a domain, variables that does not have domain 
are considered as Booleans. 

Two examples of ATL rules allowing transform 
features into CP variables and group cardinality 
boundaries into CP constants are respectively 
presented as follows. Not all rules are presented here 
for the sake of place. 

 
rule Feature2Variable { 

 from s : Features!Feature 

 to t1 : CPs!Variable (  

   name <- s.name,  

   haveDomain <- 

s.haveCardinality-> collect(e | 

thisModule.Cardinality2Domain(e))) 

 } 

lazy rule Cardinality2Domain { 

 from s : Features!Cardinality 

 to   cardi : CPs!Domain ( 

   min <- s.min, 

   max <- s.max 

  ) 

 } 



 

The Feature2Variable  rule takes each 
source feature and transforms it into a variable. In 
the modus operandi of this rule, the feature’s name 
is affected to the variable’s name and the 
haveDomain variables’ relationship is the 
collection of the haveCardinality features’ 
relationship.  If the feature to be transformed has a 
cardinality, then the subordinated rule (lazy rule) 
Cardinality2Domain is called to represent the 
correspondig cardinality as a domain of the feature. 

 
While ATL generates XMI files we are still not 

at a level of an exploitable specification. To be 
exploitable, the XMI files must be transformed into 
a file that can be interpreted by a constraint solver, 
in our case GNU-Prolog, but we encourage the use 
other solvers and compare the results obtained from 
them as part of a future work. In our approach, this 
is achieved by means of XPath queries over the 
resulted XMI file. This approach is completely 
automated by means of our Eclipse plug-in 
VariaMos (Mazo, 2010).  VariaMos creates a new 
file that contains a GNU-Prolog program embedding 
the XMI file. The new CP representation of the FM 
is then ready to be executed and analysed by the 
GNU Prolog solver using a series of operations that 
can be passed dynamically to the solver. A snapshot 
of the VariaMos interface to translate FMs into CPs 
is presented in Figure 3. 

 

Figure 3.  Graphical user interface to transform FMs into 

constraint programs. 

4.2 Scalability 

Both transformation strategies were tested in a 
laptop computer with Windows vista 32 bits and 
with the following characteristics: processor AMD 
Turion(tm) X2 Dual-Core Mobile RM-74 of 2,20 
MHz and 4,00 GB of RAM. 

 
 
 
 

4.2.1 Transformation using the navigation 
API strategy 

 Table 1 shows the average results of our 
experiment. These results show that our 
transformation rules can be executed in a fast and 
interactive way by using a well known API to 
navigate on FMs.  

Table 1: Average time to transform FMs into CPs using 

SPLOT. 

Number of features Time to transform FMs 

into CPs 

<40 < 1sec 

40 to 100 1 sec 

101 to 500 1,5 sec 

1000 2 sec 

2000 3,5 sec 

5000 16 sec 

10000 70 sec 

 
 

4.2.2 Transformation using the engine 
transformation strategy 

Table 2 reports the average time of our experiment. 

These figures show that, even for the largest 

industrial models considered, our proposal is 

scalable and interactive for an engineer in a normal 

work environment (no need of additional hardware 

or software resources) 

Table 2:  Average time to transform FMs into CPs using 

ATL engine. 

Number of 

features 

Time to 

transform FMs 

into XMI CPs 

Time to transform  

XMI CPs into 

Text CPs 

<50 <1 sec < 1sec 

50 to 100 3sec <1 sec 

101 to 150 5sec 1sec 

152 to 180 6,5 sec 1 sec 

 

4.3 Usability 

Once the 48 FMS transformed into Benavides et 
al.’s (2005), (2005b) and our CP representations, we 
executed a series of reasoning operations on these 
models. These operations were executed in our 
VariaMos tool. The results show an average 
reduction of 45% in the execution time of derivation 



 

(e.g., find a product that satisfies given configuration 
requirements), verification (e.g., find dead features 
and void FMs) and analysis operations (e.g., find the 
number of products).  Figure 4 shows a time 
comparison needed to get a product from a FM 
transformed to a CP using both proposals. In Figure 
4, we use a log scale to distribute the number of 
features (X axis) in order to avoid overlapping of 
results on models from 10 to 100 features. This 
figure indicates that for the same study conditions 
there our transformation rules seem to have a better 
performance. 
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Figure 4. Time (in milliseconds) needed to obtain a 

product from a FM. 48 FMs up to 2000 features, 

transformed to CP formulas using existing rules and ours.  

Finally our approach was also compared to 
Karataş’s one (Karataş et al., 2010). Of course, to 
perform this comparison, we had to correct the error 
we identified in Karataş’ algorithm in order to 
preserve the semantic of FMs. This change was 
necessary to ensure that both representations were 
totally equivalent, by representing the same products 
from each FM. Each one of the 12 FMs transformed 
in both representations was analyzed using 
VariaMos tool. As result of our experiment we have 
a benefit of average 58% in the execution time of 
each configuration operation –see section 2.3.  This 
gain is due to the fact that in our representation 
algorithm we avoid the combinatorial explosion on 
group cardinalities, exclusive relationships and 
additional constraints, by using arithmetic 
operations. For instance, to constrain the use of only 
one feature, among A, B and C in a product, we use 
the expression A+B+C=1 instead of: (¬A˄¬B˄C) 
 (¬A˄B˄¬C)  (A˄¬B˄¬C). And, in the kind 
of solver we are using, a CP over integer domain 
solver, the first formula is executed faster than the 
second one.  

4.4 Correctness 

 The approach that we present in this paper was 
compared with the transformation algorithm of 
Benavides et al. (2005b). We tested the correctness 
of our approach by means of two experiments. The 
first one consists in comparing the number of 
products that could be derived from our collection of 
FMs represented with Benavides’ rules and the rules 
presented in this paper. In both cases, the number of 
products was equal.  The second one consisted in 
taking 3 models randomly, manually derive all the 
possible products from the FM, then compare these 
results with the results obtained using VariaMos. For 
practical reasons, we only considered models with 
less than 50 features from our initial sample. It is 
worth noting that in our comparison we checked, by 
manual inspection, that not only the numbers of 
products, but also the products themselves, were the 
same. These results allow us to conclude that our CP 
representation of FMs preserves the semantic of 
models. It should be noticed that in our approach, 
the structure of FMs is not preserved because it is 
not necessary for the 11 reasoning operations that 
we execute on FMs (better explained in section 2.3). 
Nevertheless, we consider study the impact of FMs’ 
structure on other kind of eventual reasoning 
operations and if some exist we encourage in future 
works to represent FMs preserving also their 
structure. 

5 RELATED WORKS AND 

DISCUSSION 

Benavides et al. (2005b) present an algorithm to 
transform a FODA model into a CP. They suggest 
considering four aspects during the mapping a feature 
model into a constraint program: (i) the features make 
up the set of variables; (ii)  the domain of each 
variable is the same: {true, false}; (iii) extra–
functional features are expressed as constraints; and 
(iv) every relation of the feature model becomes a 
constraint among its features. Benavides (Benavides, 
2007) extended their previous work to reason about 
constraints specified on feature attributes. Constraints 
such as F1.A = F2.B + F3.C can be specified 
to express that in any configuration, the value of 
attribute A associated with feature F1 should be equal 
to B+C where B and C are attributes respectively 
associated to F2 and F3. This allows to reason on 
extra functional features as defined by Czarnecki et 
al. (2005), i.e. relations between one or more 
attributes of one or different features. Item (ii) shows 
that Benavides’ proposal is a Boolean-based 



 

approach, which limits the use of Integer constraints 
(i.e., cardinalities [min..max], where min and 
max are integer values and not only limited to 0 or 1). 
In addition, their work is limited to FODA-like 
models and not pretend to analyse a systems 
represented through several model views. Thanks to 
our approach it is possible to integrate different views 
of the PL in a global model and then analyse it 
because in CP, constraints representing different 
views can be integrated without a specific order and 
the domain of variables is considered as 
supplementary constraints. Views integration and 
analysis are out of scope of this paper. 

Van Deursen and Klint (2002) proposes to reason 

on feature models by translating them into a logic 

program using predicates such as all( ), one-

of( ), or more-of(), that respectively specify 

mandatory, mutually exclusive, and alternative 

features. For instance constraints: F1 = all 

(F2, F3, F4), F4 = one-of (F5, F6) 

specify that if F1 is included in a configuration, then 

F2, F3, and F4, and therefore either F5 or F6 

should be included too. The use of CP to reason 

about feature model was extended by Batory [2], 

who proposes an approach to transform a feature 

model into propositional formula using the , , , 

 and  operations of propositional logic. This 

enables for example constraints of the form F  A  

B  C meaning that feature F needs features A or B 

or C, or any combination thereof. As in (Van 

Deursen and Klint, 2002), in these constraints, 

features are Boolean variables (either they are 

included or not in a configuration). Thus, our 

approach not also deals with Boolean constraints but 

also Arithmetic constraints, Symbolic constraints 

and Reified constraints over finite-domain variables. 

Integer CP allows us to execute requirements as: 

“the value of attribute F1.A should always be equal 

to F2.B + F3.C” to control the value of integer 

feature attributes, as proposed by (Benavides, 2007). 

As well as to control the number of occurrences of a 

feature, as for instance in the constraint “a product 

should include at least 2 and at most 4 occurrences 

of feature F”. Feature cardinalities were proposed 

by Czarnecki et al. (2005), but constraint analysis on 

feature cardinalities has not yet been tackled to our 

knowledge (Benavides et al., 2010), and there is no 

tool available so far to support the analysis of 

constraints on feature cardinalities and on feature 

attributes in an integrated way. Finite domain 

constraints can also apply on any ENUM PL 

properties, like in the Decision King tool which uses 

them to control decision consistency (Dhungana et 

al., 2007). CP also enables the specification of 

“complex” product requirements (complex 

compared to select or not a feature) under the form 

of additional constraints specified during the 

configuration. For example, our approach supports 

the specification of constraints such as “provide me 

with all possible configurations in which the value of 

feature attributes A1..Ai is in [a..b]”. This is useful 

in staged configuration (Djebbi and Salinesi, 2007). 

Other new kinds of product-specific constraints such 

as: “provide with a configuration in which the 

values of all the attributes associated with features 

F1..Fn are different from each other”, and “provide 

me with all product configurations in which features 

F1...Fn are either all included or all excluded” or 

“provide me with the features that have not the 

chance to be selected (dead features)”. Such 

constraints can be used to query the PL model, that 

is useful for instance to explore configuration 

scenarios, or in a verification activity.  
Recent work by Karataş et al. (2010) proposes a 

transformation from extended feature models to CP. 
This work considers neither the actual semantic of 
features’ attributes, as it considers them as sub-
features that can be selected or not, nor the semantic 
of cardinality-based feature models as it was 
validated by the community (Michel et al., 2011). 
Our work goes a step further by testing our 
transformation patterns on the most complete set of 
feature models publicly available. Additionally, the 
transformation patterns used by Karataş considers 
only boolean formulas to represent extended feature 
models, which reduces the richness of the constraint 
programming paradigm, a richness that we believe is 
necessary to represent complex feature models and 
to support advanced reasoning (e.g. to detect the 
optimal product according to a cost criterion). 
Besides, we detected an error in their CP 
representation regarding optional features. Karataş et 
al.’s representation of optional features allows 
selection of child features without constraining the 
selection of the father feature. 

6 CONCLUSIONS AND FUTURE 

WORK 

In this paper we provide an approach to transform 
FMs with attributes and feature cardinalities into 
constraint programs. To our knowledge, it is the first 
time that a proved representation of these kinds of 
models is presented. Once our 60 FMs represented 
as constraint programs, we applied on them our 
collection of 11 reasoning operations, completely 
automated in our tool VariaMos and the CP solver 
GNU-Prolog (Diaz and Codognet, 2001). We use 



 

GNU-Prolog to reason on FMs, but other solver can 
be used as another alternative. Even if GNU-Prolog 
is not the best solver to implement some reasoning 
operations on very large models (e.g. to calculate the 
number of products or to list all the products of a 
FM), it performed well and showed an excellent tool 
for other kind of reasoning (e.g. determining if a FM 
is void or not, to find dead features, false optional 
features, non attainable domains of a variable or in 
the case of configuration with and without extra-
requirements).  
As future work, we are considering, in one hand, to 
work on other type of reasoning operations on 
product line models. And on the other hand, we 
propose an experimental design to evaluate the 
performance, memory consumption and precision of 
these operation when we implement then in different 
solvers (SAT, CSP, CLP, BDD, ADD, etc.). 
Additionally, we propose to work in multidirectional 
transformation, because our up-to date work only 
considers unidirectional transformations. 
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