Raúl Mazo
email: raulmazo@gmail.com

Camille Salinesi
email: camille.salinesi@univ-paris1.fr

Daniel Diaz
email: daniel.diaz@univ-paris1.fr

Alberto Lora-Michiels
email: albertoloram@gmail.com

TRANSFORMING ATTRIBUTE AND CLONE-ENABLED FEATURE MODELS INTO CONSTRAINT PROGRAMS OVER FINITE DOMAINS

Keywords: Requirement engineering, product line models, feature models, transformation, constraint programming

Product line models are important artefacts in product line engineering. One of the most popular languages to model the variability of a product line is the feature notation. Since the initial proposal of feature models in 1990, the notation has evolved in different aspects. One of the most important improvements allows specify the number of instances that a feature can have in a particular product. This improvement implies an important increase on the number of variables needed to represent a feature model. Another improvement consists in allowing features to have attributes, which can take values on a different domain than the boolean one. These two extensions have increased the complexity of feature models and therefore have made more difficult the manually or even automated reasoning on feature models. To the best of our knowledge, very few works exist in literature to address this problem. In this paper we show that reasoning on extended feature models is easy and scalable by using constraint programming over integer domains. The aim of the paper is double (a) to show the rules for transforming extended feature models into constraint programs, and (b) to demonstrate, by means of 11 reasoning operations over feature models, the usefulness and benefits of our approach. We evaluated our approach by transforming 60 feature models of sizes up to 2000 features and by comparing it with 2 other approaches available in the literature. The evaluation showed that our approach is correct, useful and scalable to industry size models.

INTRODUCTION

Requirements Engineering is the process of discovering system purpose by identifying stakeholders and their needs, and documenting these in a way that is amenable to reasoning, communication, and subsequent implementation [START_REF] Nuseibeh | Requirements Engineering: A Roadmap[END_REF]. When this process is achieved in the context of Product Lines (PL), its complexity and difficulty is much higher since there are several products to consider, which imply to manage the relationships of communality and variability between them. One of the most popular notations to specify the common and variable requirements of a software product line is the Feature Models (FMs). In the context of PLs, FMs are used for product derivation, variability reasoning and code generation [START_REF] Kang | Feature-Oriented Domain Analysis (FODA) Feasibility Study[END_REF], [START_REF] Van Deursen | Domain-specific language design requires feature descriptions[END_REF]. In these contexts, FMs are usually transformed to executable code in order to reason on them [START_REF] Batory | Feature models, grammars, and propositional formulae[END_REF], (Benavides et al., 2005), [START_REF] Benavides | On the Automated Analysis of Software Product Lines Using Feature Models. A Framework for Developing Automated Tool Support[END_REF], [START_REF] Benavides | Automated Analysis of Feature Models 20 Years Later: A Literature Review[END_REF], [START_REF] Van Deursen | Domain-specific language design requires feature descriptions[END_REF], [START_REF] Karataş | Mapping Extended Feature Models to Constraint Logic Programming over Finite Domains[END_REF], (Salinesi et al., 2010). Since their first introduction in 1990 as a part of the Feature-Oriented Domain Analysis (FODA) method [START_REF] Kang | Feature-Oriented Domain Analysis (FODA) Feasibility Study[END_REF], several extensions have been proposed to improve and enrich the expressiveness of FMs. The first one was the introduction in the basic FODA notation of cross-tree dependencies (requires and excludes), to put constraints on features. The second and the third extensions consisted in the introduction of attributes [START_REF] Diaz | Design and Implementation of the GNU Prolog System[END_REF], (Benavides et al. 2005b) and cardinalities (feature and group cardinalities) [START_REF] Czarnecki | Formalizing cardinality-based feature models and their specialization[END_REF], [START_REF] Djebbi | RED-PL, a Method for Deriving Product Requirements from a Product Line Requirements Model[END_REF], [START_REF] Van Hentenryck | Constraint Satisfaction in Logic Programming[END_REF]. FMs with these three extensions are called extended feature models. Despite their pertinence for the industry, most of the reasoning approaches on FMs do not consider the last two extensions, or at best partially [START_REF] Benavides | Automated Analysis of Feature Models 20 Years Later: A Literature Review[END_REF]. In this paper we propose an approach based on constraint programming that fills this gap by handling reasoning on extended FMs.

In the last few years, Constraint Programming (CP) has attracted attention among experts from many areas because of its potential for solving hard real life problems. Not only it is based on a strong theoretical foundation but it is also attracting a widespread commercial interest as well, in particular, in areas of modelling heterogeneous optimisation and satisfaction problems. In the PL domain, several authors have proposed to use CP to represent FMs but without attributes and cardinalities [START_REF] Batory | Feature models, grammars, and propositional formulae[END_REF], (Benavides et al., 2005) or with lacks on quality representation and implementation [START_REF] Karataş | Mapping Extended Feature Models to Constraint Logic Programming over Finite Domains[END_REF].

The approach presented in this paper uses constraint programming to represent extended feature models with the purpose of reasoning on them by using an existing constraint solver. Details about reasoning operations on FMs are out of scope of this paper. We begin describing extended feature models and developing a relevant example to illustrate the transformation process of extended FMs into constraint programs and the subsequent reasoning operations that can be executed on them. We finally present an initial evaluation of our approach. In our evaluation we transform to CP 60 feature models of sizes up to 2000 features. This transformation has been compared with two other approaches from the literature. The results obtained by this experiment show that our approach is pertinent because it fixes errors of one of the existing approaches. The results also show that our approach is (i) scalable to important size models, which can be transformed into CPs in only few seconds; and (ii) correct, compared with the already state of the art approaches [START_REF] Benavides | On the Automated Analysis of Software Product Lines Using Feature Models. A Framework for Developing Automated Tool Support[END_REF]), (Mendoça et al., 2009). We conclude the paper with a discussion of related works, then of open issues and we conclude with an outlook on future works.

BACKGROUND AND MOTIVATION

Extended Feature Models

A FM defines the valid combinations of features in a SPL, and is depicted as a graph-like structure in which nodes represent features, and edges the relationships between them [START_REF] Kang | FOPLE -Feature Oriented Product Line Software Engineering: Principles and Guidelines[END_REF]. A feature is a prominent or distinctive user-visible aspect, quality, or characteristic of a software system [START_REF] Kang | Feature-Oriented Domain Analysis (FODA) Feasibility Study[END_REF]. A feature can have zero or more attributes [START_REF] Van Deursen | Domain-specific language design requires feature descriptions[END_REF], [START_REF] Ziadi | Towards a UML Profile for Software Product Lines[END_REF]. Cardinality-based feature models [START_REF] Czarnecki | Formalizing cardinality-based feature models and their specialization[END_REF] allow specifying individual cardinalities for each feature and group cardinalities grouping bundles of features. In this paper, we use the semantic of feature models proposed by [START_REF] Schobbens | Generic semantics of feature diagrams[END_REF] and cardinality-based feature models proposed by [START_REF] Michel | A Formal Semantics for Feature Cardinalities in Feature Diagrams[END_REF]. Components of a FM can be related among them by means of the following relationships:  Feature cardinality: Is represented as a sequence of intervals [min.

.max] determining the number of instances of a particular feature that can be part of a product. Each instance is called a clone.  Attribute: Although there is no consensus on a notation to define attributes, most proposals agree that an attribute is a variable with a name, a domain, and a value (consistent with the domain) at a given configuration time.  Father-child relationship, there are two kinds:

o Mandatory: Given two features F1 and F2, F1 father of F2, a mandatory relationship between F1 and F2 means that if the F1 is selected, then F2 must be selected too and vice versa. o Optional: Given two features F1 and F2, F1 father of F2, an optional relationship between F1 and F2 means that if F1 is selected then F2 can be selected or not. However, if F2 is selected, then F1 must also be selected. o Requires: Given two features F1 and F2, F1

requires F2 means that if F1 is selected in product, then F2 has to be selected too.

Additionally, it means that F2 can be selected even when F1 is not. o Exclusion: Given two features F1 and F2, F1 excludes F2 means that if F1 is selected then F2 cannot to be selected in the same product. This relationship is bi-directional: if F2 is selected, then F1 cannot to be selected in the same product.  Group cardinality: A group cardinality is an interval denoted <n..m>, with n as lower bound and m as upper bound limiting the number of child features that can be part of a product when its parent feature is selected. If one of the child features is selected, then the father feature must be selected too.

As a running example, we illustrate cardinality and non-cardinality based feature models with a hypothetical case of a Movement Control System (MCS) of a car. This example is a simplified extract of a real FM developed with one of our industrial partners. A more complete extract of the model is explained in (Salinesi et al., 2010b) and (Salinesi et al., 2011). In Figure 1, we present the cardinalitybased FM of the allocation of hardware resources for a car MCS. A MCS is composed of one or several sensors, one or two processors and one or two slots of internal memory. Sensors are used to measure the speed and position of a car by means of two features called Speed Sensor and Position Sensor, respectively. Speed Sensor is represented as a mandatory feature (with a feature cardinality [1..1]). And Position Sensor is represented as an optional feature (with a feature cardinality [0..4]). These two features are related by means of a requires relationship. To compute the location of a car, the MCS uses one or two processors, each one associated by means of a mandatory relationship with one or two slots of Internal Memory. Internal memory can take the values of 128, 512 or 1024 as specified in its attribute Size. Internal Memory [1..2] Size:{128,512,1024}

Figure 1. Example of feature model. Extract of an allocation of resources for a movement control system of a car.

Constraint Programming in a Nutshell

Constraint Programming (CP) emerged in the 1990's as a successful paradigm to tackle complex combinatorial problems in a declarative manner [START_REF] Van Hentenryck | Constraint Satisfaction in Logic Programming[END_REF]. CP extends programming languages with the ability to deal with logical variables of different domains (e.g. integer, real or boolean) and specific declarative relations between these variables called constraints. These constraints are solved by specialized algorithms, adapted to their specific domains and therefore much more efficient than generic logic-based engines. A constraint is a logical relationship among several variables, each one taking a value in a given domain of possible values. A constraint thus restricts the possible values that variables can take.

A Constraint Satisfaction Problem (CSP) is defined as a triple (X, D, C), where X is a set of variables, D is a set of domains, i.e. finite sets of possible values (one domain for each variable), and C a set of constraints restricting the values that the variables can simultaneously take. Classical CSPs usually consider finite domains for the variables (integers) and solvers propagation-based methods [START_REF] Bessiere | Constraint propagation[END_REF], [START_REF] Van Hentenryck | Constraint Satisfaction in Logic Programming[END_REF]. Such solvers keep an internal representation of variable domains and reduce them monotonically to maintain a certain degree of consistency with reference to the constraints.

In modern Constraint Programming languages [START_REF] Diaz | Design and Implementation of the GNU Prolog System[END_REF], [START_REF] Van Hentenryck | Constraint Satisfaction in Logic Programming[END_REF], many different types of constraints exist and are used to represent real-life problems: arithmetic constraints such as X + Y < Z, symbolic constraints like atmost(N,[X1,X2,X3],V) which means that at most N variables among [X1,X2,X3] can take the value V, global constraints like alldifferent(X1,X2,…, Xn)meaning that all variables should have different values, and reified constraints that allow to reason about the truth-value of a constraint. Solving constraints consists in (a) reducing the variable domains by propagation techniques that will eliminate inconsistent value within domains, then (b) finding values for each constrained variable in a labeling phase, that is, iteratively grounding variables (fixing a value for a variable) and propagating its effect onto other variable domains (by applying again the same propagation-based techniques). The labeling phase can be improved by using heuristics concerning the order in which variables are considered as well as the order in which values are tried in the variable domains. See [START_REF] Diaz | Design and Implementation of the GNU Prolog System[END_REF] and [START_REF] Schulte | Efficient constraint propagation engines[END_REF] for more details.

Motivating Scenario

The graphical representation of FMs makes reasoning difficult. Proposals have thus been made to represent FMs in languages that allow automatic reasoning [START_REF] Batory | Feature models, grammars, and propositional formulae[END_REF], (Benavides et al., 2005), [START_REF] Czarnecki | Formalizing cardinality-based feature models and their specialization[END_REF], [START_REF] Van Deursen | Domain-specific language design requires feature descriptions[END_REF], (Salinesi et al., 2010). Our approach uses thi strategy and uses constraint programming as the language to represent models and configure, analyse and verify them. Based on a recent literature review of analysis operations [START_REF] Benavides | Automated Analysis of Feature Models 20 Years Later: A Literature Review[END_REF] and on our previous works (Mazo et al., 2011), (Salinesi et al., 2010) on product line models verification, we implemented a collection of reasoning operations. These reasoning operations are completely automated in our tool VariaMos. VariaMos is an Eclipse plug-in that implements the following operations (see [START_REF] Benavides | Automated Analysis of Feature Models 20 Years Later: A Literature Review[END_REF] for detailed definitions of these operations):  Analysis of FMs satisfiability. A FM is satisfiable if at least one product is represented by the FM. This operation may be helpful for managers and engineers because a PLM not allowing configure product is a useless model.  Calculating the number of valid products represented by the FM. This operation may be useful for determining the richness of a FM. For instance, in our running example, 433 products can be configured.  Calculating product line commonality. This is the ratio between the number of products in which the set of variables is present and the number of products represented in the FM. Constraint programming is efficient in solving optimization problems. Our approach supports the specification and analysis of goals such as "identify the optimal configuration with respect to cost (min goal) and benefit (max goal) feature attributes" to detect "optimal" products and support decision making during the configuration activity as we presented in previous works such as [START_REF] Djebbi | RED-PL, a Method for Deriving Product Requirements from a Product Line Requirements Model[END_REF], (Salinesi et al., 2010b).

CONVERTING FEATURE MODELS TO CONSTRAINT PROGRAMS

Both, semantic and structure of product line models can be specified as constraint logic programs. In this paper, we are interested in represent the semantic of FMs by means of constraint programs and not the structure as do Mazo et al. (2011b). Thus, the semantic of a product line model can be specified as a constraint program (Salinesi et al., 2010b)

P 1 ⇒ (C i ⇒ C) for i=1,…,cn ˄ P 2 ⇒ (C i ⇒ C) for i=1,…,cn ˄ … P pn ⇒ (C i ⇒ C) for i=1,…,cn ˄ C ⇒ (cm ≤ C 1 + C 2 + … + C n ≤ cn)
And to finish, we represent the relationship between P and C according to its type. Mandatory when cm > 0 : P ⇔ C and optional when cm = 0 : C ⇒ P This means that in a particular configuration, when a clone of the feature P is chosen, at least cm and at most cn clones of the child feature C must be selected and if at least one clone of C is selected, C must be selected as well. In this paper we use the semantic of cardinality-based FMs proposed by [START_REF] Michel | A Formal Semantics for Feature Cardinalities in Feature Diagrams[END_REF].

Let us use the previous rules to represent our running example in Figure 1. The first step is to create a list with the CP variables of each feature according to its feature cardinality and its attributes, as follows:

[MovementControlSystem, SpeedSensor, PositionSensor, PositionSensor1, PositionSensor2, PositionSensor3, PositionSensor4, Processor, Processor1, Processor2, InternalMemory1, InternalMemory2, Size]
The second step is to constrain the domains of each CP variable created in step one, according to its corresponding domain, and the value 0 to indicate that the variable has the possibility to not be chosen in a particular product:

[MovementControlSystem, SpeedSensor, PositionSensor, PositionSensor1, PositionSensor2, PositionSensor3, PositionSensor4, Processor, Processor1, Processor2, InternalMemory1, InternalMemory2] ∈ {0,1} ˄ Size ∈ {0, 128,512,1024}
The next step is to constrain the relationship among a feature and its clones as a constraint where each clone has the possibility to be selected or not, but if on clone is selected the cloned feature must be selected as well:

PositionSensor1 ⇒ PositionSensor ˄ PositionSensor2 ⇒ PositionSensor ˄ PositionSensor3 ⇒ PositionSensor ˄ PositionSensor4 ⇒ PositionSensor ˄ Processor1 ⇒ Processor ˄ Processor2 ⇒ Processor ˄ InternalMemory1 ⇒ InternalMemory ˄ InternalMemory2 ⇒ InternalMemory
Next, we constrain the clones of each feature according to the corresponding feature cardinality:

PositionSensor ⇒ (0 ≤ PositionSensor1 + PositionSensor2 + PositionSensor3+PositionSensor4 ≤ 4)˄ Processor ⇒ (1 ≤ Processor1 + Processor2 ≤ 2) ˄ InternalMemory ⇒ (1 ≤ InternalMemory1 + InternalMemory2 ≤2)
Next we map the father-child relationships among features to the following constraints. Features where their feature cardinality has the value 0 (e.g., Position Sensor with a feature cardinality [0..4]), must be represented as optional features.

MovementControlSystem ⇔SpeedSensor ˄ MovementControlSystem ⇔ Processor ˄ Processor ⇔ InternalMemory ˄ (MovementControlSystem ⇒ PositionSensor ≥ 0) ˄ (PositionSensor ⇒ MovementControlSystem)
Note that we related the variable Processor, and not its instances, with InternalMemory. It is because Processor and its instances are related with a double implication, then every affectation of Processor will affect in the same way its instances and vice versa. We continue with the relations among features and their attributes:

InternalMemory ⇔ Size > 0
Indicating that if the InternalMemory is selected in a product (= 1, implicit), then the value of Size must be also selected (> 0) and vice versa. Finally, we map the requires and excludes (there is no excludes relations in the model of Figure 1) relations to their constraints:

SpeedSensor ⇒ PositionSensor

IMPLEMENTATION AND EVALUATION

Feasibility

With regards to the source of the FMs to transform into constraint programs, one of two strategies can be used to implement this transformation. The first strategy consists on using an Application Programming Interface (API) to navigate on the FM tree structure and recuperate each feature and its associated relationships. Each time we gather a feature (with or without attributes) or a relationship between two features, we transform them into constraint programs by using the transformation rules presented in this paper. The second approach consists on using a transformation engine to transform original FMs into CPs. This approach must be used when no API to navigate in the FMs is available and when we dispose of the well-defined meta-models of the input and the target language. Our transformation patterns were implemented as Atlas Transformation Language (ATL) rules and the output models were transformed from XML Metadata Interchange (XMI) files to CPs. Both strategies are automated in our tool VariaMos [START_REF] Mazo | VariaMos Eclipse plug-in[END_REF] and their use in our experiment are explained below.

Fist strategy; by using a navigation API

48 of our 60 FMs we used to test our approach come from SPLOT (Mendça et al., 2009). So, to implement the first transformation strategy, we used the Mendonca's parser for SPLOT's XML-based feature models into constraint programs.

Second strategy; by using a transformation engine

12 of our 60 FMs are real world examples from our passed and on-going industrial collaboration. These models, with sizes up to 180 features, do not provide any particular API to navigate on them, so, the second strategy must be used to convert them into constraint programs.

This strategy implies the use of two metamodels, the meta-model of the source language and the meta-model of the target language. The metamodel we used for the source language, it is, for the FM language is presented in (Salinesi et al., 2010). And the meta-model to represent the CP language is depicted in Figure 2. Two examples of ATL rules allowing transform features into CP variables and group cardinality boundaries into CP constants are respectively presented as follows. Not all rules are presented here for the sake of place. The Feature2Variable rule takes each source feature and transforms it into a variable. In the modus operandi of this rule, the feature's name is affected to the variable's name and the haveDomain variables' relationship is the collection of the haveCardinality features' relationship. If the feature to be transformed has a cardinality, then the subordinated rule (lazy rule) Cardinality2Domain is called to represent the correspondig cardinality as a domain of the feature.

While ATL generates XMI files we are still not at a level of an exploitable specification. To be exploitable, the XMI files must be transformed into a file that can be interpreted by a constraint solver, in our case GNU-Prolog, but we encourage the use other solvers and compare the results obtained from them as part of a future work. In our approach, this is achieved by means of XPath queries over the resulted XMI file. This approach is completely automated by means of our Eclipse plug-in VariaMos [START_REF] Mazo | VariaMos Eclipse plug-in[END_REF]. VariaMos creates a new file that contains a GNU-Prolog program embedding the XMI file. The new CP representation of the FM is then ready to be executed and analysed by the GNU Prolog solver using a series of operations that can be passed dynamically to the solver. A snapshot of the VariaMos interface to translate FMs into CPs is presented in Figure 3.

Scalability

Both transformation strategies were tested in a laptop computer with Windows vista 32 bits and with the following characteristics: processor AMD Turion(tm) X2 Dual-Core Mobile RM-74 of 2,20 MHz and 4,00 GB of RAM.

Transformation using the navigation API strategy

Table 1 shows the average results of our experiment. These results show that our transformation rules can be executed in a fast and interactive way by using a well known API to navigate on FMs.

Transformation using the engine transformation strategy

Table 2 reports the average time of our experiment. These figures show that, even for the largest industrial models considered, our proposal is scalable and interactive for an engineer in a normal work environment (no need of additional hardware or software resources)

Usability

Once the 48 FMS transformed into Benavides et al.'s (2005), (2005b) and our CP representations, we executed a series of reasoning operations on these models. These operations were executed in our VariaMos tool. The results show an average reduction of 45% in the execution time of derivation (e.g., find a product that satisfies given configuration requirements), verification (e.g., find dead features and void FMs) and analysis operations (e.g., find the number of products). Figure 4 shows a time comparison needed to get a product from a FM transformed to a CP using both proposals. In Figure 4, we use a log scale to distribute the number of features (X axis) in order to avoid overlapping of results on models from 10 to 100 features. This figure indicates that for the same study conditions there our transformation rules seem to have a better performance. Finally our approach was also compared to Karataş's one [START_REF] Karataş | Mapping Extended Feature Models to Constraint Logic Programming over Finite Domains[END_REF]. Of course, to perform this comparison, we had to correct the error we identified in Karataş' algorithm in order to preserve the semantic of FMs. This change was necessary to ensure that both representations were totally equivalent, by representing the same products from each FM. Each one of the 12 FMs transformed in both representations was analyzed using VariaMos tool. As result of our experiment we have a benefit of average 58% in the execution time of each configuration operation -see section 2.3. This gain is due to the fact that in our representation algorithm we avoid the combinatorial explosion on group cardinalities, exclusive relationships and additional constraints, by using arithmetic operations. For instance, to constrain the use of only one feature, among A, B and C in a product, we use the expression A+B+C=1 instead of: (¬A˄¬B˄C)  (¬A˄B˄¬C)  (A˄¬B˄¬C). And, in the kind of solver we are using, a CP over integer domain solver, the first formula is executed faster than the second one.

Correctness

The approach that we present in this paper was compared with the transformation algorithm of Benavides et al. (2005b). We tested the correctness of our approach by means of two experiments. The first one consists in comparing the number of products that could be derived from our collection of FMs represented with Benavides' rules and the rules presented in this paper. In both cases, the number of products was equal. The second one consisted in taking 3 models randomly, manually derive all the possible products from the FM, then compare these results with the results obtained using VariaMos. For practical reasons, we only considered models with less than 50 features from our initial sample. It is worth noting that in our comparison we checked, by manual inspection, that not only the numbers of products, but also the products themselves, were the same. These results allow us to conclude that our CP representation of FMs preserves the semantic of models. It should be noticed that in our approach, the structure of FMs is not preserved because it is not necessary for the 11 reasoning operations that we execute on FMs (better explained in section 2.3). Nevertheless, we consider study the impact of FMs' structure on other kind of eventual reasoning operations and if some exist we encourage in future works to represent FMs preserving also their structure.

RELATED WORKS AND DISCUSSION

Benavides et al. (2005b) [START_REF] Van Deursen | Domain-specific language design requires feature descriptions[END_REF] proposes to reason on feature models by translating them into a logic program using predicates such as all(), oneof(), or more-of(), that respectively specify mandatory, mutually exclusive, and alternative features. For instance constraints: F1 = all (F2, F3, F4), F4 = one-of (F5, F6) specify that if F1 is included in a configuration, then F2, F3, and F4, and therefore either F5 or F6 should be included too. The use of CP to reason about feature model was extended by Batory [2], who proposes an approach to transform a feature model into propositional formula using the , , ,  and  operations of propositional logic. This enables for example constraints of the form F  A  B  C meaning that feature F needs features A or B or C, or any combination thereof. As in [START_REF] Van Deursen | Domain-specific language design requires feature descriptions[END_REF], in these constraints, features are Boolean variables (either they are included or not in a configuration). Thus, our approach not also deals with Boolean constraints but also Arithmetic constraints, Symbolic constraints and Reified constraints over finite-domain variables.

Integer CP allows us to execute requirements as: "the value of attribute F1.A should always be equal to F2.B + F3.C" to control the value of integer feature attributes, as proposed by [START_REF] Benavides | On the Automated Analysis of Software Product Lines Using Feature Models. A Framework for Developing Automated Tool Support[END_REF]. As well as to control the number of occurrences of a feature, as for instance in the constraint "a product should include at least 2 and at most 4 occurrences of feature F". Feature cardinalities were proposed by [START_REF] Czarnecki | Formalizing cardinality-based feature models and their specialization[END_REF], but constraint analysis on feature cardinalities has not yet been tackled to our knowledge [START_REF] Benavides | Automated Analysis of Feature Models 20 Years Later: A Literature Review[END_REF], and there is no tool available so far to support the analysis of constraints on feature cardinalities and on feature attributes in an integrated way. Finite domain constraints can also apply on any ENUM PL properties, like in the Decision King tool which uses them to control decision consistency [START_REF] Dhungana | DecisionKing: A Flexible and Extensible Tool for Integrated Variability Modeling[END_REF]. CP also enables the specification of "complex" product requirements (complex compared to select or not a feature) under the form of additional constraints specified during the configuration. For example, our approach supports the specification of constraints such as "provide me with all possible configurations in which the value of feature attributes A1..Ai is in [a..b]". This is useful in staged configuration [START_REF] Djebbi | RED-PL, a Method for Deriving Product Requirements from a Product Line Requirements Model[END_REF]. Other new kinds of product-specific constraints such as: "provide with a configuration in which the values of all the attributes associated with features F1..Fn are different from each other", and "provide me with all product configurations in which features F1...Fn are either all included or all excluded" or "provide me with the features that have not the chance to be selected (dead features)". Such constraints can be used to query the PL model, that is useful for instance to explore configuration scenarios, or in a verification activity.

Recent work by [START_REF] Karataş | Mapping Extended Feature Models to Constraint Logic Programming over Finite Domains[END_REF] proposes a transformation from extended feature models to CP. This work considers neither the actual semantic of features' attributes, as it considers them as subfeatures that can be selected or not, nor the semantic of cardinality-based feature models as it was validated by the community [START_REF] Michel | A Formal Semantics for Feature Cardinalities in Feature Diagrams[END_REF]. Our work goes a step further by testing our transformation patterns on the most complete set of feature models publicly available. Additionally, the transformation patterns used by Karataş considers only boolean formulas to represent extended feature models, which reduces the richness of the constraint programming paradigm, a richness that we believe is necessary to represent complex feature models and to support advanced reasoning (e.g. to detect the optimal product according to a cost criterion). Besides, we detected an error in their CP representation regarding optional features. Karataş et al.'s representation of optional features allows selection of child features without constraining the selection of the father feature.

CONCLUSIONS AND FUTURE WORK

In this paper we provide an approach to transform FMs with attributes and feature cardinalities into constraint programs. To our knowledge, it is the first time that a proved representation of these kinds of models is presented. Once our 60 FMs represented as constraint programs, we applied on them our collection of 11 reasoning operations, completely automated in our tool VariaMos and the CP solver GNU-Prolog [START_REF] Diaz | Design and Implementation of the GNU Prolog System[END_REF]. We use GNU-Prolog to reason on FMs, but other solver can be used as another alternative. Even if GNU-Prolog is not the best solver to implement some reasoning operations on very large models (e.g. to calculate the number of products or to list all the products of a FM), it performed well and showed an excellent tool for other kind of reasoning (e.g. determining if a FM is void or not, to find dead features, false optional features, non attainable domains of a variable or in the case of configuration with and without extrarequirements). As future work, we are considering, in one hand, to work on other type of reasoning operations on product line models. And on the other hand, we propose an experimental design to evaluate the performance, memory consumption and precision of these operation when we implement then in different solvers (SAT, CSP, CLP, BDD, ADD, etc.). Additionally, we propose to work in multidirectional transformation, because our up-to date work only considers unidirectional transformations.

Figure 2 .

 2 Figure 2. CP meta-model. According to CP meta-model, a CP is a composition of constraints and variables. Variables are related among them in one or several constraints in the context of a constraint program and can or not have a domain, variables that does not have domain are considered as Booleans.Two examples of ATL rules allowing transform features into CP variables and group cardinality boundaries into CP constants are respectively presented as follows. Not all rules are presented here for the sake of place.

Figure 3 .

 3 Figure 3. Graphical user interface to transform FMs into constraint programs.

Figure 4 .

 4 Figure 4. Time (in milliseconds) needed to obtain a product from a FM. 48 FMs up to 2000 features, transformed to CP formulas using existing rules and ours.

 product and #products denotes the total number of products represented by the FM. In our running example Homogeneity is equal to 1.  Detection of errors in a FM. Errors are undesirable situations in a FM, as for instance features that can never be used in a configuration (dead features), redundant features and constraints and false optional features as in Position Sensor in our running example. False optional features are represented as optional (feature cardinality [0..4] for Position Sensor) but are present in all products of the FM (because is required by a feature like Speed Sensor which appears in all configurations).

	value to a collection of features. In our running
	example, if we select two clones of Position
	Sensor, the number of products with this
	requirement is 108.			
	 Specifying external requirements specifications
	for configurations using constraints (for
	instance, definition of a maximal or minimal
	value, definition of one dependent value among
	to variables such as Size > 512 ⇒
	2*Position Sensor)			
	The following application level analysis operations
	was implemented too:			
	 Checking if a product belongs to the set of
	products represented by the FM. This operation
	may be useful to determine whether a given
	product is available in a software product line.
	For instance, P1 = {one Speed Sensor,
	two	Position	Sensors;	one
	Processor; one Internal Memory
	of 128; one Internal Memory of
	1024}, is a valid product of our FM used as
	running example, but P2 = {three Speed
	Sensor, two Position Sensors;
	one	Processor;	one	Internal
	Memory of 128; one Internal	two	Position	Sensors;	one
	Memory of 1024} is not.			Processor; one Internal Memory
						of 128; one Internal Memory of
						1024}
						 Obtaining the list of all valid products
						represented by the FM, if any exist. This
						operation may be useful to compare two product
						line models. For the sake of space, the
						comprehensive list cannot be presented in this
						paper.
						 Checking validity of a configuration. A
						configuration is a collection of features and may
						be partial or total. A valid partial configuration
						is a collection of features respecting the
						constraints of the FM but not necessary
						representing a valid product. A total
						configuration is a collection of features
						respecting the constraints of a FM and where no
						more features need to be added to conform a
						valid product. This operation may be useful to
						determine if there are not contradictions in a
						collection of features. In our running example,
						the product P = {one Position
					In	Sensor;	two	Processor;	one
	our running example Commonality is equal to 1.	Internal Memory of 512} is not valid
	 Calculating Homogeneity. By definition	because the feature Speed Sensor is mandatory
	Homogeneity = 1 -(#unicFeas /	(feature cardinality [1..1]).
	#products).				 Executing a dependency analysis. It looks for all
						the possible solutions after assigning some fix

where #unicFeas is the number of unique features in one

The following operations with respect to configuration of PLMs:  Finding a valid product if any. A valid product is a product, derived from the FM, that respects all the FM's constraints. For instance, finding a product of the MCS example depicted previously in the FM of Figure

1

could retrieve the product P1 = {one Speed Sensor,

 Each attribute is represented as a CP variable, the domain of the attribute belongs the domain of the CP variable.  Each feature cardinality [m..n] determines (i) a collection of n variables associated to the feature of which this cardinality belongs; and (ii) a constraint restricting the minimum (m) and the maximum (n) number of variables that can belong to a product in a certain moment.  The domains of all variables are finite and can be composed of integer values. When a variable takes the value of zero, it means that the variable is not selected, when a variable takes another value of its domain (different to zero) the variable is considered as selected.  Every relationship is implemented as a constraint. Let P be a feature and A 1 , A 2 , ..., A n a collection of attributes of P, each one with a particular domain D 1 , D 2 , ..., D n , respectively. The constraints to represent this case are: P ⇔ A i > 0, A i ∈ D i for i=1…n.  Requires: Let P and C be two features, where P requires C. If P has a feature cardinality [m..n] with {P 1 , P 2 , ..., P n } ∈ {0,1} clones of P, the constraint is: P 1 ⇒ C, P 2 ⇒ C, ..., P n ⇒ C. On the contrary, if P does not have feature cardinality, the equivalent constraint is: P ⇒ C, which means that if P is selected, C has to be selected as well, but not vice versa.  Exclusion: Let P and C be two features, where P excludes C. If P has a feature cardinality [m..n] with {P 1 , P 2 , ..., P n } ∈ {0,1} clones of P, the constraint is: P 1 * C = 0, P 2 * C = 0, ..., P n * C = 0. In the contrary, if P does not have feature cardinality, the equivalent constraint is: P * C = 0. Which means that if P is selected (value > 0), then C must be equal to zero, also both can be not selected (equal to zero).  Group cardinality: Let C 1 , C 2 , …, and C k be features with domain {0,1}, with the same parent P, and <m, n> the group cardinality in a decomposition with group cardinality. The equivalent constraint is: P ⇒ (m ≤ C 1 + C 2 + … + C k ≤ n), which means that at least m and at most n children features must be selected. Note that the dependencies of C 1 , C 2 , …, and C k with their parent (with feature cardinality or not) are constrained by means of the following fatherchild relationship.

		assume. A variable in a PLM has a domain of
		values, and the result of the configuration process is
		to provide it a value. In particular, feature models
		are represented in CP with (i) variables, that
		correspond to features, attributes, and instances of
		features defined by a feature cardinality; (ii)
		domains of variables; and (iii) with constraints for
		the relationships among the variables. These
		constraints can be boolean, arithmetic, symbolic and
		reified. The representation of feature models as
		constraint programs applies the following principles:
		 Each feature is represented as a boolean (0,1)
		CP variable.
	corresponding The constrains for the clones of P are: to a clone P i ⇒ P for i=1,…,pn And the constraints among each clone of P and of C.	 Our constraint program representation of feature
	the clones of C are:	models follows the next mapping rules:
	by	
	means of: (i) a set of variables X={x 1 ,...,x n };	
	(ii) for each variable x i , a finite set D i of possible	
	values (its domain); and (iii) a set of constraints	
	restricting the values that they can simultaneously	

 Feature cardinality: Let P be a feature with a feature cardinality [m, n], then we create a CP variable P, a collection of n CP variables, one for each possible clone of P and an association between P and each of its clines. It is: {P, P 1 , P 2 , ..., P n } ∈ {0,1} ˄ (P ⇒ P i ≥ 0) ˄ (P i ⇒ P) for i=1,…,n  Attribute:  Father-child relationship: Let C be a feature with a feature cardinality [cm, cn] and a parent P with feature cardinality [pm, pn]. Then we generate by each clone of P ({P 1 , P 2 , ..., P pn } ∈ {0,1}), cn boolean CP variables {C 1 , C 2 , ..., C cn } ∈ {0,1}, each one

Table 1 :

 1 Average time to transform FMs into CPs using SPLOT.

	Number of features	Time to transform FMs
		into CPs
	<40	< 1sec
	40 to 100	1 sec
	101 to 500	1,5 sec
	1000	2 sec
	2000	3,5 sec
	5000	16 sec
	10000	70 sec

Table 2 :

 2 Average time to transform FMs into CPs using ATL engine.

	Number of features	Time to transform FMs into XMI CPs	Time to transform XMI CPs into Text CPs
	<50	<1 sec	< 1sec
	50 to 100	3sec	<1 sec
	101 to 150	5sec	1sec
	152 to 180	6,5 sec	1 sec

 limits the use of Integer constraints (i.e., cardinalities [min..max], where min and max are integer values and not only limited to 0 or 1).

	approach, which In addition, their work is limited to FODA-like
	models and not pretend to analyse a systems
	represented through several model views. Thanks to
	our approach it is possible to integrate different views
	of the PL in a global model and then analyse it
	because in CP, constraints representing different
	views can be integrated without a specific order and
	the domain of variables is considered as
	supplementary constraints. Views integration and
	analysis are out of scope of this paper.
	present an algorithm to
	transform a FODA model into a CP. They suggest
	considering four aspects during the mapping a feature
	model into a constraint program: (i) the features make
	up the set of variables; (ii) the domain of each
	variable is the same: {true, false}; (iii) extra-
	functional features are expressed as constraints; and
	(iv) every relation of the feature model becomes a
	constraint among its features. Benavides (Benavides,
	2007) extended their previous work to reason about
	constraints specified on feature attributes. Constraints
	such as F1.A = F2.B + F3.C can be specified
	to express that in any configuration, the value of
	attribute A associated with feature F1 should be equal
	to B+C where B and C are attributes respectively
	associated to F2 and F3. This allows to reason on
	extra functional features as defined by Czarnecki et
	al. (2005), i.e. relations between one or more
	attributes of one or different features. Item (ii) shows
	that Benavides' proposal is a Boolean-based