
HAL Id: hal-00707545
https://hal.science/hal-00707545v1

Submitted on 13 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conformance Checking with Constraint Logic
Programming: The Case of Feature Models

Raul Mazo, Roberto Erick Lopez-Herrejon, Camille Salinesi, Daniel Diaz,
Alexander Egyed

To cite this version:
Raul Mazo, Roberto Erick Lopez-Herrejon, Camille Salinesi, Daniel Diaz, Alexander Egyed. Confor-
mance Checking with Constraint Logic Programming: The Case of Feature Models. In 35th IEEE
International Computer Software and Applications Conference (COMPSAC), Jul 2011, Munich, Ger-
many. �hal-00707545�

https://hal.science/hal-00707545v1
https://hal.archives-ouvertes.fr

Conformance Checking with Constraint Logic Programming:

The Case of Feature Models

Raúl Mazo1,3, Roberto E. Lopez-Herrejon2, Camille Salinesi1, Daniel Diaz1, Alexander Egyed2
1 CRI, Panthéon Sorbonne University, Paris, France

2 Institute for Systems Engineering and Automation, Johannes Kepler University, Linz, Austria
3 Ingeniería de Sistemas, University of Antioquia, Medellín, Colombia

raulmazo@gmail.com, {camille.salinesi, daniel.diaz}@univ-paris1.fr, {roberto.lopez, alexander.egyed}@jku.at

Abstract— Developing high quality systems depends on

developing high quality models. An important facet of model

quality is their consistency with respect to their meta-model.

We call the verification of this quality the conformance

checking process. We are interested in the conformance

checking of Product Line Models (PLMs). The problem in the

context of product lines is that product models are not created

by instantiating a meta-model: they are derived from PLMs.

Therefore it is usually at the level of PLMs that conformance

checking is applied. On the semantic level, a PLM is defined as

the collection of all the product models that can be derived

from it. Therefore checking the conformance of the PLM is

equivalent to checking the conformance of all the product

models. However, we would like to avoid this naïve approach

because it is not scalable due to the high number of models. In

fact, it is even sometimes infeasible to calculate the number of

product models of a PLM. Despite the importance of PLM

conformance checking, very few research works have been

published and tools do not adequately support it. In this paper,

we present an approach that employs Constraint Logic

Programming as a technology on which to build a PLM

conformance checking solution. The paper demonstrates the

approach with feature models, the de facto standard for

modeling software product lines. Based on an extensive

literature review and an empirical study, we identified a set of

9 conformance checking rules and implemented them on the

GNU Prolog constraints solver. We evaluated our approach by

applying our rules to 50 feature models of sizes up to 10000

features. The evaluation showed that our approach is effective

and scalable to industry size models.

Keywords-product line models, feature models, conformance

checking, verification, constraint logic programming.

I. INTRODUCTION

Information Systems Engineering highly depends on

conceptual modeling. As a result, developing high quality

systems depends on developing high quality models [23].

Verifying the quality of models has recently been a

prominent topic for many researchers in the community.

Different kinds of checking have been studied:

─ consistency checking [31] consists in “analyzing

models to identify unwanted configurations defined by

the inconsistency rules”;

─ model checking [20] consist in verifying “correctness

properties of safety-critical reactive systems”;

─ domain specific properties verification [16,17,18,26]

consists in “finding undesirable properties, such as

redundant or contradictory information”;

In this paper, we are interested in the conformance
checking of Product Line Models (PLMs). As many works
show it [1,10,24,26], product lines engineering is a specific
topic of Systems Engineering that requires adequate models,
meta-models, methods, and tools. We are particularly
interested in a kind of consistency verification called
conformance checking where “it is checked that a model
satisfies the constraints captured in the meta-model, i.e., that
the model is indeed a valid instance of the meta-model” [32].
The problem in the context of product lines is that
verification cannot be achieved at the level of products
because these product models are not instantiated from their
meta-models, but by configuration of PLMs. The expectation
is that conformance checking is achieved at the PLM level,
with the assumption that any product model that can be
configured from a correct PLM is itself correct. On the
semantic level, a product line model is defined as the
collection of all the product models that can be derived from
it. Therefore checking the conformance of the product line
model is equivalent to checking the conformance of all the
product models in stage configuration [47]. However, we
would like to avoid verifying all the product models because
their number can be simply too high [17]. The naïve
approach that consists in carrying out product model
verification by checking late their conformance with the
product line meta-model is also not scalable to real world
constraints. We believe that scalable methods, techniques
and tools are needed to deal with this important issue [32],
which, to the best of our knowledge, is not properly handled
by tools. Our literature study revealed that (a) conformance
checking approaches that check all the product models of the
PLM do not scale to real size models [6], and (b) the
checking of larger models is sometimes even unrealizable
due to the impossibility to configure all products [16, 17].

To overcome these limitations, we propose an approach
to check the conformance of product line models. In this
paper, the approach is applied on feature models. The idea of
our approach is to test only the elements that are within the
scope of each particular conformance rule [6]. The tests are
implemented in a declarative way using Constraint Logic
Programming (CLP). Conformance rules can be seen as
white-boxes allowing special declarations and manipulations
(such as the scope-elements in our case). Nine of the rules

defined in our approach were evaluated on 50 models of
sizes up to 10000 features. The evaluation of each rule
demonstrates excellent scalability with performance results
being, in any case, less than 140 milliseconds.

Section 2 presents the related work and provides an
overview of our approach. Sections 3, 4, and 5 present in a
more detailed way how the approach works with feature
models. Section 6 presents the implementation and the
evaluation of the precision, scalability and usability of our
approach. Future works are discussed in section 7.

II. RELATED WORKS

There is to our knowledge very few works on the topic of

conformance checking, for instance [32] in the UML

domain. However, conformance is considered as a kind of

consistency [31]. Therefore, this section starts by discussing

some of the most well known consistency checking methods

that were applied in the PL context, in the light of the

conformance checking concern.
Egyed proposed a framework to incrementally detect

inconsistencies in UML models [6] and in DOPLER models
[25]. This framework first uses inconsistency rules specified
with OCL. Each rule starts by identifying the model
elements to analyze. Then, all the model elements for which
an inconsistency is detected are inserted in a “rule scope” in
order to keep track of them. The rule scope consists in a
relation between an inconsistency detection rule and the
collection of model elements that need to be re-analyzed
after they have been corrected. The next time the rule is
executed, the check will only be made over the elements in
the “rule scope”, and not over the complete model. This
allows reducing the execution time after the first checking.
Egyed presents very efficient performance charts for his
approach, but also observes that this approach may not be
efficient for all kinds of consistency rules (on a product line
domain or others).

In [30] Cabot et al present an object constraint language
(OCL) incremental checker. Each time incorrect model
elements are identified, a new rule is generated to check that
the consistency constraint is satisfied over these specific
elements after their correction. However, Blanc et al observe
that “OCL description language has a limited usage as it can
only describe mono-contextual inconsistencies; in the
context of software architecture models it is advocated to
target multi-context/multi-paradigm inconsistencies” [31].
This issue is important in the context of conformance
checking, as shown in rule 4 (presented in section 5), which
is an example of a multi-context conformance rule.

Blanc et al. also propose an incremental inconsistency
checker for UML models. Their approach is to use
declarative programming-based rules that “analyze the
modifications performed on a model in order to identify a
subset of inconsistency rules that need to be re-checked”
[31]. The analysis uses an impact matrix to represent
dependencies between the operations modifying a class and
inconsistency rules. With the information provided by the
impact matrix users can decide whether and when to execute
the incremental check of impacted rules. The problem in the

product line context is that modifying a single part of a
model can challenge the consistency of all the other elements
in the model. In contrast, the impact matrix is efficient only
when a few model elements are impacted.

In the domain of databases, one of the aims of
consistency checking is to guarantee data integrity and to
detect whether data violate integrity constraints. Even if the
works in databases are not focused on conformance
checking, the approaches used to solve the integrity
problems are similar to ours. For example, Kowalski et al.
[34] and Olivé [33] proposed declarative-based approaches
to check the integrity of deductive databases. These
examples show the omnipresence of inconsistencies during
the modeling process, the pertinence of declarative
programming as a solution to detect inconsistencies in
different domains and encourage us to find solutions in order
to deal with inconsistencies in new domains as product line
engineering.

One of the most popular tools for automatic analysis of
software models is Alloy [32]. Alloy works by transforming
the model into an instance of SAT (satisfiability of a boolean
formula). The need to represent product line models as
Boolean formulae limits the usefulness of this approach.
Indeed, other kinds of constraints (e.g., arithmetic or
symbolic constraints over integer or real variables) are
needed in product line models, and cannot be specified with
simple Boolean formulae, as Salinesi et al. show in [12, 45].
This is typically the situation in our case where we have to
deal with models that contain arithmetic and symbolic
constraints.

In the product line domain, there are some tools that
provide consistency checking functions. ToolDAy [27] is a
product line management tool that guides activities such as
scope definition, domain modeling, documentation,
consistency checking, and product derivation. SPLOT [9] is
a Web-based reasoning and configuration system for
cardinality-based feature models. The system maps feature
models into propositional logic formulas and uses boolean-
based techniques such as binary decision diagram and SAT
solvers to reason on PL models. Unfortunately, none of these
tools supports conformance checking.

A tool to check conformance of a model with regards to
the corresponding meta-model is the EMF Validation
Framework which provides a means to evaluate and ensure
the well-formedness of EMF models but its use for product
line models has not been assessed [46].

In our previous works [29], we presented a tool for the
automatic verification of structural correctness of cardinality-
based feature models. This tool implemented verification
operations such as the identification of redundant features,
inconsistent constraints, cyclic relationships and poorly
defined cardinalities. The tool used graph navigation
algorithms to evaluate each verification criteria, which was
effective, but raised major scalability, language-dependency
and extensibility issues. The purpose of this paper is to
present a new approach that overcomes these issues.

Our new approach belongs to a family of methods [31]
[33] and [34], that use CLP to implement model checking.
The principle is that rules are implemented with a mix of

logic programming (namely with Prolog), and constraint
programming, which is embedded in the Prolog code. This
paper is the first one that applies the CLP approach to check
conformance of product line models, namely of feature
oriented models.

III. FEATURE MODELS IN A NUTSHELL

A feature is a prominent or distinctive user-visible

aspect, requirement, quality, or characteristic of a software

system [19]. A Feature Model (FM) defines the valid

combinations of features in a software product line, and is

depicted as tree-like structure in which nodes represent

features, and edges the relationships among them [24]. All

the nodes are the children of the root node, which is called

root feature and identifies the product line.

FMs were first introduced in 1990 as a part of the

Feature-Oriented Domain Analysis (FODA) method [19], as

a means to represent the commonalities and variabilities of

software product lines. Since then, feature modeling has

become a de facto standard adopted by the software product

line community and several extensions have been proposed

to improve and enrich their expressiveness. Two of these

extensions are cardinalities [11,28] and attributes [8,13,15].

Although there is no consensus on a notation to define

attributes, most proposals agree that an attribute is a variable

with a name, a domain and a value (by instance,

Intensity and Type are two attributes of the feature

Vibration of our running example of Figure 1). Note

that the value of attributes is not specified in the product line

model. Instead, the value of each attribute is assigned for

each particular configuration, (when these attributes are

attached to features that belong to the configurations). In

this paper, we are interested into these two extensions.

In order to handle the semantic of these formalisms, we

reason using the abstract syntax instead of the concrete

syntax (what the user sees), as recommended by [10]. The

outcome is more simplicity and less error-prone analyses.

Indeed “the abstract syntax ignores the visual rendering

information that is useless to assign a formal semantics to a

diagram, e.g., whether nodes are circles or boxes, whether

an operator is represented by a diamond shape or by joining

the edges departing from a node, etc” [10]. There are two

common ways to provide the abstract syntax information

[37]: (1) mathematical notation or (2) meta-model. In this

paper, we use the second kind of notation because we

believe it is the most adequate to our goal of checking

conformance of FMs with respect to their meta-model.

According to their meta-model (formalized in section

IV) a FM is a DAG (directed acyclic graph) composed of

features as nodes and various kinds of relationships:

─ Mandatory: Given two features F1 and F2, where F1

is the father of F2, a mandatory relationship between

F1 and F2 means that if F1 is selected in a product,

then F2 must be selected too, and vice versa.

─ Optional: Given two features F1 and F2, where F1 is

the father of F2, an optional relationship between F1

and F2 means that if F1 is selected in a product, then

F2 may be selected or not. However, if F2 is selected

then F1 must also be selected.

─ Requires: Given two features F1 and F2, a

relationship F1 requires F2 means that if F1 is

selected in a product then F2 has to be selected as

well. Additionally, it means that F2 can be selected

even when F1 is not selected.

─ Exclusion: Given two features F1 and F2, a

relationship F1 excludes F2 means that F1 and F2

cannot be selected in the same product.

─ Group cardinality: A group cardinality is an interval

denoted <n..m>, with n as lower bound and m as

upper bound limiting within a group of features the

number of features that can be part of a product. All

the features in the group must have the same parent

feature, and none can be selected if the parent is not

itself selected.

As a running example, we illustrate FMs and our work with

the example of the Movement Control System (MCS) of a

car [12]. In order to illustrate our approach, we intentionally

introduced errors in the original model. As the resulting

model presented in Figure 1 shows it, a MCS is composed

(within others) of sensors and feedback devices that

respectively detect movements and position of the vehicle,

and sends specific signals to the driver. These features are

denoted as mandatory (depicted with a filled circle) called

Sensor and Feedback, respectively. A Sensor can

measure vehicle movement in two ways: speed and position.

These are identified in the model by means of two optional

features (depicted with an empty circle) called Speed

Sensor and Position Sensor, respectively. These

two features are related in a group cardinality <1..3>

where 1 is the lower bound and 3 the upper bound limiting

the number features that can be selected in a configuration.

Of course, the upper bound (3) is incorrect, as there are only

two features in the group cardinality. Feedbacks to the

driver can be of two types: audio and vibration. These are

represented by the mandatory feature Audio and the

optional feature Vibration. The audio feedback consists

of a warning sound in a defined Volume, and the vibration

feedback refers to small mechanical oscillations (with

Intensity and of a certain Type) of the steering wheel.

Features Audio and Vibration are related in a group

cardinality <1..1> where only one feature can be selected

in a configuration. In addition, if Speed Sensor is

activated, the feedback cannot be by vibration, due to

security reasons, thus Speed Sensor and Vibration

are modeled as mutual excluded features. Finally, if the

Vibration feature is selected, its father, the Feedback

feature must be selected as well due to the requires-type

relationship between Vibration and Feedback.

Example of Figure 1 will be used in the remains of the paper

in order to illustrate our approach. It is because, we induced

three errors on this model: one upper bound cardinality

(1..3), the repeated name of two attributes (Volume) and one

redundant relationship (Vibration requires Feedback).

Sensor Feedback

Speed

Sensor

Position

Sensor

Audio

1..11..3

Volume: Integer

Volume: [0..10]

m..n

Mandatory

Optional

Requires

Excludes

Group cardinality

with m..n boundaries

Movement Control System

Vibration

Type: String

Intensity: Integer

Figure 1. Extract of a car movement control system represented as a

feature model.

The FM meta-model used in this paper, see Figure 2, is
based on the abstract syntax [37] of SPLOT models [9]
augmented with concepts from [10] and [8]. The former
adaptation was necessary for allowing attributes in FMs,
which are used in our industrial FMs. The FM meta-model is
represented as meta-facts as we explain in the rest of this
section.

attribute

IdAttribute
Name

Domain

groupCardinality

Min
Max

feature

Feature Model

root

mandatoryoptional excludesrequires

1..*2

1

0..*

1
2..*

1..*

2..*

0..1

{complete, disjoint} {complete, disjoint}

IdFeature
Name

dependency

IdDependency

root(IdFeature).

feature(IdFeature, Name, IdAttributes).

attribute(IdAttribute, Name, Domain).

dependency(IdDependency, IdFeature1, IdFeature2).
optional (IdDependency).
mandatory (IdDependency).
requires(IdDependency).
excludes(IdDependency).

groupCardinality(IdDependencies, Min, Max).

(b)

(a)

Figure 2. (a) Feature model meta-model and (b) its representation as

meta-facts.

In the meta-model depicted in Figure 2(a), FM‟s
elements are modeled by meta-classes, and relationships
between these elements are modeled by meta-associations. In
CLP, FM‟s elements and its relationships are called meta-
fact and are implemented as CLP facts. In other words, a
meta-fact is the CLP structure that represents a fact. In order
to define a meta-fact it is necessary to define its name, its
parameters and its arity (in case of equal names, the number
of parameters make two meta-fact different). The mapping

between the FM meta-model as a class diagram in Figure
2(a) and the FM meta-model represented as meta-facts in
Figure 2(b) are explained in the rest of this section. Each
meta-fact has an attribute that uniquely identifies each
instance of the meta-fact. Identifiers are represented as
strings (Prolog‟s atoms) and the references to other FM‟s
entities are represented as lists of identifiers; in both cases,
the name of the corresponding variable is preceded by the
label Id.

Meta-fact 1: feature(IdFeature, Name,

IdAttributes).

Name is a string representing the feature‟s name and

IdAttributes is a list of attribute identifiers

[IdAtt1,...,IdAttN], where [] represents an empty

list.

Meta-fact 2: root(IdFeature).

The root feature (i.e. Movement Control System)

identifies the product line. In this meta-fact the attribute
IdFeature references to the root feature.

Meta-fact 3: attribute(IdAttribute, Name,

Domain).

An attribute has an identifier, a name and a domain.
Name is a string representing the name of the attribute

instantiated with this meta-fact. Domain is a collection of

values that can take the attribute. For example ['read']

means that the value of the corresponding attribute can be
only 'read'; [1..5] means that the value of the

corresponding attribute can be an integer between 1 and 5;

[integer] means that the value of the corresponding

attribute must be an integer.

Meta-fact 4: dependency(IdDependency, IdFeature1,

IdFeature2).

Meta-fact 5: optional(IdDependency).

Meta-fact 6: mandatory(IdDependency).

Meta-fact 7: requires(IdDependency).

Meta-fact 8: excludes(IdDependency).

Relationships between two features are represented by
meta-fact 4. In this meta-fact, IdFeature1 and

IdFeature2 respectively represent the identifiers of the

initial and target features intervening in the dependency.
Dependencies can be of four types: mandatory,

optional, requires, or excludes, respectively

represented by meta-facts 5, 6, 7 and 8. Each meta-fact from
5 to 8 references the corresponding dependency. For
example, an optional dependency references the

corresponding dependency having the identifiers of the
parent and child features (IdFeature1 and IdFeature2

respectively) intervening in the optional dependency. In

requires dependencies IdFeature1 is the requiring feature

and IdFeature2 represents the required feature.

Meta-fact 9: groupCardinality(IdDependencies, Min,

Max).

Cardinality is a relationship between several features
constrained by a Min and a Max value. Cardinalities can be

represented by instantiation of meta-fact 9, where
IdDependencies is a list of dependency‟s identifiers

related in the group cardinality.
The relationship between the meta-fact and the derived

facts respects the basic principle of meta-modeling. In our
case, the instantiation of a meta-fact consists in giving
constant values to the parameters of this meta-fact. We show
this instantiation with our running example. Note that in the
following representation of the car MCS as CP facts, each
feature, attribute and dependency is identified by a natural
number preceded by the label fea, att and dep,

respectively.

(1) root(fea1).

(2) feature(fea1, 'Movement Control System',[]).

(3) feature(fea2, 'Sensor', []).

(4) feature(fea3, 'Speed Sensor', []).

(5) feature(fea4, 'Position Sensor', []).

(6) feature(fea5, 'Feedback', []).

(7) feature(fea6, 'Audio', [att1,att2]).

(8) feature(fea7, 'Vibration', [att3, att4]).

(9) attribute(att1, 'Volume', [integer]).

(10) attribute(att2, 'Volume', [0..10]).

(11) attribute(att3, 'Type', [string]).

(12) attribute(att4, 'Intensity', [integer]).

(13) dependency(dep1, fea1, fea2).

(14) dependency(dep2, fea1, fea5).

(15) dependency(dep3, fea2, fea3).

(16) dependency(dep4, fea2, fea4).

(17) dependency(dep5, fea5, fea6).

(18) dependency(dep6, fea5, fea7).

(19) dependency(dep7, fea7, fea5).

(20) dependency(dep8, fea3, fea7).

(21) mandatory(dep1).

(22) mandatory(dep2).

(23) optional(dep3).

(24) optional(dep4).

(25) mandatory(dep5).

(26) optional(dep6).

(28) requires(dep7).

(29) excludes(dep8).

(30) groupCardinality([dep3, dep4], 1, 3).

(31) groupCardinality([dep5, dep6], 1, 1).

Lines 1 and 2 define root feature Movement Control

System with no attributes. Lines 3, 4, 5 and 6 define

respectively features Sensor, Speed Sensor,

Position Sensor and Feedback with no attributes.

Line 7 defines feature Audio with two attributes (att1 and

att2) respectively defined in lines 9 and 10. Line 8 defines

feature Vibration with the attributes att3 (Type) and

att4 (Intensity), respectively defined in lines 11 and

12. Lines 13 and 21 define one mandatory dependency
between the features fea1 (Movement Control

System) and fea2 (Sensor). In the same way, lines 14 to

20 define dependencies between two features of the product
line and lines 22 to 29 are facts representing the type of each
of these dependencies. Line 30 defines the group cardinality
<1,3> for dependencies dep3 and dep4. Finally, line 31

defines the group cardinality <1,1> for dependencies dep5

and dep6.

IV. CONFORMANCE CHECKING IN FEATURE MODELS

The conformance of feature model is essential for
deriving correct products and enables safe automated
reasoning operations such as variability analysis,
transformation and code generation [10]. In this way, quality
assurance of FMs is essential for successful PL engineering
and, due to the ability of FMs to derive a potentially large
number of products; any error on the FM will inevitably
affect many products of the product line. Besides, the proven
benefits of a PL (e.g. reduced time to market, better reuse
and therefore reduced development costs and increase in
software quality [1,2]) can be compromised by the poor
quality of FMs. Therefore, engineers need to be supported in
detecting conformance errors during feature modeling.

In this paper we use nine conformance rules that are
based on the FM meta-model presented in Figure 2. Our
purpose in this paper was not to present an exhaustive list of
rules. Rather it was to show how a few relevant rules can be
extracted from the meta-model and checked automatically.
In this manner, a user of our approach can extend the
conformance checking rules according to her/his particular
needs. These nine rules were developed based on our
experience with verification of product line models of
various sizes [38] and the rules found in our literature
review. A conformance rule can be seen as a query that will
be executed over a FM. If the rule is evaluated true in a

model, its output is a set of elements that make true the

evaluation of the rule and by using the backtracking
mechanism of CLP solvers we get rest anomaly‟ sources if
any exists. Next we present and formalize our nine rules.
Note that in each formalization we (i) specify the scope
(elements that need to be analyzed to evaluate this rule) in a
general manner, and (ii) specify the case where the
conformance rule is evaluated true, so, we are not just

identifying the presence of an anomaly but also the sources
of the anomaly; and (iii) are exhaustive in our search to
guarantee completeness of our approach.

Rule 1: A feature should not have two attributes with the

same name. In our running example, feature Audio is

violating this conformance rule because its two attributes
have the same name (Volume). In the next formula, we are

searching two different attributes, of the same feature, with
the same name.

Rule 2: Two features should not have the same name.
The fact that several features share the same name can imply
ambiguity problems in product configuration and
maintenance stages.

Rule 3: In our feature-based formalism, product line
models should not have more than one root [11, 14, 19, 28].
If a feature model has more than one root feature and our
particular feature model formalism allows only one, this rule
identifies these root features.

Rule 4: Features intervening in a group cardinality
relationship should not be mandatory features. By definition,
a cardinality relationship is about the selection of a certain
number of elements among a set of them. In this selection
each element must have the same possibility to be chosen
than others, that is why elements must be optional features.
We consider this rule, presented in [11], as a good practice to
avoid errors and redundancies. To illustrate this, let us
consider the case of our running example, where Audio is a

mandatory feature intervening in the <1..1> group

cardinality. The <1..1> means that only one feature can be

selected, so, if Audio is mandatory, Vibration can never

be selected.

Rule 5: One feature must not be optional and mandatory

at the same time. If a feature is optional, by definition (see
section 3.1) it cannot be mandatory and vice versa. In the
meta-model, optional and mandatory are complete

and disjoint dependencies. This rule has two cases. In

the first case, rule 5 evaluates if a feature is constrained two
times by the same father by means of optional and
mandatory relationships. In the second case, rule 5 evaluates
if a feature is mandatory towards one parent and optional
towards other, directly or indirectly (through other features).

Rule 6: In a group cardinality <Min..Max> restricting

a set of N dependencies (or its associated features), the Min

and Max values must be integers satisfying: 0 ≤ Min ≤

Max ≤ N. In our running example SpeedSensor and

PositionSensor are participating in the group

cardinality <1..3>. Note that as only two features are

related in the cardinality, the upper value of the cardinality
can never be attained. If we apply rule 6 to this particular
group cardinality, then Min = 1, Max = 3 and N = 2.

According to Czarnecki et al. [11], rule 6 constraints that
values of Min, Max and N must be integer numbers and

that 0 ≤ Min ≤ Max ≤ N. But in our running example,

we have Max > N.

Rule 7: Two features cannot be required and mutually

excluded at the same time. If two features are related in
requires and excludes relationships, the model is non-
conformant. Rule 7 is applicable in the cases in which
features are related directly (i.e., F1 requires F2 and F1
excludes F2) and transitively (i.e., F1 requires F2, F2 requires

F3 and, F1 excludes F3) in mutual exclusion and requires.

Rule 8: A root element should not be excluded. If the
root feature of a FM is excluded by other feature, the FM
becomes void because it does not define any product.

Rule 9: A feature should not require itself or one of its

ancestors. In a FM, feature A is ancestor of feature B if A is

in the path from the root to B. In our running example,

Vibration is requiring its father Feedback, what is a

redundancy because Vibration can only be selected by

the way of Feedback.

V. IMPLEMENTATION AND EVALUATION OF THE FM

CONFORMANCE CHECKING RULES

Our conformance rules are implemented as CLP queries
[22, 5], in a way to guarantee termination and exhaustive
search [5] using GNU Prolog. Due to space limitations, we
do not present the code source of all rules but only of the
first one. All the rules are available for download from the
tool website1.

(1) conformance_1(FeatureName,AttId1,AttId2,AttName) :-

(2) feature(_, FeatureName, LAttId),

(3) chose(LAttId, AttId1, LAttId1),

(4) member(AttId2, LAttId1),

(5) AttId1 \== AttId2,

(6) attribute(AttId1, AttName, _),

(7) attribute(AttId2, AttName, _).

Line 1 uses four output variables to return the name of
the feature that has the repeated attributes, their two
identifiers and the name of the repeated attributes. These
variables will take the values of one feature where two of its
attributes have the same name. Usually in Prolog other
solutions can be obtained thanks to the underlying non-
determinism mechanism. The source of non-determinism are
in line 2 that chooses one feature, line 3 that chooses a first
attribute of the current feature and line 4, which chooses a
second attribute of the current feature. Then line 5
constraints the fact that both features must be different and
lines 6 and 7 constraint the fact that the two attributes must
have the same name. It is worth noticing the declarative
formulation of this conformance check and the fact that we
only use relevant elements for the conformance rule (e.g., in
this rule we are interested in comparing attributes of a same
feature, so, we only consider features with a list of attributes
(LAttId) and do not use dependencies or cardinalities

because they are not relevant for this rule). The research
strategy we use to find anomalies with each conformance
rule is exhaustive because we do not avoid evaluating any
case even if in our research we consider only relevant
elements according to the scope of each conformance rule.

We assessed the feasibility, precision and scalability of

our approach with 50 models, out of which 48 were taken
from the SPLOT repository [9]. The other two models were

1 _FeatureModelDiagnosis.pl available at:

https://sites.google.com/site/raulmazo/

developed during industry collaboration projects [41,42].
The sizes of the models are distributed as follows: 30 models
of sizes from 9 to 49 features, 4 from 50 to 99, 4 from 100 to
999, 9 from 1000 to 9999 and 3 of 10000 features. The
domains tackled span from insurance to entertainment, web
applications, home automation, search engines, and
databases. Note that SPLOT models neither support
attributes nor multi root features. Therefore artificial
attributes (a variable followed by a domain, for example
A:String) were introduced in a random way, in order to

have models with 30%, 60% or 100% of their features with
attributes. Following the same logic, we introduced one
artificial root on the 50% of the SPLOT models. In order to
do that, we created a simple tool2 that translates models from
SPLOT format to facts and automate the assignation of
artificial attributes, allowing repeated attributes inside each
affected feature (between 1 and 5 features per affected
feature), and roots. Evaluation was made in the following
environment: Laptop with Windows Vista of 32 bits,
processor AMD Turion 64 bits X2 Dual-Core Mobile RM-74
2,20 GHz, RAM memory of 4,00 GB and GNU Prolog 1.3.0.

A. Precision of the detection

One example of the effectiveness of our approach is the
56 conformance anomalies of the models taken from
SPLOT, violating rules 2, 7 or 9. For example, in the Model
transformation taxonomy feature model [35], features like
Form, Semantically_typed, Interactive,

Source, Syntactically_typed, Target and

Untyped appear twice. In addition, we found 1553

conformance defects with rules 1 and 3. These came from
the attributes and root features that we intentionally
introduced in the SPLOT models. A manual inspection on a
sample of 56 conformance defects showed that our approach
identify the 100% of the anomalies with 0% false positive, as
expected due to the completeness of GNU Prolog.

B. Computational Scalability

The execution times of our tool during the experiment
show that our approach is able to support a smooth
interaction during a conformance checking process. Indeed,
each conformance rule was executed within milliseconds.
Figure 3 shows the execution time of each one of the nine
conformance rules in the 50 models. In Figure 3 each plot
corresponds to a conformance rule: Figure 3(1) corresponds
to rule 1, Figure 3(2) corresponds to rule 2 and so on. Times
in the Y axis are expressed in milliseconds (ms) and X axis
corresponds to the number of features.

Initial analyses showed us that 74,2% of the queries take
0 ms, which actually means that the execution time is less
than 1 ms (the GNU Prolog solver does not offers times in
microseconds and please note that the timer granularity of
GNU Prolog under Windows is 5 ms). Give the lack of
reliability of measures of very short execution times, we
executed five times each of the nine rules for each of the 50

2 parserSPLOTmodelsToCP.rar available at:

https://sites.google.com/site/raulmazo/

models, which means a total of 2250 (9X50X5) queries. The
time measures presented in the paper are the average of the
five executions of each rule on each model (450 consolidated
results). In small models (9 to 100 features) the worst rule
execution time was 32 ms. In large models (100 to 10000
features), execution time of each rule was less than 140 ms.
The maximal time taken by the tool to execute all nine
conformance rules on complete models was 265 ms (a ¼ of
a second).

Table 1 shows the correlation coefficient (R²) between the

number of features in the models and the time that each rule

takes to be executed. Of course, the R² does not prove

independency between these variables. However, it gives a

good indication of their dependency/independency. In the case

of rules 1, 2, 3, 4, 6, and 8, the correlation coefficient is next to

0. This means that, despite the NP complexity of this kind of

problems associated with CSP (Constraint Satisfaction

Problems), these rules seem to be scalable to large models with

the application of our approach. This is also shown in Figure 3

that indicates that every rule can be checked in a linear (seven

rules) and polynomial (rules 5 and 7) time. We believe this is

due to the fact that our approach does not evaluate the whole

models but only the elements concerned by the rule.

Table 1. Correlation coefficients between “number of features”

and “rules execution time” per each rule and over the 50 models.

Rule 1 2 3 4 5 6 7 8 9

R² 0,01 0,15 0,01 0,04 0,74 0,02 0,87 0,01 0,35

C. Usability

Our approach was also implemented to check the
conformance of DOPLER variability models. We used two
industrial cases and the DOPLER variability meta-model
proposed by Dhungana et al. [39]. In this experience we
implemented the DOPLER meta-model, models and
conformance rules using SWI-Prolog3. Using our approach,
engineers could check conformance of product line models
specified in other languages, write their own conformance
rules and use another declarative language different from
GNU Prolog. We believe these are important features for
usability.

This paper does not address how to best visualize
conformance anomalies. Much of this problem has to do
with human-computer interaction and future work will study
this. Another important issue that is not addressed in this
paper is the downstream economic benefits. For example,
one could raise the question how does fast detection of
conformance anomalies really benefit software engineering
at large? How much does it cost to fix an error early on as
compared to later on? These complex issues have yet to be
investigated.

3 http://www.swi-prolog.org/

0

5

10

15

20

25

30

35

1 10 100 1000 10000

0

5

10

15

20

25

30

35

1 10 100 1000 10000

0

5

10

15

20

25

30

35

1 10 100 1000 10000

0

5

10

15

20

1 10 100 1000 10000

0

10

20

30

40

50

60

70

1 10 100 1000 10000

0

5

10

15

20

1 10 100 1000 10000

0

20

40

60

80

100

120

140

160

1 10 100 1000 10000

0

5

10

15

20

25

30

35

1 10 100 1000 10000

0

5

10

15

20

25

30

35

1 10 100 1000 10000

A feature should not have two

attributes with the same name

Two features should not

have the same name

Some feature-based product line models

should not have more than one root

One feature must not be optional

and mandatory at the same time

Two features cannot be required and

mutually excluded at the same time
A root element must not be excluded

A feature must not require

itself or one of its ancestors

Time

(ms)
Time

(ms)

Time

(ms)

Time

(ms)

Time

(ms)

Time

(ms)

Time

(ms)

Time

(ms)
Time

(ms)

Number of features Number of features Number of features

Number of features

Number of features

Number of features
Number of features Number of features

Features intervening in a group cardinality

relationship should not be mandatory features

In a group cardinality [min..max] restricting a set of N

dependencies (or its associated features), the min and max values

must be integers numbers satisfying: 0 ≤ min ≤ max ≤ N

(1) (2)
(3)

(4) (5) (6)

(7) (8) (9)

Figure 3. Execution time, of the 9 conformance rules, per number of features.

VI. PERSPECTIVES AND CONCLUSION

In this paper we proposed a conformance checker that
uses parameterizable rules to detect non-conformance in
extended feature models. Our approach consists in
representing FMs as CLPs, namely with sets of meta-facts.
Conformance rules are parameterizable query functions
expressed in a declarative manner. In addition, our
experience has shown that these rules, implemented as
queries, are something that a modeling tool could easily
enforce. The result of the query is a collection of elements
that do not conform with the meta model. As the experiment
demonstrates, our approach to conformance checking is
correct, useful, and our tool implementation is fast and
scalable.

Future works include the following items. First, we
envision to implement an incremental checker with rule
scopes such as the one proposed by Egyed in [6]. We expect
this will reduce the execution time of some of our
conformance rules. Also, we plan to devise a classification of
conformance rules according to their severity and
complexity. We will explore how to fix non-conformances in
an automated way. We believe that the classification can

serve as a guide to define strategies to fix non-conformances
and better exploit the capabilities of Egyed's incremental
conformance checking technology. It is also our intention to
explore the question of how to best present feedback to the
engineer. The efficiency of our approach depends on how
conformance rules are written, because in each rule we make
explicit the elements of the model that will be evaluated.
Since conformance rules are typically written manually (by
engineers), it is future work to investigate how to
automatically optimize conformance rules and if possible
how to automatically generate conformance rules directly
from the product line model‟s meta-model.

Our approach has been applied to feature models.
However, we argue that it is also applicable to other
variability formalisms (e.g. OVM, goals, UML, etc) [43].
Our experience with DOPLER already showed us that the
meta-models share some common concepts such as
variability and that the resulting conformance checking rules
are very similar, when not identical. A significant scientific
result would be to define generic rules that could be adapted
to any meta-model in a fully automatic way in a similar way
to Salinesi et al. [44].

ACKNOWLEDGMENTS

This research was partially funded by the Austrian FWF
under agreement P21321-N15 and Marie Curie Actions -
Intra-European Fellowship (IEF) project number 254965.
This work was also supported by the Intra-European
Fellowship “Bourse de mobilité Île de France” and the
French Minister of Higher Education and Research.

REFERENCES

[1] Pohl K., Bockle G., van der Linden F.J. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer
(2005)

[2] Bosch J. Design and Use of Software Architectures. Adopting and
evolving a product-line approach. Addison-Wesley (2000)

[3] van Gurp J., Bosch J., Svahnberg M. On the Notion of Variability in
Software Product Lines. Proceedings of the Working IEEE/IFIP
Conference on Software Architecture WICSA‟ 01, (2001).

[4] Taylor R.N., Medvidovic N., Dashofy E. Software Architecture:
Foundations, Theory, and Practice . John Wiley & Sons (2009)

[5] Diaz D. Codognet P. Design and Implementation of the GNU Prolog
System. Journal of Functional and Logic Programming (JFLP), Vol.
2001, No. 6, October (2001)

[6] Egyed A. Instant consistency checking for UML. In: International
Conf. Software Engineering (ICSE‟06), pp. 381–390. ACM Press,
New York (2006)

[7] Van Hentenryck P. Constraint Satisfaction in Logic Programming.
The MIT Press (1989).

[8] Benavides D., Trujillo S., Trinidad P. On the modularization of
feature models. In First European Workshop on Model
Transformation, September (2005).

[9] Mendonca M., Branco M., Cowan D. S.P.L.O.T.: software product
lines online tools. In OOPSLA Companion. ACM (2009),
http://www.splot-research.org.

[10] Schobbens P.Y., Heymans P., Trigaux J.C., Bontemps Y. Generic
semantics of feature diagrams, Journal of Computer Networks, Vol
51, Number 2 (2007).

[11] Czarnecki K., Helsen S., Eisenecker U. W. Formalizing cardinality-
based feature models and their specialization, Software Process:
Improvement and Practice, 10 (1) pages 7–29, (2005).

[12] Salinesi C., Mazo R., Diaz D., Djebbi O. Solving Integer Constraint
in Reuse Based Requirements Engineering. 18th IEEE International
Conference on Requirements Engineering (RE'10). Sydney, Australia
(2010).

[13] Streitferdt D., Riebisch M., Philippow I. Details of formalized
relations in feature models using OCL. In Proceedings of 10th IEEE
International Conference on Engineering of Computer–Based
Systems (ECBS‟03), Huntsville, USA. IEEE Computer Society, pages
45–54 (2003).

[14] Griss M., Favaro J., d‟Alessandro M. Integrating feature modeling
with the RSEB, in: Proceedings of the Fifth International Conference
on Software Reuse, Vancouver, BC, Canada, June (1998).

[15] White J., Doughtery B., Schmidt D. Selecting highly optimal
architectural feature sets with filtered cartesian flattening. Journal of
Systems and Software, 82(8):1268–1284 (2009).

[16] Trinidad P., Benavides D., Durán A., Ruiz-Cortés A., Toro M.
Automated error analysis for the agilization of feature modeling,
Journal of Systems & Software – Elsevier (2008).

[17] Mendonça M., Wasowski A., Czarnecki K. SAT–based analysis of
feature models is easy. In Proceedings of the Sofware Product Line
Conference (2009).

[18] Von der Massen T., Lichter H. Deficiencies in feature models. In
Tomi Mannisto and Jan Bosch, editors, Workshop on Software

Variability Management for Product Derivation - Towards Tool
Support (2004).

[19] Kang K., Cohen S., Hess J., Novak W., Peterson S. Feature-Oriented
Domain Analysis (FODA) Feasibility Study, Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon
University, November (1990).

[20] Clarke E. M., Grumberg O., Long D. E. Model checking and
abstraction, ACM Transactions on Programming Languages and
Systems (TOPLAS), v.16 n.5, p.1512-1542, Sept. (1994).

[21] Thaker S., Batory D., Kitchin D., Cook W. Safe composition of
product lines, Proceedings of the 6th international conference on
Generative programming and component engineering, October 01-03,
Salzburg, Austria, (2007).

[22] Schulte C, Stuckey P. J. Efficient constraint propagation engines.
ACM Trans. Program. Lang. Syst., (2008).

[23] Stahl T., Völter M., Czarnecki K. Model-Driven Software
Development: Technology, Engineering, Management. San Francisco,
Wiley, June 2006.

[24] Clements P., Northrop L. Software Product Lines : Practices and
Patterns, Addison Wesley, Reading, MA, USA (2001).

[25] Vierhauser M., Grünbacher P., Egyed A., Rabiser R., Heider W.
Flexible and Scalable Consistency Checking on Product Line
Variability Models. Proceedings of the 25th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Antwerp,
Belgium, ACM (2010).

[26] Kim L., Klaus P. Towards automated consistency checks of product
line requirements specifications. Proceedings of the twenty-second
IEEE/ACM international conference on Automated software
engineering ASE'07, USA (2007).

[27] Barachisio L., Cardoso V., de Almeida E. A Support Tool for Domain
Analysis. In 4th International Workshop on Variability Modelling of
Software-intensive Systems, Linz-Austria (2010).

[28] Matthias R., Kai B., Detlef S., Ilka P. Extending feature diagrams
with UML multiplicities. Proceedings of the Sixth Conference on
Integrated Design and Process Technology, Pasadena, CA (2002).

[29] Salinesi C., Rolland C., Mazo R. VMWare: Tool support for
automatic verification of structural and semantic correctness in
product line models. In Third International Workshop on Variability
Modelling of Software-intensive Systems (VaMos), pages 173–176
(2009).

[30] Cabot J., Teniente E. Incremental evaluation of ocl constraints. In:
Dubois, E., Pohl, K. (eds.) CAiSE’06. LNCS, vol. 4001, pp. 81–95.
Springer, Heidelberg (2006).

[31] Blanc X., Mougenot A., Mounier I., Mens T. Incremental Detection
of Model Inconsistencies Based on Model Operations. In CAiSE’09,
pages 32-46, (2009).

[32] Paige R. F., Brooke P. J., Ostro J. S. Metamodel-based model
conformance and multiview consistency checking. ACM Transactions
on Software Engineering and Methodology, (2007).

[33] Olivé A. Integrity Constraints Checking In Deductive Databases,
Proceedings of the 17th International Conference on Very Large Data
Bases, p.513-523, September 03-06, (1991).

[34] Kowalski R.A., Sadri F., Soper P. Integrity checking in deductive
databases. In: Proc. International Conference on Very Large Data
Bases (VLDB), pp. 61–69. Morgan Kaufmann, San Francisco (1987).

[35] Czarnecki K., Helsen S. Classification of model transformation
approaches. In Online Proceedings of the 2nd OOPSLA03 Workshop
on Generative Techniques in the Context of MDA, Anaheim, (2003).

[36] Finkelstein A.C.W., Gabbay D., Hunter A., Kramer J., Nuseibeh B.
Inconsistency handling in multiperspective specifications. IEEE
Transactions on Software Engineering, pages 569–578 (1994).

[37] Harel D., Rumpe B. Meaningful modeling: what‟s the semantics of
„„semantics‟‟? IEEE Computer 37(10), pages 64–72 (2004).

[38] Salinesi, C., Mazo, R., Diaz, D. Criteria for the verification of feature
models, In 28th INFORSID Conference, Marseille, France (May
2010).

[39] Dhungana D., Heymans P., Rabiser R. A Formal Semantics for
Decision-oriented Variability Modeling with DOPLER, Proc. of the
4th International Workshop on Variability Modelling of Software-
intensive Systems (VaMoS 2010), Linz, Austria, ICB-Research Report
No. 37, University of Duisburg Essen, 2010, pp. 29-35.

[40] J. Jaffar , J.-L. Lassez, Constraint logic programming, Proceedings of
the 14th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, p.111-119,, Munich, West Germany
(January 1987).

[41] Lora-Michiels A., Salinesi C., Mazo R. A Method based on
Association Rules to Construct Product Line Model. 4th International
Workshop on Variability Modelling of Software-intensive Systems.
Linz, Austria, Janvier 2010.

[42] Djebbi O., Salinesi C., Fanmuy G. Industry Survey of Product Lines
Management Tools: Requirements, Qualities and Open Issues,
International Conference on Requirement Engineering (RE), IEEE
Computer Society, New Delhi, India, October 2007.

[43] Djebbi O., Salinesi C. Criteria for Comparing Requirements
Variability Modeling Notations for Product Lines. Proceedings of 4th
international workshop on Comparative Evaluation in Requirements
Engineering, CERE '06, Sept. 2006.

[44] Salinesi C., Etien A., Zoukar I. A Systematic Approach to Express IS
Evolution Requirements Using Gap Modelling and Similarity
Modelling Techniques, International Conference on Advanced
information Systems Engineering (CAISE), Springer Verlag, Riga,
Latvia, 2004.

[45] Salinesi C., Mazo R., Djebbi O., Diaz D., Lora-Michiels A.
Constraints: the Core of Product Line Engineering. Fifth IEEE
International Conference on Research Challenges in Information
Science (IEEE RCIS), Guadeloupe - French West Indies, France, May
19-21 2011.

[46] Budinsky F., Steinberg D., Merks E., Ellersick R., Grose T.J. Eclipse
Modeling Framework. Addison-Wesley Professional, Part of the
Eclipse Series series. Aug 11, 2003.

[47] Djebbi O., Salinesi C. RED-PL, a Method for Deriving Product
Requirements from a Product Line Requirements Model. In:
CAISE‟07, Norway, 2007.

