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ABSTRACT 

Software product lines are typically developed using model-based 

approaches. Models are used to guide and automate key activities 

such as the derivation of products. The verification of product line 

models is thus essential to ensure the consistency of the derived 

products. While many authors have proposed approaches for 

verifying feature models there is so far no such approach for 

decision models. We discuss challenges of analyzing and 

verifying decision-oriented DOPLER variability models. The 

manual verification of these models is an error-prone, tedious, and 

sometimes infeasible task. We present a preliminary approach that 

converts DOPLER variability models into constraint programs to 

support their verification. We assess the feasibility of our 

approach by identifying defects in two existing variability 

models. 

Categories and Subject Descriptors 

D.2.1 [Requirements/Specifications]: Languages.                

D.2.4 [Software/Program Verification]: Formal methods. 

General Terms 

Algorithms, Experimentation, Languages, Verification. 

Keywords 

Verification, Decision-oriented variability models, software 

product lines, constraint programming. 

1. INTRODUCTION AND MOTIVATION 
Models are used in software product lines to define, analyze, and 

communicate the variability of systems and to support the 

derivation of new products. For instance, feature-oriented 

modeling languages [5, 12], decision-oriented approaches [4, 18], 

UML-based techniques [10], and orthogonal approaches [16] have 

been proposed for defining variability. The formal verification of 

variability models is an important issue in product line 

engineering to identify defects that would otherwise lead to 

inconsistent products. Many authors have proposed approaches to 

formally analyze and verify feature models [2, 15, 20, 21, 24, 26]. 

However, so far no approaches have been proposed to formally 

verify decision models.  

The decision-oriented product line engineering approach 

DOPLER has been developed in collaboration with two industry 

partners over the last years [7, 8]. DOPLER focuses on product 

derivation and aims at supporting users configuring products. The 

analysis and verification of DOPLER decision models is currently 

primary supported at syntax level, i.e., the conditions and rules in 

DOPLER models can be checked for syntactical correctness. 

Furthermore, an incremental consistency checker [23] has been 

developed supporting modelers in checking the consistency of 

model elements and the code base during domain engineering. 

This approach however does not support detecting defects that 

can lead to inconsistent products. The formal semantics of 

DOPLER variability models have been described in earlier 

work [7]. Here we focus on the verification of DOPLER 

variability models. 

The approach presented in this paper uses constraint programming 

to support the verification of DOPLER variability models using 

an existing constraint solver. We first describe decision-oriented 

DOPLER variability models with a focus on the model elements 

and dependencies relevant for subsequent verification, refer to [7] 

for the formal semantics behind. We then briefly introduce 

constraint programming and describe our approach of converting 

DOPLER variability models into constraint programs. We finally 

show our support for formal verification of the converted 

DOPLER models and present an initial feasibility study. We 

conclude the paper with a discussion of open issues and an 

outlook on future work. 

2. DECISION-ORIENTED DOPLER 

VARIABILITY MODELS 
The DOPLER approach and tool support has been developed in a 

research cooperation with two industry partners. The approach 

has been successfully evaluated in practical settings in a number 

of cases [9], e.g., for industrial automation systems and enterprise 

resource planning systems. In DOPLER models, the product 

line’s problem space is defined using decision models whereas the 

solution space is specified using asset models comprising 

arbitrary types of assets. A decision model consists of a set of 

decisions and dependencies among them. Assets allow defining an 
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abstract view of the solution space to the degree of detail needed 

for subsequent product derivation. In a domain-specific meta-

model attributes and dependencies can be defined for the different 

asset types. Decisions and assets are linked with inclusion 

conditions defining traceability from the solution space to the 

problem space. Fig. 1 depicts a small part of an existing DOPLER 

decision model that describes the variability of the DOPLER tool 

suite [11]. The tool suite mainly comprises three separate tools: 

DecisionKing (DK) supports variability modeling; ProjectKing 

(PK) supports preparing models for product derivation; and the 

ConfigurationWizard (CW) supports end-users in deriving and 

configuring products. The variability model allows creating 

different variants of the DOPLER tool suite as described in [11]. 

Depending on the selection of DOPLER tools to be deployed, 

specific configuration parameters need to be set for deriving the 

tool suite for an end-user. For example, setting the resolution in 

advance is only relevant for the CW tool. 

 

Figure 1. Example of a simplified DOPLER decision model 

with five interdependent decisions. 

The key concepts in the DOPLER language relevant for the 

purpose of verification are as follows (see [7] for details): 

The Decision Type defines the range of values which can be 

assigned to a decision. The decision types in DOPLER are 

Boolean, String, Number and Enumeration. Boolean decisions in 

DOPLER (cf. decision glossary in Fig. 1) can be set to true or 

false. String decisions can take any text as a value. Number 

decisions take a floating point value (cf. decision width in Fig. 1). 

Enumeration decisions have two or more (String) values to select 

from and a cardinality defining the minimum and maximum 

number of values to be selected. In the example shown in Fig. 1, 

scope is an Enumeration decision with two possible values 

(“assemble yourself”, “complete suite”) and a cardinality of 1:1. 

Decision Attributes are properties of decisions. For example, the 

question (“What to buy?”; cf. Fig. 1) is presented to the user when 

enacting the decision model during product derivation. A 

description allows further documentation of the decision. Other 

attributes can be defined by the modeler. 

A Visibility Condition defines for a decision when it becomes 

visible to the user during product derivation depending on values 

set to other decisions. For example, it does not make sense to ask 

a user about specific properties of the user interface of a tool (e.g., 

the resolution of the tool "CW"; cf. Fig. 1) if the user has not yet 

decided whether the CW tool should be part of the derived 

product. The visibility condition “true” of decision scope means 

that it becomes a “root decision” which is always visible during 

product derivation. The function isTaken is used to make a 

decision (e.g., glossary) visible as soon as another decision (e.g., 

scope) is taken regardless of its value. 

Decision Effects specify dependencies between decisions as rules 

in an event condition action pattern (i.e., when a decision is taken 

and a certain condition is fulfilled, the specified actions are 

performed). This mechanism allows automatically setting values 

of other decisions depending on some condition. For example, a 

constraint in the form resolution==”800x600” implies 

width==800 could be specified using the decision effect rule if 

(resolution==”800x600”) then width==800 (cf. Fig. 1). 

A Validity Condition constrains the range of possible values for 

a particular decision. For example, a Number decision (e.g., 

width; cf. Fig. 1) can practically take any number as a value. By 

defining a validity condition this range can be constrained, e.g., to 

only allow values between 800 and 1680. 

An asset model defines the reusable assets of a product line and 

the dependencies among them. Fig. 2 depicts an example using 

the asset types Plug-in and Setting which are required in the 

DOPLER tool suite [11]. 

Plugin

-name : string = CW Plugin

-inclusion condition : string = contains(tools, "CW")

-description : string = .....

-location : string = svn://...

Plugin

-name : string = Glossary Plugin

-inclusion condition : string = glossary == true

-description : string = .....

-location : string = svn://...

Plugin

-name : string = Core Plugin

-inclusion condition : string = true

-description : string = .....

-location : string = svn://...

Setting

-name : string = Resolution width

-inclusion condition : string = isTaken(width)

-description : string = .....

-width_value : string = width

<<requires>><<requires>>

<<contributes to>>

 

Figure 2. A partial DOPLER asset model depicting a small set 

of assets, their attributes, and relationships between them. 

The inclusion conditions refer to the decisions from Fig. 1. 

Asset Attributes are used to define properties of an asset, like its 

name and description. For instance, in Fig. 2 the asset CW Plugin 

of asset type Plugin has the additional attribute location and the 

asset Resolution width of asset type Setting has the additional 

attribute width_value. 

Asset Dependencies define relationships between assets. 

Arbitrary relationship types with different semantics [7] can be 

predefined in DOPLER meta-models to enable modeling 

structural or functional dependencies. Examples of possible 

What to buy? 

(name: scope; expected val 1:1): 

{“assemble yourself”, “complete suite”}) 

Which tools? 

(name: tools; expected val 1:3): 

{“CW”, “DK”, “PK”}) 

Include glossary? 

(name: glossary; 

expected val: bool) 

Default resolution? 

(name: resolution; 

expected val 1:1): 

{“800x600”, …}) 

isTaken(scope) 

contains(tools, “CW”) 

Width? 

(name: width; 

expected val: number) 

Validity Cond. Visibility Cond. Decision Effect 

if(resolution==”800x600”)then width=800 

width>=800 && 

width<=1680 

scope==“assemble yourself” 



relationships are requires, contributes to or implements. For 

instance, the asset CW Plugin requires the Core Plugin and the 

Resolution width setting contributes to CW Plugin. 

Inclusion Conditions link assets to decisions. They describe for 

an asset under which condition it is part of the derived product. 

One asset can depend on the values of multiple decisions and 

arbitrary conditions can be defined. For instance, the asset CW 

Plugin is included if the set of values for Enumeration decision 

tools (cf. Fig. 1) contains the value CW. This means that the asset 

is included if the answer to the decision is CW, but also in the 

cases (CW, DK); (CW, PK); or (CW, DK, PK). 

3. REPRESENTING DOPLER MODELS AS 

CONSTRAINT PROGRAMS 
Creating a constraint-based representation of DOPLER models 

allows us to implement automatic reasoning operations (here: 

verification) on DOPLER variability models. We use the 

constraint solver GNU Prolog [6] but other solvers may also be 

used to execute these operations, if they support Boolean and 

arithmetic constraints over integer values (an example would be 

Choco [13]). Product line requirements can be easily expressed in 

terms of constraints over integers. We decided to use GNU Prolog 

to solve the resulting constraints for several reasons: 

(i) constraints can be expressed in a very declarative way [17] 

thanks to the Prolog layer and to a wide variety of predefined 

constraints; (ii) the GNU Prolog constraint solver is very efficient; 

and (iii) this system is developed by our team. 

3.1 Background: Constraint Programming  
Constraint Programming (CP) emerged in the 1990’s as a 

paradigm to tackle complex combinatorial problems in a 

declarative manner [22]. CP extends programming languages with 

the ability to deal with undefined variables of different domains 

(e.g. Integers, Reals, Booleans, ...) and specific declarative 

relations between these variables called constraints. Constraints 

are solved by specialized algorithms which are adapted to their 

specific domains and therefore can be much more efficient than 

generic logic-based engines. A constraint is a logical relationship 

among several unknowns (or variables) each one taking a value in 

a given domain of possible values. A constraint thus restricts the 

possible values that variables can take. A Constraint Satisfaction 

Problem (CSP) is defined as a triple (X, D, C), where X is a set of 

variables, D is a set of domains, i.e., finite sets of possible values 

(one domain for each variable), and C is a set of constraints 

restricting the values that the variables can take simultaneously.  

Classical CSPs usually consider finite domains for the variables 

(Integers) and solvers use propagation-based methods [3, 22]. 

Such solvers keep an internal representation of variable domains 

and reduce them monotonically to maintain a certain degree of 

consistency with regard to the constraints. In modern CP 

languages [6, 19], many different types of constraints exist and 

are used to represent real-life problems: arithmetic constraints, 

e.g., X * Y < Z, meaning that the resulting value of X multiplied 

by Y must be less than the value of Z; symbolic constraints, e.g., 

atmost(N, [X1,X2,X3],V), meaning that at most N variables 

among [X1, X2, X3] can take the value V; global constraints, e.g., 

all different(X1, X2, …,Xn), meaning that all variables should 

have different values; and reified constraints (e.g., BoolExpr1 

==> BoolExpr2 constrains BoolExpr1 to imply BoolExpr2 allows 

the user to reason about the truth value of a constraint). 

Solving constraints is done by first reducing the variable domains 

by propagation techniques to eliminate inconsistent values within 

domains. This is followed by finding values for each constrained 

variable in a labeling phase. Variables are grounded iteratively by 

fixing a value and propagating its effect onto other variable 

domains (again applying the same propagation-based techniques). 

The labeling phase can be improved using heuristics concerning 

the order in which variables are considered as well as the order in 

which values are tried in the variable domains. 

3.2 Converting DOPLER Models to 

Constraint Programs 
Constraint programs (CPs) are represented by variables and 

relationships among them [17]. For representing DOPLER as 

constraint programs, we first need to identify the DOPLER model 

elements defining the variability of a product line as only those 

are relevant in this case. Attributes like the description attribute of 

an asset or a decision do not affect variability and can thus be 

ignored in the constraint representation. The representation of 

DOPLER models as constraint programs hence has the following 

properties: 

 Each decision will be represented as a CP variable 

 Each asset will be represented as a CP variable. 

 Let D be a decision with a visibility condition. If the 
visibility condition indicates that the decision is not 
visible, the corresponding variable is assigned with 
zero (0). If the visibility condition is a formula, the 
variable representing the decision is assigned with 
that particular formula. If the visibility condition 
indicates that the decision is always visible, the 
variable representing the decision is affected with 
one (1). If the visibility condition of the decision D 
is not defined, its domain is {0,1}. 

 For Number and String decisions the validity 
condition becomes the domain of variables 
representing these decisions. The domains of all 
variables are finite and must be composed of integer 
values. 

 The domain of Boolean and Enumeration decisions 
is mapped into a {0,1} domain. Zero indicates that 
nothing has been selected and one indicates the 
selection of the associated variable. 

 The domain of assets is mapped into a {0, 1} 
domain. If the variable representing an asset takes 
the value 0 in a configuration process it means that 
the asset is not included. If it takes the value 1, the 
asset will be included in a derived product.  

 Asset dependencies are described as constraints. 

 Decisions, assets, and dependencies among them 
can be mapped into CPs by using the following 
rules. 

Decision type and validity condition: Let D be a decision, type 

be its type and valc its validity condition. If D.type = Boolean or 

Enumeration then the equivalent constraint is D ∈ {0, 1}. If 

D.type = Number or String then the equivalent constraint is D ∈ 



valc. Note that the validity condition of String decisions must be 

previously represented as integer values. For example, a String 

decision with validity condition valc = {Sunday, Monday, 

Tuesday} can be represented as valc={1, 2, 3}, where 1 means 

Sunday, etc. If D.type = Enumeration, let <m, n> be its 

cardinality and DOpt1, DOpt2, ..., DOpti, a set of i decision 

options grouped in cardinality <m, n>. Then the corresponding 

constraint is: DOpt1 ∈ {0, 1} ˄ DOpt2 ∈ {0, 1}˄, ..., DOpti ∈ {0, 

1} ˄ D ⇔ m ≤ DOpt1 + DOpt2 + ...+ DOpti ≤ n. 

Visibility condition: Let D be a decision and visc its visibility 

condition. If visc = false then D = 0. If visc = true then D =1. If 

visc is a different expression, then the corresponding constraint is: 

D ⇒ visc. Note that a visibility condition (i.e., visc) can be true, 

false or depending on one or more decisions and their values (e.g., 

scope==“assemble yourself” or isTaken(scope)). 

Decision Effects: Let D be a decision and df its decision effect. 

The corresponding constraint is: D ⇒ df. 

Asset Inclusion Conditions: Let A be an asset and ic its inclusion 

condition. The corresponding constraint is: A ⇒ ic. 

Asset Dependencies: Let A be an asset, ad its dependency and 

type its type. If type is “requires”, the corresponding constraint is: 

A ⇒ ad. If type is “excludes”, the corresponding constraint is: A * 

ad = 0. This means that if A is selected (equal to 1), ad must not 

be selected (must be equal to 0) and vice-versa. Currently, we do 

not take into account other types of asset dependencies (like 

parent or child). 

The conversion algorithm has two main phases presented in the 

following pseudo-code (Algorithm 1). First, the algorithm 

navigates through the decision model and then through the asset 

model. In both cases, we gather the relevant information of 

decisions and assets and translate them into constraints in CP. 

Relevant information means information affecting the variability 

as described above; for example, a description attribute does not 

affect the variability of the product line model. Our algorithm for 

converting DOPLER variability models is implemented as an 

Eclipse plug-in that uses the API of the DOPLER tool suite [8]. 

Algorithm 1. Our algorithm for converting DOPLER models 

to constraint programs. The variable DM represents the 

DOPLER model to be transformed and the variable CP 

accumulates the results of each transformation. CP is the 

resulting constraint program representing DM. 

CP = ""; 

for each decision D in DM{ 

 if D.type == Boolean { 

   CP += "D ∈ {0, 1}"; 

   visc = D.getVisibilityCondition(); 

   if visc == false { CP += "D = 0";} 

   else if visc == true {CP += "D = 1";} 

   else { CP += "D ⇒ visc";} 

   df = D.getDecisionEffect(); 

   CP += "D ⇒ df"; 

 } 

 else if D.type == Enumeration { 

   CP += "D ∈ {0, 1}"; 

   m, n = D.getCardinality(); 

   DOpt1, DOpt2,...,DOpti=D.getDecOptions(); 

   CP += "DOpt1, DOpt2,...,DOpti ∈ {0, 1}"; 

   CP += "D ⇔ m≤DOpt1+DOpt2+...+DOpti≤n"; 

   visc = D.getVisibilityCondition(); 

   if visc == false { CP += "D = 0";} 

   else if visc == true {CP += "D = 1";} 

   else { CP += "D ⇒ visc";} 

   df = D.getDecisionEffect(); 

   CP += "D ⇒ df"; 

 } 

 else if D.type == Number { 

   val = representValidityConditionAsCP(); 

   CP += "D ∈ val"; 

   visc = D.getVisibilityCondition(); 

   if visc == false { CP += "D = 0";} 

   else if visc == true {CP += "D = 1";} 

   else { CP += "D ⇒ visc";} 

   df = D.getDecisionEffect(); 

   CP += "D ⇒ df"; 

 } 

 else if D.type == String { 

   valc = representValidityConditionAsCP(); 

   CP += "D ∈ valc"; 

   visc = D.getVisibilityCondition(); 

   if visc == false { CP += "D = 0";} 

   else if visc == true {CP += "D = 1";} 

   else { CP += "D ⇒ visc";} 

   df = D.getDecisionEffect(); 

   CP += "D ⇒ df"; 

 } 

} 

for each asset A in DM{ 

 CP += "A ∈ {0, 1}"; 

 ic = A.getInclusionCondition(); 

 if ic is not null {  

   CP += "A ⇒ ic"; 

 } 

 ad = A.getDependency(); 

 if A.type == requires { 

   CP += "A ⇒ ad";  

 } 

 else if A.type == excludes { 

   CP += "A * ad = 0";  

 } 

} 

Write ("The constraint program representation of the 

DOPLER model DM is: " + CP); 

4. FORMAL VERIFICATION OF DOPLER 

MODELS 
The automated verification of DOPLER variability models has 

the goal to find defects and its sources using automated and 

efficient mechanisms. As the manual verification of variability 

models is error-prone and tedious we propose an automated 

solution. Our approach offers a collection of operations which are 

applied on a DOPLER model and return the evaluation results 

intended by the operation. We use a product line model of the 



DOPLER tool suite (cf. Fig. 1 and Fig. 2) [11] as an example to 

illustrate our approach. The currently supported operations are: 

Void model. A model is void and useless if it defines no products 

at all. The void model operation returns true if the model is void 

or false otherwise. Several methods have been proposed to check 

for void models [21, 2, 20, 15]. Our approach determines if there 

is at least one configuration that can be generated based on the 

defined decisions. If the model is not void our constraint solver 

will give us the first configuration.  

The example model (cf. Fig. 1 and 2) is not void because it can 

generate at least one product (e.g., if the scope decision is taken, 

the option “complete suite” is selected and the decision glossary 

is resolved to true, one product thus may be {Glossary Plugin, 

Core Plugin}). Otherwise, if the visibility condition of the root 

decision scope (first and only decision visible at the beginning 

when starting product derivation) is set to false, then no other 

decisions will become visible and answerable and therefore no 

products can be derived (the model would be void in this case). 

Non-attainable validity conditions’ and domains’ values. This 

operation either (i) takes a collection of decisions as input and 

returns the decisions that cannot attain one or more values of its 

validity condition or (ii) takes a collection of assets as input and 

returns the assets that cannot attain one of the values of its 

domain. A non-attainable value of a validity condition or a 

domain is a value that can never be taken by a decision or an asset 

in a valid product. Non-attainable values are undesired because 

they give the user a wrong idea of the values that decisions and 

assets modeled in the product line model can take. 

In our example (cf. Fig. 1) the decision effect of the decision 

resolution is if resolution == 800X600 then width = 800. The 

validity condition of width is width ≥ 800 && width≤1680. In this 

example some values of width’s validity condition can never be 

taken, for example: 801 to 1023, 1025, etc. Thus, in this case, 

constraining the values of width to “width ≥ 800 && 

width≤1680” gives a wrong idea of the values that decision width 

can take. Instead, a more precise definition of the domain value of 

width would thus be {800, 1024, …}. 

Dead decisions and assets [21, 20, 24, 26]. This operation takes a 

collection of decisions and assets as input and returns the set of 

dead decisions and assets (if some exist) or false otherwise. A 

decision is dead if it never becomes available for answering it. An 

asset is dead if it cannot appear in any of the products of the 

product line. The presence of dead decisions and assets in product 

line models indicates modeling errors and intended but 

unreachable options. A decision can become dead (i) if its 

visibility condition can never evaluate to true (e.g., if 

contradicting decisions are referenced in a condition); (ii) a 

decision value violates its own visibility condition (e.g., when 

setting the decision to true will in turn make the decision 

invisible); or (iii) its visibility condition is constrained in a wrong 

way (e.g., > 5 && < 3). An asset can become dead (i) if its 

inclusion depends on dead decisions, or (ii) if its inclusion 

condition is false and it is not included by other assets (due to 

requires dependencies to it). Dead variables in CP are variables 

than can never take a valid value (defined by the domain of the 

variable) in the solution space. Thus, our approach consists in 

evaluating each non-zero value of each variable’s domain. If a 

variable cannot attain any of its non-zero values, the variable is 

considered dead. The zero value of a CP variable in the domain of 

product lines means that this variable has not been selected. 

In our example (cf. Fig. 1 and 2) if the visibility condition of the 

decision glossary is set to false by the modeler (zero in CP) then 

the related asset Glossary Plugin will never be selected for any 

product during product derivation. 

Redundant relationships. This operation takes a relationship as 

input and returns true if removing the relationship does not 

change the space of possible solutions. Redundant relationships in 

product line models should be avoided as they do not alter the 

space of possible solutions while increasing computational effort 

in derivation and analysis [25] as well as maintenance effort 

during product line evolution. One way to identify redundant 

relationships is to calculate all possible products for a given 

DOPLER model including a specific relationship to be checked 

for redundancy and then to remove the relationship and re-

calculate all possible products using the changed model. If the 

results are equal and the same set of products are created before 

and after the elimination then the relationship can be considered 

redundant. This approach would however by very expensive and 

often infeasible. We thus find redundant relationships based on 

the fact that if a constraint program is consistent, then the 

constraint program plus a redundant constraint is consistent too. 

Therefore, denying the supposedly redundant relationship implies 

contradicting the consistency of the constraint program and then 

to make it inconsistent. For example, if a system where A requires 

B and B requires C is consistent, then the constraint A requires C 

is redundant and reaffirms the consistency of the original system. 

If instead of the constraint A requires C, we put its negation; the 

system becomes inconsistent and therefore without solution. We 

decided to implement this approach because it is more efficient 

and thus more scalable even in very large models due to the 

backtracking algorithm provided by the solver we use [6]. 

In our example (cf. Fig. 1) an additional decision core (not in 

Fig. 1) might be added offering the choice of including the asset 

Core Plugin (cf. Fig. 2) for products. If other assets include it 

anyway (for all configurations) through a requires dependency 

the new decision would be redundant. 

5. PRELIMINARY EVALUATION 
We tested the feasibility of our verification approach with two 

existing DOPLER variability models. The first model is a 

variability model of the DOPLER tool suite which has already 

been used as an example throughout this paper. This model 

represents the variability of the configurable DOPLER tool suite 

and comprises 14 decisions and 67 assets. The model has been 

created by the developers of the DOPLER tool suite. The second 

model defines the variability of a fictitious product line of digital 

cameras. This model has been created by analyzing datasheets of 

all available digital cameras of a well-known digital camera 

manufacturer. The model comprises 7 decisions and 32 assets.  

In our preliminary evaluation we seeded 33 defects in the 

DOPLER model and 22 defects in the camera model. The defects 

cover different types of problems to show the feasibility of the 

verification approach. For instance, the decision Wizard_height 

cannot take the values 1200, 1050, 1024 and 768 and the asset 

VAI_Configuration_DOPLER cannot take the value 1 (is never 

included for any product), even if these values take part in the 



corresponding variables’ domain. Furthermore, we measured the 

execution time of applying the approach for both models for the 

different types of analyses. 

Applying our verification approach to the DOPLER model has 

shown that the model is not void and can generate 23016416 

products. However, we discovered 18 defects related with non-

attainable domain values and 15 dead decisions and assets (these 

together are the 33 defects we have seeded before). By applying 

our verification approach on the digital camera model we 

obtained that the model is not void and can generate 442368 

products. In this model, we discovered 11 defects related with 

non-attainable domain values as well as 11 dead decisions and 

assets (these together are the 22 defects we have seeded before). It 

is noteworthy that the same number of defects was identified in a 

manual verification of both models. The automated verification 

found all of the seeded defects in the DOPLER model and all of 

the seeded defects in the camera model.  

Table 1 shows the number of defects found and the execution 

time (in milliseconds) corresponding to the verification operations 

on the models. No defects were found regarding the “Void 

model”, “False model” and “Redundant relationships” operations 

and the execution time was less than 1 millisecond for each one of 

these operations in each model. Our solver does not provide time 

measures of microseconds (10-6 seconds); thus, 0 milliseconds 

(10-3 seconds) must be interpreted as less than 1 millisecond. The 

model transformations from DOPLER models to constraint 

programs took about 1 second for each model. Our verification 

approach is fully automated with our Eclipse plug-in for 

verification and analysis of constraint-based variability 

models [14]. 

Table 1. Results of model verifications: Execution time (in 

milliseconds) and number of Defects found with each 

verification operation. 
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DOPLER 

81  

Variables 

Defects No No 18 15 No 

Time 0 0 125 47 0 

Camera 

39 

Variables 

Defects No No 11 11 No 

Time 0 0 16 15 0 

 

6. DISCUSSION & OPEN ISSUES 
The digital camera model (39 model elements) and DOPLER tool 

suite model (81 model elements) are rather small and of different 

size. In both cases, none of the operations took longer than 125 

milliseconds to be executed. The good performance and scale of 

performance of the verifications in these two models indicate 

scalability for larger models. However, a validation with a case 

study to analyze the computational complexity of our approach 

remains as future work. In addition, we plan to work on (i) the 

identification of additional and more specific verification criteria 

for DOPLER models to complement the rather generic checks 

proposed in this paper; (ii) support for the identification of the 

sources of defects found in verification operations like void 

models or redundant relationships; (iii) explanations for the 

defects found. For example, our approach allows identifying dead 

decisions and assets but does not provide any explanation about 

why this is an anomaly, how bad it is or what the scope of the 

anomaly in the model is; and (iv) providing fixing strategies for 

the identified defects. 
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