
HAL Id: hal-00707543
https://hal.science/hal-00707543v1

Submitted on 13 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Constraint Programming to Verify DOPLER
Variability Models

Raul Mazo, Paul Grünbacher, Wolfgang Heider, Rick Rabiser, Camille
Salinesi, Daniel Diaz

To cite this version:
Raul Mazo, Paul Grünbacher, Wolfgang Heider, Rick Rabiser, Camille Salinesi, et al.. Using Con-
straint Programming to Verify DOPLER Variability Models. 5th International Workshop on Variabil-
ity Modelling of Software-intensive Systems (VaMos’11), Jan 2011, Namur, Belgium. �hal-00707543�

https://hal.science/hal-00707543v1
https://hal.archives-ouvertes.fr

Using Constraint Programming to Verify DOPLER
Variability Models

Raul Mazo1,4, Paul Grünbacher2,3, Wolfgang Heider3, Rick Rabiser3, Camille Salinesi1, Daniel Diaz1
1
 CRI, Panthéon Sorbonne University, Paris, France

2
 Institute for Systems Engineering and Automation, Johannes Kepler University, Linz, Austria

3 Christian Doppler Laboratory for Automated Software Engineering, Johannes Kepler University, Linz, Austria
4
 Ingeniería de Sistemas, University of Antioquia, Medellín, Colombia

raulmazo@gmail.com, paul.gruenbacher@jku.at, {heider, rabiser}@ase.jku.at,
{camille.salinesi, daniel.diaz}@univ-paris1.fr

ABSTRACT

Software product lines are typically developed using model-based

approaches. Models are used to guide and automate key activities

such as the derivation of products. The verification of product line

models is thus essential to ensure the consistency of the derived

products. While many authors have proposed approaches for

verifying feature models there is so far no such approach for

decision models. We discuss challenges of analyzing and

verifying decision-oriented DOPLER variability models. The

manual verification of these models is an error-prone, tedious, and

sometimes infeasible task. We present a preliminary approach that

converts DOPLER variability models into constraint programs to

support their verification. We assess the feasibility of our

approach by identifying defects in two existing variability

models.

Categories and Subject Descriptors

D.2.1 [Requirements/Specifications]: Languages.

D.2.4 [Software/Program Verification]: Formal methods.

General Terms

Algorithms, Experimentation, Languages, Verification.

Keywords

Verification, Decision-oriented variability models, software

product lines, constraint programming.

1. INTRODUCTION AND MOTIVATION
Models are used in software product lines to define, analyze, and

communicate the variability of systems and to support the

derivation of new products. For instance, feature-oriented

modeling languages [5, 12], decision-oriented approaches [4, 18],

UML-based techniques [10], and orthogonal approaches [16] have

been proposed for defining variability. The formal verification of

variability models is an important issue in product line

engineering to identify defects that would otherwise lead to

inconsistent products. Many authors have proposed approaches to

formally analyze and verify feature models [2, 15, 20, 21, 24, 26].

However, so far no approaches have been proposed to formally

verify decision models.

The decision-oriented product line engineering approach

DOPLER has been developed in collaboration with two industry

partners over the last years [7, 8]. DOPLER focuses on product

derivation and aims at supporting users configuring products. The

analysis and verification of DOPLER decision models is currently

primary supported at syntax level, i.e., the conditions and rules in

DOPLER models can be checked for syntactical correctness.

Furthermore, an incremental consistency checker [23] has been

developed supporting modelers in checking the consistency of

model elements and the code base during domain engineering.

This approach however does not support detecting defects that

can lead to inconsistent products. The formal semantics of

DOPLER variability models have been described in earlier

work [7]. Here we focus on the verification of DOPLER

variability models.

The approach presented in this paper uses constraint programming

to support the verification of DOPLER variability models using

an existing constraint solver. We first describe decision-oriented

DOPLER variability models with a focus on the model elements

and dependencies relevant for subsequent verification, refer to [7]

for the formal semantics behind. We then briefly introduce

constraint programming and describe our approach of converting

DOPLER variability models into constraint programs. We finally

show our support for formal verification of the converted

DOPLER models and present an initial feasibility study. We

conclude the paper with a discussion of open issues and an

outlook on future work.

2. DECISION-ORIENTED DOPLER

VARIABILITY MODELS
The DOPLER approach and tool support has been developed in a

research cooperation with two industry partners. The approach

has been successfully evaluated in practical settings in a number

of cases [9], e.g., for industrial automation systems and enterprise

resource planning systems. In DOPLER models, the product

line’s problem space is defined using decision models whereas the

solution space is specified using asset models comprising

arbitrary types of assets. A decision model consists of a set of

decisions and dependencies among them. Assets allow defining an

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

VaMoS '11, January 27-29, 2011 Namur, Belgium.

Copyright © 2011 ACM 978-1-4503-0570-9/01/11... $10.00.

abstract view of the solution space to the degree of detail needed

for subsequent product derivation. In a domain-specific meta-

model attributes and dependencies can be defined for the different

asset types. Decisions and assets are linked with inclusion

conditions defining traceability from the solution space to the

problem space. Fig. 1 depicts a small part of an existing DOPLER

decision model that describes the variability of the DOPLER tool

suite [11]. The tool suite mainly comprises three separate tools:

DecisionKing (DK) supports variability modeling; ProjectKing

(PK) supports preparing models for product derivation; and the

ConfigurationWizard (CW) supports end-users in deriving and

configuring products. The variability model allows creating

different variants of the DOPLER tool suite as described in [11].

Depending on the selection of DOPLER tools to be deployed,

specific configuration parameters need to be set for deriving the

tool suite for an end-user. For example, setting the resolution in

advance is only relevant for the CW tool.

Figure 1. Example of a simplified DOPLER decision model

with five interdependent decisions.

The key concepts in the DOPLER language relevant for the

purpose of verification are as follows (see [7] for details):

The Decision Type defines the range of values which can be

assigned to a decision. The decision types in DOPLER are

Boolean, String, Number and Enumeration. Boolean decisions in

DOPLER (cf. decision glossary in Fig. 1) can be set to true or

false. String decisions can take any text as a value. Number

decisions take a floating point value (cf. decision width in Fig. 1).

Enumeration decisions have two or more (String) values to select

from and a cardinality defining the minimum and maximum

number of values to be selected. In the example shown in Fig. 1,

scope is an Enumeration decision with two possible values

(“assemble yourself”, “complete suite”) and a cardinality of 1:1.

Decision Attributes are properties of decisions. For example, the

question (“What to buy?”; cf. Fig. 1) is presented to the user when

enacting the decision model during product derivation. A

description allows further documentation of the decision. Other

attributes can be defined by the modeler.

A Visibility Condition defines for a decision when it becomes

visible to the user during product derivation depending on values

set to other decisions. For example, it does not make sense to ask

a user about specific properties of the user interface of a tool (e.g.,

the resolution of the tool "CW"; cf. Fig. 1) if the user has not yet

decided whether the CW tool should be part of the derived

product. The visibility condition “true” of decision scope means

that it becomes a “root decision” which is always visible during

product derivation. The function isTaken is used to make a

decision (e.g., glossary) visible as soon as another decision (e.g.,

scope) is taken regardless of its value.

Decision Effects specify dependencies between decisions as rules

in an event condition action pattern (i.e., when a decision is taken

and a certain condition is fulfilled, the specified actions are

performed). This mechanism allows automatically setting values

of other decisions depending on some condition. For example, a

constraint in the form resolution==”800x600” implies

width==800 could be specified using the decision effect rule if

(resolution==”800x600”) then width==800 (cf. Fig. 1).

A Validity Condition constrains the range of possible values for

a particular decision. For example, a Number decision (e.g.,

width; cf. Fig. 1) can practically take any number as a value. By

defining a validity condition this range can be constrained, e.g., to

only allow values between 800 and 1680.

An asset model defines the reusable assets of a product line and

the dependencies among them. Fig. 2 depicts an example using

the asset types Plug-in and Setting which are required in the

DOPLER tool suite [11].

Plugin

-name : string = CW Plugin

-inclusion condition : string = contains(tools, "CW")

-description : string =

-location : string = svn://...

Plugin

-name : string = Glossary Plugin

-inclusion condition : string = glossary == true

-description : string =

-location : string = svn://...

Plugin

-name : string = Core Plugin

-inclusion condition : string = true

-description : string =

-location : string = svn://...

Setting

-name : string = Resolution width

-inclusion condition : string = isTaken(width)

-description : string =

-width_value : string = width

<<requires>><<requires>>

<<contributes to>>

Figure 2. A partial DOPLER asset model depicting a small set

of assets, their attributes, and relationships between them.

The inclusion conditions refer to the decisions from Fig. 1.

Asset Attributes are used to define properties of an asset, like its

name and description. For instance, in Fig. 2 the asset CW Plugin

of asset type Plugin has the additional attribute location and the

asset Resolution width of asset type Setting has the additional

attribute width_value.

Asset Dependencies define relationships between assets.

Arbitrary relationship types with different semantics [7] can be

predefined in DOPLER meta-models to enable modeling

structural or functional dependencies. Examples of possible

What to buy?

(name: scope; expected val 1:1):

{“assemble yourself”, “complete suite”})

Which tools?

(name: tools; expected val 1:3):

{“CW”, “DK”, “PK”})

Include glossary?

(name: glossary;

expected val: bool)

Default resolution?

(name: resolution;

expected val 1:1):

{“800x600”, …})

isTaken(scope)

contains(tools, “CW”)

Width?

(name: width;

expected val: number)

Validity Cond. Visibility Cond. Decision Effect

if(resolution==”800x600”)then width=800

width>=800 &&

width<=1680

scope==“assemble yourself”

relationships are requires, contributes to or implements. For

instance, the asset CW Plugin requires the Core Plugin and the

Resolution width setting contributes to CW Plugin.

Inclusion Conditions link assets to decisions. They describe for

an asset under which condition it is part of the derived product.

One asset can depend on the values of multiple decisions and

arbitrary conditions can be defined. For instance, the asset CW

Plugin is included if the set of values for Enumeration decision

tools (cf. Fig. 1) contains the value CW. This means that the asset

is included if the answer to the decision is CW, but also in the

cases (CW, DK); (CW, PK); or (CW, DK, PK).

3. REPRESENTING DOPLER MODELS AS

CONSTRAINT PROGRAMS
Creating a constraint-based representation of DOPLER models

allows us to implement automatic reasoning operations (here:

verification) on DOPLER variability models. We use the

constraint solver GNU Prolog [6] but other solvers may also be

used to execute these operations, if they support Boolean and

arithmetic constraints over integer values (an example would be

Choco [13]). Product line requirements can be easily expressed in

terms of constraints over integers. We decided to use GNU Prolog

to solve the resulting constraints for several reasons:

(i) constraints can be expressed in a very declarative way [17]

thanks to the Prolog layer and to a wide variety of predefined

constraints; (ii) the GNU Prolog constraint solver is very efficient;

and (iii) this system is developed by our team.

3.1 Background: Constraint Programming
Constraint Programming (CP) emerged in the 1990’s as a

paradigm to tackle complex combinatorial problems in a

declarative manner [22]. CP extends programming languages with

the ability to deal with undefined variables of different domains

(e.g. Integers, Reals, Booleans, ...) and specific declarative

relations between these variables called constraints. Constraints

are solved by specialized algorithms which are adapted to their

specific domains and therefore can be much more efficient than

generic logic-based engines. A constraint is a logical relationship

among several unknowns (or variables) each one taking a value in

a given domain of possible values. A constraint thus restricts the

possible values that variables can take. A Constraint Satisfaction

Problem (CSP) is defined as a triple (X, D, C), where X is a set of

variables, D is a set of domains, i.e., finite sets of possible values

(one domain for each variable), and C is a set of constraints

restricting the values that the variables can take simultaneously.

Classical CSPs usually consider finite domains for the variables

(Integers) and solvers use propagation-based methods [3, 22].

Such solvers keep an internal representation of variable domains

and reduce them monotonically to maintain a certain degree of

consistency with regard to the constraints. In modern CP

languages [6, 19], many different types of constraints exist and

are used to represent real-life problems: arithmetic constraints,

e.g., X * Y < Z, meaning that the resulting value of X multiplied

by Y must be less than the value of Z; symbolic constraints, e.g.,

atmost(N, [X1,X2,X3],V), meaning that at most N variables

among [X1, X2, X3] can take the value V; global constraints, e.g.,

all different(X1, X2, …,Xn), meaning that all variables should

have different values; and reified constraints (e.g., BoolExpr1

==> BoolExpr2 constrains BoolExpr1 to imply BoolExpr2 allows

the user to reason about the truth value of a constraint).

Solving constraints is done by first reducing the variable domains

by propagation techniques to eliminate inconsistent values within

domains. This is followed by finding values for each constrained

variable in a labeling phase. Variables are grounded iteratively by

fixing a value and propagating its effect onto other variable

domains (again applying the same propagation-based techniques).

The labeling phase can be improved using heuristics concerning

the order in which variables are considered as well as the order in

which values are tried in the variable domains.

3.2 Converting DOPLER Models to

Constraint Programs
Constraint programs (CPs) are represented by variables and

relationships among them [17]. For representing DOPLER as

constraint programs, we first need to identify the DOPLER model

elements defining the variability of a product line as only those

are relevant in this case. Attributes like the description attribute of

an asset or a decision do not affect variability and can thus be

ignored in the constraint representation. The representation of

DOPLER models as constraint programs hence has the following

properties:

 Each decision will be represented as a CP variable

 Each asset will be represented as a CP variable.

 Let D be a decision with a visibility condition. If the
visibility condition indicates that the decision is not
visible, the corresponding variable is assigned with
zero (0). If the visibility condition is a formula, the
variable representing the decision is assigned with
that particular formula. If the visibility condition
indicates that the decision is always visible, the
variable representing the decision is affected with
one (1). If the visibility condition of the decision D
is not defined, its domain is {0,1}.

 For Number and String decisions the validity
condition becomes the domain of variables
representing these decisions. The domains of all
variables are finite and must be composed of integer
values.

 The domain of Boolean and Enumeration decisions
is mapped into a {0,1} domain. Zero indicates that
nothing has been selected and one indicates the
selection of the associated variable.

 The domain of assets is mapped into a {0, 1}
domain. If the variable representing an asset takes
the value 0 in a configuration process it means that
the asset is not included. If it takes the value 1, the
asset will be included in a derived product.

 Asset dependencies are described as constraints.

 Decisions, assets, and dependencies among them
can be mapped into CPs by using the following
rules.

Decision type and validity condition: Let D be a decision, type

be its type and valc its validity condition. If D.type = Boolean or

Enumeration then the equivalent constraint is D ∈ {0, 1}. If

D.type = Number or String then the equivalent constraint is D ∈

valc. Note that the validity condition of String decisions must be

previously represented as integer values. For example, a String

decision with validity condition valc = {Sunday, Monday,

Tuesday} can be represented as valc={1, 2, 3}, where 1 means

Sunday, etc. If D.type = Enumeration, let <m, n> be its

cardinality and DOpt1, DOpt2, ..., DOpti, a set of i decision

options grouped in cardinality <m, n>. Then the corresponding

constraint is: DOpt1 ∈ {0, 1} ˄ DOpt2 ∈ {0, 1}˄, ..., DOpti ∈ {0,

1} ˄ D ⇔ m ≤ DOpt1 + DOpt2 + ...+ DOpti ≤ n.

Visibility condition: Let D be a decision and visc its visibility

condition. If visc = false then D = 0. If visc = true then D =1. If

visc is a different expression, then the corresponding constraint is:

D ⇒ visc. Note that a visibility condition (i.e., visc) can be true,

false or depending on one or more decisions and their values (e.g.,

scope==“assemble yourself” or isTaken(scope)).

Decision Effects: Let D be a decision and df its decision effect.

The corresponding constraint is: D ⇒ df.

Asset Inclusion Conditions: Let A be an asset and ic its inclusion

condition. The corresponding constraint is: A ⇒ ic.

Asset Dependencies: Let A be an asset, ad its dependency and

type its type. If type is “requires”, the corresponding constraint is:

A ⇒ ad. If type is “excludes”, the corresponding constraint is: A *

ad = 0. This means that if A is selected (equal to 1), ad must not

be selected (must be equal to 0) and vice-versa. Currently, we do

not take into account other types of asset dependencies (like

parent or child).

The conversion algorithm has two main phases presented in the

following pseudo-code (Algorithm 1). First, the algorithm

navigates through the decision model and then through the asset

model. In both cases, we gather the relevant information of

decisions and assets and translate them into constraints in CP.

Relevant information means information affecting the variability

as described above; for example, a description attribute does not

affect the variability of the product line model. Our algorithm for

converting DOPLER variability models is implemented as an

Eclipse plug-in that uses the API of the DOPLER tool suite [8].

Algorithm 1. Our algorithm for converting DOPLER models

to constraint programs. The variable DM represents the

DOPLER model to be transformed and the variable CP

accumulates the results of each transformation. CP is the

resulting constraint program representing DM.

CP = "";

for each decision D in DM{

 if D.type == Boolean {

 CP += "D ∈ {0, 1}";

 visc = D.getVisibilityCondition();

 if visc == false { CP += "D = 0";}

 else if visc == true {CP += "D = 1";}

 else { CP += "D ⇒ visc";}

 df = D.getDecisionEffect();

 CP += "D ⇒ df";

 }

 else if D.type == Enumeration {

 CP += "D ∈ {0, 1}";

 m, n = D.getCardinality();

 DOpt1, DOpt2,...,DOpti=D.getDecOptions();

 CP += "DOpt1, DOpt2,...,DOpti ∈ {0, 1}";

 CP += "D ⇔ m≤DOpt1+DOpt2+...+DOpti≤n";

 visc = D.getVisibilityCondition();

 if visc == false { CP += "D = 0";}

 else if visc == true {CP += "D = 1";}

 else { CP += "D ⇒ visc";}

 df = D.getDecisionEffect();

 CP += "D ⇒ df";

 }

 else if D.type == Number {

 val = representValidityConditionAsCP();

 CP += "D ∈ val";

 visc = D.getVisibilityCondition();

 if visc == false { CP += "D = 0";}

 else if visc == true {CP += "D = 1";}

 else { CP += "D ⇒ visc";}

 df = D.getDecisionEffect();

 CP += "D ⇒ df";

 }

 else if D.type == String {

 valc = representValidityConditionAsCP();

 CP += "D ∈ valc";

 visc = D.getVisibilityCondition();

 if visc == false { CP += "D = 0";}

 else if visc == true {CP += "D = 1";}

 else { CP += "D ⇒ visc";}

 df = D.getDecisionEffect();

 CP += "D ⇒ df";

 }

}

for each asset A in DM{

 CP += "A ∈ {0, 1}";

 ic = A.getInclusionCondition();

 if ic is not null {

 CP += "A ⇒ ic";

 }

 ad = A.getDependency();

 if A.type == requires {

 CP += "A ⇒ ad";

 }

 else if A.type == excludes {

 CP += "A * ad = 0";

 }

}

Write ("The constraint program representation of the

DOPLER model DM is: " + CP);

4. FORMAL VERIFICATION OF DOPLER

MODELS
The automated verification of DOPLER variability models has

the goal to find defects and its sources using automated and

efficient mechanisms. As the manual verification of variability

models is error-prone and tedious we propose an automated

solution. Our approach offers a collection of operations which are

applied on a DOPLER model and return the evaluation results

intended by the operation. We use a product line model of the

DOPLER tool suite (cf. Fig. 1 and Fig. 2) [11] as an example to

illustrate our approach. The currently supported operations are:

Void model. A model is void and useless if it defines no products

at all. The void model operation returns true if the model is void

or false otherwise. Several methods have been proposed to check

for void models [21, 2, 20, 15]. Our approach determines if there

is at least one configuration that can be generated based on the

defined decisions. If the model is not void our constraint solver

will give us the first configuration.

The example model (cf. Fig. 1 and 2) is not void because it can

generate at least one product (e.g., if the scope decision is taken,

the option “complete suite” is selected and the decision glossary

is resolved to true, one product thus may be {Glossary Plugin,

Core Plugin}). Otherwise, if the visibility condition of the root

decision scope (first and only decision visible at the beginning

when starting product derivation) is set to false, then no other

decisions will become visible and answerable and therefore no

products can be derived (the model would be void in this case).

Non-attainable validity conditions’ and domains’ values. This

operation either (i) takes a collection of decisions as input and

returns the decisions that cannot attain one or more values of its

validity condition or (ii) takes a collection of assets as input and

returns the assets that cannot attain one of the values of its

domain. A non-attainable value of a validity condition or a

domain is a value that can never be taken by a decision or an asset

in a valid product. Non-attainable values are undesired because

they give the user a wrong idea of the values that decisions and

assets modeled in the product line model can take.

In our example (cf. Fig. 1) the decision effect of the decision

resolution is if resolution == 800X600 then width = 800. The

validity condition of width is width ≥ 800 && width≤1680. In this

example some values of width’s validity condition can never be

taken, for example: 801 to 1023, 1025, etc. Thus, in this case,

constraining the values of width to “width ≥ 800 &&

width≤1680” gives a wrong idea of the values that decision width

can take. Instead, a more precise definition of the domain value of

width would thus be {800, 1024, …}.

Dead decisions and assets [21, 20, 24, 26]. This operation takes a

collection of decisions and assets as input and returns the set of

dead decisions and assets (if some exist) or false otherwise. A

decision is dead if it never becomes available for answering it. An

asset is dead if it cannot appear in any of the products of the

product line. The presence of dead decisions and assets in product

line models indicates modeling errors and intended but

unreachable options. A decision can become dead (i) if its

visibility condition can never evaluate to true (e.g., if

contradicting decisions are referenced in a condition); (ii) a

decision value violates its own visibility condition (e.g., when

setting the decision to true will in turn make the decision

invisible); or (iii) its visibility condition is constrained in a wrong

way (e.g., > 5 && < 3). An asset can become dead (i) if its

inclusion depends on dead decisions, or (ii) if its inclusion

condition is false and it is not included by other assets (due to

requires dependencies to it). Dead variables in CP are variables

than can never take a valid value (defined by the domain of the

variable) in the solution space. Thus, our approach consists in

evaluating each non-zero value of each variable’s domain. If a

variable cannot attain any of its non-zero values, the variable is

considered dead. The zero value of a CP variable in the domain of

product lines means that this variable has not been selected.

In our example (cf. Fig. 1 and 2) if the visibility condition of the

decision glossary is set to false by the modeler (zero in CP) then

the related asset Glossary Plugin will never be selected for any

product during product derivation.

Redundant relationships. This operation takes a relationship as

input and returns true if removing the relationship does not

change the space of possible solutions. Redundant relationships in

product line models should be avoided as they do not alter the

space of possible solutions while increasing computational effort

in derivation and analysis [25] as well as maintenance effort

during product line evolution. One way to identify redundant

relationships is to calculate all possible products for a given

DOPLER model including a specific relationship to be checked

for redundancy and then to remove the relationship and re-

calculate all possible products using the changed model. If the

results are equal and the same set of products are created before

and after the elimination then the relationship can be considered

redundant. This approach would however by very expensive and

often infeasible. We thus find redundant relationships based on

the fact that if a constraint program is consistent, then the

constraint program plus a redundant constraint is consistent too.

Therefore, denying the supposedly redundant relationship implies

contradicting the consistency of the constraint program and then

to make it inconsistent. For example, if a system where A requires

B and B requires C is consistent, then the constraint A requires C

is redundant and reaffirms the consistency of the original system.

If instead of the constraint A requires C, we put its negation; the

system becomes inconsistent and therefore without solution. We

decided to implement this approach because it is more efficient

and thus more scalable even in very large models due to the

backtracking algorithm provided by the solver we use [6].

In our example (cf. Fig. 1) an additional decision core (not in

Fig. 1) might be added offering the choice of including the asset

Core Plugin (cf. Fig. 2) for products. If other assets include it

anyway (for all configurations) through a requires dependency

the new decision would be redundant.

5. PRELIMINARY EVALUATION
We tested the feasibility of our verification approach with two

existing DOPLER variability models. The first model is a

variability model of the DOPLER tool suite which has already

been used as an example throughout this paper. This model

represents the variability of the configurable DOPLER tool suite

and comprises 14 decisions and 67 assets. The model has been

created by the developers of the DOPLER tool suite. The second

model defines the variability of a fictitious product line of digital

cameras. This model has been created by analyzing datasheets of

all available digital cameras of a well-known digital camera

manufacturer. The model comprises 7 decisions and 32 assets.

In our preliminary evaluation we seeded 33 defects in the

DOPLER model and 22 defects in the camera model. The defects

cover different types of problems to show the feasibility of the

verification approach. For instance, the decision Wizard_height

cannot take the values 1200, 1050, 1024 and 768 and the asset

VAI_Configuration_DOPLER cannot take the value 1 (is never

included for any product), even if these values take part in the

corresponding variables’ domain. Furthermore, we measured the

execution time of applying the approach for both models for the

different types of analyses.

Applying our verification approach to the DOPLER model has

shown that the model is not void and can generate 23016416

products. However, we discovered 18 defects related with non-

attainable domain values and 15 dead decisions and assets (these

together are the 33 defects we have seeded before). By applying

our verification approach on the digital camera model we

obtained that the model is not void and can generate 442368

products. In this model, we discovered 11 defects related with

non-attainable domain values as well as 11 dead decisions and

assets (these together are the 22 defects we have seeded before). It

is noteworthy that the same number of defects was identified in a

manual verification of both models. The automated verification

found all of the seeded defects in the DOPLER model and all of

the seeded defects in the camera model.

Table 1 shows the number of defects found and the execution

time (in milliseconds) corresponding to the verification operations

on the models. No defects were found regarding the “Void

model”, “False model” and “Redundant relationships” operations

and the execution time was less than 1 millisecond for each one of

these operations in each model. Our solver does not provide time

measures of microseconds (10-6 seconds); thus, 0 milliseconds

(10-3 seconds) must be interpreted as less than 1 millisecond. The

model transformations from DOPLER models to constraint

programs took about 1 second for each model. Our verification

approach is fully automated with our Eclipse plug-in for

verification and analysis of constraint-based variability

models [14].

Table 1. Results of model verifications: Execution time (in

milliseconds) and number of Defects found with each

verification operation.

V
o
id

 m
o
d
el

F
al

se
 m

o
d
el

N
o
n
-a

tt
ai

n
ab

le

d
o
m

ai
n
s

D
ea

d
 D

ec
is

io
n
s

an
d
 A

ss
et

s

R
ed

u
n
d
an

t

re
la

ti
o
n
sh

ip
s

DOPLER

81

Variables

Defects No No 18 15 No

Time 0 0 125 47 0

Camera

39

Variables

Defects No No 11 11 No

Time 0 0 16 15 0

6. DISCUSSION & OPEN ISSUES
The digital camera model (39 model elements) and DOPLER tool

suite model (81 model elements) are rather small and of different

size. In both cases, none of the operations took longer than 125

milliseconds to be executed. The good performance and scale of

performance of the verifications in these two models indicate

scalability for larger models. However, a validation with a case

study to analyze the computational complexity of our approach

remains as future work. In addition, we plan to work on (i) the

identification of additional and more specific verification criteria

for DOPLER models to complement the rather generic checks

proposed in this paper; (ii) support for the identification of the

sources of defects found in verification operations like void

models or redundant relationships; (iii) explanations for the

defects found. For example, our approach allows identifying dead

decisions and assets but does not provide any explanation about

why this is an anomaly, how bad it is or what the scope of the

anomaly in the model is; and (iv) providing fixing strategies for

the identified defects.

7. ACKNOWLEDGMENTS
This work was partially funded by the Intra-European Fellowship

“Bourse de mobilité Île de France” and the French Minister of

Higher Education and Research. This work was also supported by

the Christian Doppler Forschungsgesellschaft, Austria and

Siemens VAI Metals Technologies.

8. REFERENCES
[1] D. Benavides, S. Segura, and A. Ruiz-Cortés, "Automated

analysis of feature models 20 years later," Information

Systems, vol. 35(6), pp. 615–636, 2010.

[2] D. Benavides, A. Ruiz-Cortes, and P. Trinidad, "Automated

reasoning on feature models, "Proc. of the 17th International

Conference on Advanced Information Systems Engineering

(CAiSE 2005), Springer-Verlag, 2005, pp. 491-503.

[3] C. Bessiere. Constraint propagation. In Francesca Rossi,

Peter van Beek, and Toby Walsh, editors, Handbook of

Constraint Programming, pp. 29-83. Elsevier, 2006.

[4] G. H. Campbell, Jr., S. R. Faulk, D. M. Weiss. Introduction

To Synthesis. INTRO_SYNTHESIS_PROCESS-90019-N,

Software Productivity Consortium, Herndon, VA, USA,

1990.

[5] K. Czarnecki, U. W. Eisenecker. Generative Programming:

Methods, Techniques, and Applications. Addison-Wesley,

2000.

[6] D. Diaz, C. Philippe. Design and implementation of the

GNU Prolog System. Journal of Functional and Logic

Programming, 2001(6), 2001. http://www.gprolog.org.

[7] D. Dhungana, P. Heymans, and R. Rabiser, "A Formal

Semantics for Decision-oriented Variability Modeling with

DOPLER, "Proc. of the 4th International Workshop on

Variability Modelling of Software-intensive Systems (VaMoS

2010), Linz, Austria, ICB-Research Report No. 37,

University of Duisburg Essen, 2010, pp. 29-35.

[8] D. Dhungana, R. Rabiser, P. Grünbacher, and T. Neumayer,

"Integrated tool support for software product line

engineering, "Proc. of the 22nd IEEE/ACM International

Conference on Automated Software Engineering (ASE'07),

Atlanta, Georgia, USA, ACM, 2007, pp. 533-534.

[9] D. Dhungana, P. Grünbacher, and R. Rabiser, "The

DOPLER Meta-Tool for Decision-Oriented Variability

Modeling: A Multiple Case Study," Automated Software

Engineering, 2010 (in press; doi: 10.1007/s10515-010-0076-

6).

[10] H. Gomaa. Designing Software Product Lines with UML.

Addison-Wesley, 2005.

[11] P. Grünbacher, R. Rabiser, D. Dhungana, and M. Lehofer,

"Model-based Customization and Deployment of Eclipse-

Based Tools: Industrial Experiences, "Proc. of the 24th

IEEE/ACM International Conference on Automated Software

Engineering (ASE 2009), Auckland, New Zealand,

IEEE/ACM, 2009, pp. 247-256.

[12] K. C. Kang, S. Cohen, J. Hess, W. Nowak, S. Peterson.

Feature-oriented domain analysis (FODA) feasibility study.

Technical Report CMU/SEI-90TR-21, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, PA, USA,

1990.

[13] F. Laburthe. Choco: implementing a cp kernel. In CP00 Post

Conference Workshop on Techniques for Implementing

Constraint programming Systems (TRICS), Singapour,

September 2000.

[14] R. Mazo, C. Salinesi, D. Diaz. VariaMos Eclipse plug-in.

https://sites.google.com/site/raulmazo/.

[15] M. Mendonca and D. Cowan, "Decision-making

coordination and efficient reasoning techniques for feature-

based configuration," Science of Computer Programming,

vol. 75(5), pp. 311-332, 2009.

[16] K. Pohl, G. Böckle, F. van der Linden. Software Product

Line Engineering: Foundations, Principles, and Techniques.

Springer, 2005.

[17] C. Salinesi, R. Mazo, D. Diaz, O. Djebbi. Using Integer

Constraint Solving in Reuse Based Requirements

Engineering. Proc. of the 18th IEEE International

Conference on Requirements Engineering (RE'10). Sydney,

Australia. IEEE, 2010, pp. 243-251.

[18] K. Schmid and I. John, "A Customizable Approach to Full-Life

Cycle Variability Management," Journal of the Science of

Computer Programming, Special Issue on Variability

Management, vol. 53(3), pp. 259-284, 2004.

[19] C. Schulte, P. J. Stuckey. "Efficient constraint propagation

engines," ACM Trans. Program. Lang. Syst., vol. 31(1), pp.

1-43, 2008.

[20] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, M.

Toro, "Automated error analysis for the agilization of feature

modeling," Journal of Systems and Software, vol. 81(6), pp.

883-896, 2008.

[21] P. van den Broek, I. Galvão, "Analysis of Feature Models

using Generalised Feature Trees," Proc. of the Third

International Workshop on Variability Modelling of

Software-intensive Systems (VaMoS 2009), Sevilla, Spain,

University Duisburg-Essen, ICB-Research Report No. 29,

2009, pp. 29-36.

[22] P. Van Hentenryck. Constraint Satisfaction in Logic

Programming. The MIT Press, 1989.

[23] M. Vierhauser, P. Grünbacher, A. Egyed, R. Rabiser, and W.

Heider, "Flexible and Scalable Consistency Checking on

Product Line Variability Models, "Proc. of the 25th

IEEE/ACM International Conference on Automated Software

Engineering (ASE 2010), Antwerp, Belgium, ACM, 2010,

pp. 63-72.

[24] T. von der Maßen and H. Lichter, "Deficiencies in Feature

Models, "Proc. of the Workshop on Software Variability

Management for Product Derivation - Towards Tool

Support, held in conjunction with SPLC 2004 - 3rd Software

Product Line Conference, Boston, MA, USA, 2004, pp. 14.

[25] H. Yan, W. Zhang, H. Zhao, H. Mei, "An optimization

strategy to feature models’ verification by eliminating

verification-irrelevant features and constraints," Proc. of the

11th International Conference on Software Reuse (ICSR

2009), Falls Church, VA, USA, Springer, 2009, pp. 65-75.

[26] W. Zhang, H. Zhao, H. Mei, "A propositional Logic-based

Method for Verification of Feature Models," Proc. of the 6th

International Conference on Formal Engineering Methods (

ICFEM), Seattle, WA, USA, Springer, 2004, pp. 115-130.

