
HAL Id: hal-00707534
https://hal.science/hal-00707534v1

Submitted on 12 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Criteria for the verification of feature models
Camille Salinesi, Raul Mazo, Daniel Diaz

To cite this version:
Camille Salinesi, Raul Mazo, Daniel Diaz. Criteria for the verification of feature models. INFORSID
2010, May 2010, Marseille, France. �hal-00707534�

https://hal.science/hal-00707534v1
https://hal.archives-ouvertes.fr

Criteria for the verification of feature models

Camille Salinesi

*
 — Raúl Mazo

*,**
 — Daniel Diaz

*

* CRI, Université Paris 1 - Panthéon Sorbonne

90, rue de Tolbiac

75013 Paris, France

{Camille.Salinesi, Daniel.Diaz}@univ-paris1.fr

** Ingeniería de Sistemas, Universidad de Antioquia

Medellín, Colombia

raulmazo@gmail.com

RÉSUMÉ. L’Ingénierie de lignes de produits est une approche pour le développement de

systèmes intensifs. L’expérience a montré les bénéfices de cette approche dans la réduction

du temps pour la misse en marché, la réutilisation et la réduction du coût de développement.

Les langages de modélisation, en particulier pour la création de modèles de caractéristiques

et processus de configurations sont actuellement supportés par quelques outils existants sur

le marché. Néanmoins, il manque des travaux de recherche sur les méthodes, techniques et

outils de vérification de modèles de caractéristiques. Aussi, il est crucial que la vérification

soit faite avec de bons critères car toute erreur dans le modèle de ligne de produits se

propage sur les modèles de produits dérivés de la ligne et génère des problèmes d’instabilité

dans l’architecture. Cet article présente un travail original concernant une revue de la

littérature sur les critères de verification de modèles de lignes de produits. Les critères sont

(i) classifiés par rapport aux buts qu’ils représentent et (ii) formalisés d’une manière

consistante en utilisant la logique de première ordre.

ABSTRACT. Product Line (PL) based development is a promising approach to develop software

intensive systems. Experience already report multiple benefits, such as reduced time to

market, better reuse, and reduced development costs. PL modelling languages, in particular

to create feature models (FMs), and PL configuration processes are now supported by market

tools. Although there is a wealth of research works on the theme of FM verification, there is

to our knowledge no comprehensive method, technique or tool. However, it is crucial that

when verifying a FM, the right criteria are considered: any error in a FM will inevitably

spread to the configured software and generate PL architecture stability issues, with a

serious risk of undermining the expected benefits. Dealing with key issues such as selecting

the ‘right’ set of verification criteria or defining a small core of criteria from which all other

could be derived calls for a consistent definition of all the criteria. This paper presents an

original literature survey of FM verification criteria in which all the criteria are (i) classified

according to their purpose and (ii) formalized consistently using first order logic.

MOTS-CLÉS : Modèles de lignes de produits, vérification, logique de premier ordre.

KEYWORDS: Product line model, verification, first order logic.

1. Introduction

Product line engineering is an emerging reuse based development approach that

is already known for allowing companies realize important improvements on time to

market, cost, productivity, quality and flexibility (SEI, 2010). In this approach a

family of products is specified using a Product Line Model (PLM), and each

product is specified by a product model that reuses elements from the PLM.

Specifying PLMs is called domain engineering, while specifying configuration

models is referred to as application engineering. The transition from domain to

application is achieved through a ‘configuration’ process that somehow consists in

adapting a PLM to specify a product that satisfies some requirement. Domain

engineering is particularly challenging because PLMs handle variability to imply

(sometimes large) collections of product models. One example of this difficulty is

during the optimization of a PLM. In this activity, goal functions involve multiple

products which, although they are implicit, need to be optimized too (Benavides et

al., 2006).

This paper is interested in the problem of verifying PLMs. The difficulty in PLM

verification results from the fact that the semantics of the model is represented by

the set of implicit product models that can be generated from it. Any error in a PLM

can affect product models, or the ability to specify the right products from it. For

example, the introduction of inadequate dependencies in the PLM can create

inconsistencies that forbid the configuration of products that should on the contrary

be permitted. Another example is when the PLM is poorly constrained and product

configurations that should not exist are still represented in the PLM.

One way to verify PLM is through manual checking. However, manual checking

is laborious and error-prone, especially in large and complex models. We therefore

believe that PLM verification should aim at avoiding errors both in PLMs and in the

resulting product models. By verification of a PLM (Bjorner, 2006) we mean the

formal process of determining whether or not a PLM satisfies a set of well defined

criteria. Literature review shows that several methods, techniques and tools have

already been proposed for the verification of PLMs, especially feature-oriented

modelling notations (Benavides et al., 2006), (von der Massen et al., 2004). One

observation is that although PLM verification criteria are often implemented using a

SAT tool, they are not systematically specified. Another observation is that while

there has been a focus of some approaches on the detection of so called ‘dead

features’ and ‘full-mandatory features’ in Feature Models (FM), other criteria have

also been proposed; twelve criteria are for instance identified in (von der Massen et

al., 2004). We collected a list of 15 verification criteria, formalized them in a

consistent way by means of First Order Logic (FOL) expressions, and classified

them according to their purpose. We have chosen FOL as our verification criteria

representation formalism because: (1) FOL provides a uniform way of specifying

the criteria. We consider that the formalized criteria are easy to adapt and reuse for

other languages than cardinality-based feature models. (2) Criteria are specified in a

natural way and therefore formulate the invariants that shall be respected. (3) The

collection of criteria can be augmented without altering existing criteria. (4) They

can be automatically implemented using an off-the-shelf satisfiability solver tool.

The remainder of this paper is structured as follows. Section 2 presents a formal

notation of feature based PL modelling languages. Section 3 presents our

classification of all the criteria identified in literature and also defined by us. Each

criterion classified in section 3 is formally specified in section 4 using first order

logic and respecting the notation presented in section 2. Section 5 present some

related works and discusses which criteria can be used for which feature-oriented

modelling dialect, other PLM languages, and other variability models. Section 6

concludes the paper and describes future works.

2. Reference feature meta model

There are a very large number of features notations to model product lines

(Czarnecki et al., 2005), (Gurp et al., 2001), (Streitferdt, 2003). The most well

known feature notation is FODA (Kang et al., 1990) the others are improvements to

FODA notation. As each has specific characteristics, we have decided to consider

the three most known dialects in this paper (a) the cardinality-based feature notation

that was proposed in Czarnecki et al (Czarnecki et al., 2005), (b) FORE (Family

Oriented Requirements Engineering) (Streitferdt, 2003) and (c) Bosch’s notation

(Gurp et al., 2001).

Figure 1 presents a meta-model of the 3 FODA dialects that we consider. The

meta-model shows that a PLM is composed of features (some with cardinalities) and

relationships between a source and a target feature. Two types of cardinalities are

represented in the meta-model, feature and group cardinalities. A feature Cardinality

indicates the number of times a single feature can appear in a product is a

composition of several optional relationships sharing the same father. The Group

Cardinality indicates the minimum and maximum number of features that can be

chosen together in a single product. The aim of the meta-model is to define all

concepts that will be used in predicates that we use in the formalization of each

verification criterion.

Figure 1. Meta-model for cardinality-based feature models.

Figure 2 provides an example of PLM specified using the cardinality-based

feature notation depicted in Figure 1. Model of Figure 2 is a directed acyclic graph

based on a tree where nodes represent features and edges represent variation

dependencies. Features specified in the graph can for instance, describe a cohesive,

identifiable unit of system functionality (Turner et al., 1999). In this model, optional

dependencies are represented with an empty circle at the end (For example Speed

Sensor, Feed Back, Visual, Audio and Vibration). Two other kinds of transverse

dependencies can be set between any feature in the tree to specify exclusion and

requirement constraints (For example Speed Sensor excludes Vibration). Visually, a

feature set is shown by an arc connecting all the edges that are part of it. In the

example of Figure 1, features Visual, Audio and Vibration are a feature set whit

[1..2] as group cardinality.

Supplementary

constraint:

If Processor’s

performance < 1.5 GHz

then only two sensors

could be chosen at

maximum.

Figure 2. Extract of a VLC product line model using cardinality–based feature

notation.

3. Classification of verification criteria for feature models

A PLM can have many anomalies. We have conducted a large survey based on

literature review (Batory, 2005), (Benavides et al., 2005), (Czarnecki et al., 2005),

(Czarnecki et al., 2006), (Elfaki et al., 2009), (Janota et al., 2007), (Salinesi et al.,

2009), (Trinidad et al., 2008), (van den Broek et al., 2009), (von der Massen et al.,

2004), (Wang et al., 2005), (Zhang et al., 2004). Our survey showed us that:

(a) Each anomaly can be searched for using a given criterion. The literature

review showed that some verification criteria are more related to expected qualities

of the PLMs (for example expressiveness), while on the other hand there are some

errors for which no criterion exists at all in the literature. Redundancy is an example

of error for which no verification criterion exists (at least to our knowledge).

(b) Certain criteria are related to semantic anomalies detection in the PLM (for

example, the no existence of dead features in the PLM, a dead feature is a feature

that can never be chosen), others are related to inconsistencies detection (for

example, the no existence of full-mandatory features requiring optional features. It

is inconsistent because the optional feature required by the full-mandatory becomes

full-mandatory also) while others are related to redundancies detection (for

example, the no existence of child features requiring a relative father. It is redundant

because if the child feature is selected means that all its ancestors have been selected

also, then the requiring relationship is redundant).

(c) While certain criteria are oriented to verify the ability of PLM to generate all

the possible products and only these ones, others are interested in quality of PLMs,

independently of their semantics (i.e., the collection of possible products). The later

criteria make a difference between two PLMs that generate the same products, but

where one does not verify some desirable properties, such as for example the

absence of any redundancy.

Figure 3. Classification of FMs verification criteria.

A last remark is that not all criteria have the same level of importance: as already

mentioned, some impact the semantics of PLMs, others can be used to improve

PLMs without altering their semantics. We propose a classification, shown in

Figure 3, which can be used to select the criteria that one wants to use to verify a

PLM. The leaves of the classification correspond to operational criteria, i.e., for

which verification is unique, which can be operationalized using FOL.

Redundancy-free
criteria

Consistency
criteria

Error-free
criteria

Expressiveness
criteria

PLM
Correctness

2. Richness or
no false PLM

1. No
void

4. Correct domain
of cardinalities

7. No exclusion
with a full-

mandatory feature
6. No requirement of a relative

child

9. No full-mandatory
features requiring
optional features

15. No
requirement
of a relative

father

14. No cyclic
require-type
relationships

12. No multiple require-
type relationships from
relative-path features

10. No exclusion in
a group cardinality

11. No full-mandatory
features required by

another feature

5. Correct number of selected
features from a group cardinality

3. Well defined boundaries

Dead features – free criteria

8. No exclusion
and requirement
at the same time

13. No transitive require-
type relationships

Our classification, in Figure 3, is structured based on these considerations. The

leaves are operational criteria, i.e., for which there exists a unique verification, thus

potentially predicative simple formalization.

4. Formalizing criteria

One thing is to identify criteria and define them in English. However, systematic

and reliable verification calls for further formalization. We have chosen to formalize

feature model verification criteria using first order logic because it provides a

uniform way of specifying the criteria, independently of the model formalism. This

section provides the formalization of criteria for verification of feature models, that

is, the formalization of requirements of any future tool that intends to automate the

verification of feature models. Prior to formalizing the criteria in FOL, a certain

number of predicates (Osman et al., 2008) must be defined:

- optional: identifies the relationships between a target feature B and it source A,

which is specified optional(A, B).

- mandatory: identifies the relationships between a target feature B and it source A,

which is specified mandatory(A, B).

- max: identifies the maximum number of features allowed to be selected in a

cardinality relationship. For example max (Father Feature A, 4) indicates that the

feature set which father is A has a 4 cardinality.

- min: Identifies the minimum number of features allowed to be selected in a

cardinality relationship, as in min (Father Feature A, 1).

- common: this predicate has two attributes, the first one identifies a feature and the

second one determines if this feature is full-mandatory or not (von der Massen et

al., 2004). For example, common (A, yes) indicates that the feature A is always

selected in any configuration.

- require: describes an inclusion dependency between two features. For example,

the constraint “if a product contains feature A it should also contain feature B” is

specified: require (A, B).

- exclude: describes an exclusion dependency between two features (or group of

features), that is the constraint “if a product contains Feature A, then it shall not

contain Feature B and vice-versa” is specified: exclude (A, B).

- count: counts and returns the number of times that a feature A appears in the PLM.

e.g. count (A).

- relativePath: returns true if a feature A is an element in the path from the root of

the PLM to another feature B. This is specified relativePath (A,B).

- featureSet: is the collection of features that belong to a group cardinality.

- find: returns true if a certain number of products can be derived from a PLM,

“false” elsewhere. For example find(M, 2) is true if the PLM allows to derive at

least 2 products.

In the next sub-sections criteria are grouped by family, as is showed in Figure 3. For

each criterion we present (a) an explanation and literature review; (b) the formal

definition; (c) one (or several) graphical examples of errors that it allows to identify;

and eventually (d) a comment about how to implement the criterion with a

constraint solver.

PLM Correctness

4.1. Expressiveness criteria

1. No void (Metzger et al., 2007), (Trinidad et al., 2008), (van den Broek et al.,

2009): a feature model is void if it defines no product at all. Some implement this

feature by calculating the number of products that can be derived from a PLM (van

den Broek et al., 2009). If the number of products that can be derived from the PLM

is equal to zero, the PLM is void. As this calculation is computationally difficult,

actually it is sometimes even impossible (Trinidad et al., 2008), we propose to

formalize it the other way round, i.e. by determining if there is at least one

configuration that can be generated. If the PLM is valid, a constraint solver will find

the first configuration quickly, and the process can be stopped.

voidMfind)1,(

2. Richness or no false PLM: a PLM from which only one valid product can be

configured is by definition invalid. In (Metzger et al., 2007) and (Trinidad et al.,

2008), authors propose to check this criterion using functions that return all the

products that can be configured from the PLM. These functions are automated by

using off-the-shelf solvers, but they are computationally expensive in very large

PLMs. There is however no need to look for all possible configurations to

demonstrate that a PLM can be configured in at least two products. Thus, we

propose to search the first two configurations to decide if the PLM is correct with

respect to the false PLM criterion. This is formalized in FOL as follows:

PLMfalseMfind _)2,(

4.2 Error-free criteria

3. Well defined boundaries (Czarnecki et al., 2005): the min value of the

cardinality must be inferior to the number of features grouped in a group cardinality.

The max value of the cardinality must be inferior or equal to the number of features

grouped in a group cardinality.

))(,(),min(),min(),(:, BAsummAmABAoptionalBA

))(,(),max(),max(),(:, BAsumnAnABAoptionalBA

Figure 4. In this example, sum (A, (B1,B2,B3,B4)) = 4. Thus,

the error is identified because 5 (min) is not inferior to 4, and 7

(max) is not inferior or equal to 4.

4. Correct domain of cardinalities (Czarnecki et al., 2005): in a cardinality [m..n],

m must be an Integer number and n must be either an Integer number or an

indefinite value indicated by the symbol *. The value of m must be inferior to the

value of n.

numbersInteger

nmnmnAmAA

:

)0()*()(),max(),min(:

Figure 5. In this example, the limits of the group cardinality

are not correct values, for instance: they are not ordered in an

incremental manner and they contain a negative value.

5. Correct number of selected features from a group cardinality (Czarnecki et

al., 2005), (Osman et al., 2008): in a configuration process, the number of selected

features from a group cardinality must be superior to min and inferior to max. This

criterion is applicable in PLCMs derived from cardinality-based PLMs.
),min())(,(),min()(),(:, mABAsummABselectBAoptionalBA

),max())(,(),max()(),(:, nABAsumnABselectBAoptionalBA

Figure 6. The number of selected child features is superior to

the max value. Therefore, the resulting configuration (shaded

features) does not correspond to the PLM.

6. No inclusion of a relative child: in this case a feature A require a feature B and at

the same time A and B are related by combinations of relationships. For example, A

and B are path relative features (B can be relative-full-mandatory to A or not).

errorBArequireBCexcludeCArequire

CArequireBCthrelativePaBAthrelativePaCBA

),()),(),((

)),(),((),((:,,

Figure 7. In (a), the relative path is defined

by a mandatory and an optional-type

relationships. It is defined in (b) by a require

and an optional-type relationships, and in

(c), the relative path between A and B is

composed of a require and an exclude-type

relationships.

4.2.1 Dead features-free criteria

7. No exclusion with a full-mandatory feature (Osman et al., 2008), (Trinidad et

al., 2008), (van den Broek et al., 2009), (von der Massen et al., 2004), (Zhang et al.,

2004), (Metzger et al., 2007): we can have two cases, in the first one, one of the

features is optional and in the second one, two features are mandatory. In the first

case, an optional feature is mutual exclusive to a full-mandatory feature.

Consequently, the optional feature can never be chosen in a configuration process

and is considered as a dead feature. In the second case, a mutual exclusion between

two full-mandatory features makes that both features become dead features. This

verification function also includes the case where A is a path-relative feature with

regard to a feature B (in this case, B can be either optional or mandatory, see Figure

8b).

)(),(

)),(),((),(:,

BedeadFeaturBAexclude

BAthrelativePanoBcommonyesAcommonBA

Figure 8. In (a), the full-mandatory feature A excludes

the optional feature B, this latest one become a dead

feature. In (b), a mutual exclusion between two

mandatory features makes that both features became

dead features.

8. No exclusion and requirement at the same time (Elfaki et al., 2009), (Osman et

al., 2008), (Trinidad et al., 2008), (von der Massen et al., 2004): a mutual exclusion

and a requirement between two features, simultaneously, make that the feature that

requires the second one becomes a dead feature. Thus, two features cannot be

mutual exclusive and required at the same time.

)(),()),(),((:, AedeadFeaturBAexcludeABrequireBArequireBA

Figure 9. In this case, feature A can never be selected due to mutual

exclusion and requirement with feature B at the same time.

4.3 Consistency criteria

9. No full-mandatory features requiring optional features (Trinidad et al., 2008),

(von der Massen et al., 2004): in this case there are optional features being required

by a full-mandatory feature. Consequently the optional feature is not optional

anymore but becomes a full-mandatory feature as well. This case is treated as an

error in (Trinidad et al., 2008).

ncyinconsisteBArequireyesAcommonBoptionalBA),(),()(_,:,

Figure 10. In this example, if a full-

mandatory feature A requires one optional

feature B, then B is not more optional and

becomes a full-mandatory feature as well.

4.4 Redundancy-free criteria

10. No exclusion in a group cardinality: In a cardinality set with only two

elements in which only one can be chosen, an exclude relationship between these

two elements is redundant.

redundantCBexcludeAAA

CAoptionalBAoptionalCBA

),()1,max())1,min()0,(min(

),(),(:,,

Figure 12. As in the cardinality max=1, this implies a mutual

exclusion between the child features and the dependency is

therefore superfluous.

11. No full-mandatory feature required by another feature (von der Massen et

al., 2004): a full-mandatory feature is implied by another feature. As the first feature

is already full-mandatory, the implication is superfluous.

redundantABrequireyesAcommonBA),(),(:,

Figure 13. B can or can not be a full-mandatory feature, in any

case, feature A is always selected and the require-type relationship

is redundant.

12. No multiple require-type relationships from relative-path features (von der

Massen et al., 2004): A feature B is included by multiple features A,C… whereas A

and C are relative-path features. The implication from C to B is then superfluous.

redundantBCrequireBArequireCAthrelativePaCBA),(),(),(:,,

Figure 14. In this example the implication from C to B is superfluous.

13. No transitive include-type relationships (von der Massen et al., 2004): a

feature A requires a feature C, C requires B and A requires B. As B is already

required by the transitive inclusion from A through C, the direct requirement from A

to B might be superfluous. The formal description of this criterion only reflects the

situation of three features, but it can be extended to more than three, following the

systematic construction defined in the next formula.

redundantBArequireBCrequireCArequireCBA),(),(),(:,,

Figure 15. This example shows a superfluous inclusion from A to B

since is already include from A through C.

14. No cyclic require-type relationships: a feature A includes a feature C, C

requires B and B requires A. The cycle can be started in any feature. In any case, the

latest include-type relationship is redundant since the triggered feature must be

already selected. The formal description of cyclic include-type relationships only

reflects the situation of three features, but it can be extended to more than three,

following the systematic construction defined in the next formula.

redundantABrequireBCrequireBArequireCBA),(),(),(:,,

Figure 16. If feature B is selected, then B requires A and A requires

C, therefore the B requires A relationship is redundant because feature

B is already selected.

15. No requirement of a relative father (Trinidad et al., 2008), (von der Massen et

al., 2004): elements of the same relative path must not be related by require-type

relationships. This case is not exactly an error, it is a redundancy.

redundancyABrequireBAthrelativePaBA),(),(:,

Figure 17. In this example, B requires A relationship is redundant.

5. Related works and discussion

Zhang et al. (Zhang et al., 2004) have proposed logical expressions to verify

three criteria in different binding times: (i) satisfiability, to “ensure that there is no

inconsistency in tailoring and binding actions”; (ii) usability, to “ensure that every

feature not yet selected has the possibility of being bound in some future binding

time”; and (iii) suitability, to “ensure that every feature not yet selected has the

possibility of being removed in some future binding time”. Zhang et al. hold that

these FOL verification criteria “can be automated by using model checking, such as

SMV1”. Czarnecki and Pietroszek (Czarnecki et al., 2006)’s approach support the

verification of feature-based models against templates using OCL-based well-

formed rules. They “give an automatic verification procedure which can establish

that no ill-formed template instances will be produced given a correct configuration

of the template’s feature model”, that is, their work is centered in verification

correctness of the instances of a PLM and not in the model itself. Batory (Batory,

2005) use grammar and propositional formulas, in order to represent basic FMs

using context–free grammars plus propositional logic enabling logic truth

maintenance systems and SAT solvers to identify contradictory (or inconsistency)

predicates in a FODA model and to “verify that a given combination of features

defines a product”. Batory’s approach is validated in the Guidsl tool (Batory, 2005),

which also assign a unique number to each PLM graph vertex, computes the

connected components of an undirected graph, computes the strongly connected

components of a directed graph, determines if there are cycles in a PLM graph,

computes a minimum spanning tree and computes the shortest path from a source

1 http://www-2.cs.cmu.edu/~modelcheck/smv.html

vertex to all other vertices. Boolean equations are also used by Benavides et al.

(Benavides et al., 2005) in order to analyze FODA models. Their analysis consists

in finding just one solution (with no preference as to which one), finding all

solutions and finding an optimal solution by means of an objective function defined

in terms of one or more variables. They have developed a tool2 that uses the

constraint satisfaction problem solver OPL Studio. Trinidad et al. (Trinidad et al.,

2008) has defined a method to detect dead features and full mandatory features

based on theory of diagnosis (Trinidad et al., 2008), the verification criteria that

they cover are cited in Table 1. Janota and Kiniry (Janota et al., 2007) use higher-

order logic (HOL) to reason about feature models, in particular, they propose HOL

expressions for root selectivity, existence of a path of selected features from the root

to a feature that has been selected, and cardinality satisfaction of a selected feature.

They also offer some lemmas formalized in HOL: (i) “If a group g has exactly the

admissible cardinality 1, and contains exactly one member m, then in any valid

configuration that selects the owner of that group, m is selected as well”; and (ii)

“Whenever a new feature tree ft2 is obtained from an existing feature tree ft1 by

removing some admissible cardinalities of a certain group g, the feature tree ft2 is a

specialization of the original tree ft1” implemented in the Mobius3 program

verification environment. Broek and Galvão (van den Broek et al., 2009) analyze

FODA models using generalized feature trees, in particular, they propose functions

to detect existence of products, dead features, products which contain a given set of

features, minimal set of conflicting constraints, to calculate the number and the list

of all products, and to generate explanation of dead features. Wang et al. (Wang et

al., 2005) proposed to use description logic and Protégé-OWL to verify consistency

of configuration models against its PLM. Their process consist in transform the

FODA model into OWL, then, load the resulted ontology into the OWL reasoner

FaCT++4 and check its consistency. Elfaki et al. (Elfaki et al., 2009) propose to use

FOL to detect dead features, inconsistencies due to contradictions between include

and exclude relationships, and to propose inconsistency-prevention in FMs. Their

innovative work is the proposition of expressions dealing with individuals and also

sets of the features, the verification criteria that they cover are indicated in Table 1.

Table 1 resumes our literature review of feature models verification criteria,

classified in Figure 3 and shows how to select a particular criterion according to the

modelling formalism in use. This literature review shows that verification criteria

are not systematically presented and treated across the literature. Also, that almost

all research efforts are centered in verification of FODA-like models, neglecting the

other formalisms. Finally, it is also showed in Table 1 that some of the verification

criteria presented in this paper have never been systematically tried and formalized,

as far as we know. Perhaps, because there are different levels of importance and the

research community has given more importance to some criteria that to others or

because some are more difficult to identify that others.

2 http://www.tdgseville.info/topics/spl
3

http://mobius.inria.fr/twiki/bin/view/Mobius

4 http://owl.man.ac.uk/factplusplus

Table 1. Literature overview of verification criteria that have been applied at

explicitly one or more PLM formalisms. Contributions highlighted in bold were not

automated by their authors.
 Languages

Criteria

FODA FOPLE FORM Czarnecki’s

app
FORE Bosch’s

approach

1. No void (Trinidad et al.,

2008), (van den

Broek et al.,

2009)

2. Richness or no

false PLM

3. Well defined

boundaries

N/A N/A N/A (Czarnecki

et al., 2005)

(Czarnecki

et al., 2005)
N/A

4. Correct domain

value of

boundaries

N/A N/A N/A (Czarnecki

et al., 2005)

(Czarnecki

et al., 2005)
N/A

5. Correct number

of selected

features from a

feature set

 (Czarnecki

et al., 2005)

(Czarnecki

et al., 2005)

6. No inclusion of

a relative child

7. No exclusion

whit a full

mandatory feature

(Elfaki et al.,

2009), (van

den Broek et

al., 2009),

(Trinidad et al.,

2008)

(Elfaki et

al., 2009)

(Elfaki et

al., 2009)

(Elfaki et al.,

2009)

(Elfaki et

al., 2009)

(Elfaki et

al., 2009)

8. No exclusion

and requirement

at the same time

(Elfaki et al.,

2009), (Osman

et al., 2008),

(Trinidad et al.,

2008), (van den

Broek et al.,

2009), (von der

Massen et al.,

2004)

(Elfaki et

al., 2009),

(Osman et

al., 2008)

(Elfaki et

al., 2009),

(Osman et

al., 2008)

(Elfaki et al.,

2009),

(Osman et

al., 2008)

(Elfaki et

al., 2009),

(Osman et

al., 2008)

(Elfaki et

al., 2009),

(Osman et

al., 2008)

9. No full-

mandatory

features requiring

optional features

(Trinidad et al.,

2008), (von der

Massen et al.,

2004)

10. No exclusion

in a group

cardinality

11. No full-

mandatory

features included

by another feature

(von der

Massen et al.,

2004)

12. No multiple

include-type

relationships from

relative-path

features

(von der

Massen et al.,

2004)

13. No transitive

include-type

relationships

(von der

Massen et al.,

2004)

14. No cyclic

include-type

relationships

(Batory, 2005)

15. No inclusion

of a relative father

(Trinidad et al.,

2008), (von der

Massen et al.,

2004)

Discussion

Verification of PLMs is an important task in domain and application

engineering. With the growth of the number of features in PLMs, manual checking

becomes very laborious and error-prone. In spite of the fact that many approaches

are proposed to fix these lacks, even a complete and formalism-independent method

of verification is necessary. However, our classification of verification criteria

allows better understands the similarities and differences between existing FMs

verification approaches and to enrich the verification criteria of PLMs. Besides, it

can be extended with other criteria. We have also formalized the criteria as an

attempt to set a base ground for automated verification of FMs based on an off-the-

shelf solver. Thus, these formalized criteria are the requirements of any future tool

that intends to automate the verification of feature models.

Our approach has been validated using the Stago’s and Baxter product line

models. Diagnostica Stago, Inc. is a French industry offering a set of hemostasis

instrumentation and optimized reagent kits for research as well as for routine

analysis. On the other hand, Baxter International Inc. develops, manufactures and

markets products for people with hemophilia, immune disorders, infectious diseases,

kidney disease, trauma, and other chronic and acute medical conditions. By

confidentially reasons we cannot present neither Stago’s nor Baxter’s product line

model, in which we have indentified 85% of its anomalies using our list or

verification criteria, classified in Figure 2. Criteria to identify the rest of anomalies,

like: the existence of a path from the root to a feature that has been selected or the

root selectivity, are not yet included in our classification. The improvement of our

criteria classification is part of our future work.

6. Conclusions and future work

Verification of PLMs is one of the most important challenges in product line

engineering. This error-prone activity has been centered, by the scientific

community, in some verification criteria for FODA-like models. Even if FODA is

one of the most used and accepted formalism to model product line systems, it is not

the only one language and it cannot be used in all different views of a system. In

this paper we explore some errors that not had been explored before, and arrange

our minimal collection of verification criteria in a classification that consider the

nature or the error-type that can be identified. Researchers and engineers can use

our FOL formalization and exhaustive explanation of each criterion to guide a PLM

verification process, as we have made in two real cases. We are conscious that even

though it is not possible to state that a collection of verification criteria ensures the

correctness of a cardinality-based FM, they improve the quality of the PLM.

Besides, our analysis of verification criteria based on common errors in different

types of FMs, can be used as base-line further verification analysis and automation

of PLMs. At present we are working on the development of a prototype that allows

automating the verification process of feature-based models. A first version of the

prototype has been presented in (Salinesi et al., 2009). Our aim is to create a

formalism-independent framework, in which, every PLM may be verified by means

of our extensible classification of criteria. Thus, although we have presented a

complete and up-to date literature review on verification of FMs (Table 1), there are

others PL modelling formalisms that have not been considered in this paper and that

are envisaged for future works.

7. References

Batory D., Feature Models, Grammars, and Propositional Formulas. In 9th International

Software Product Lines Conference (SPLC05), Rennes, France, 2005.

Benavides D., Ruiz-Cortés A., Trinidad P., Automated reasoning on feature models. In Proc.

of CAiSE’05, 2005, pp. 491–503.

Benavides D., Ruiz–Cortés A., Trinidad P., Segura S., A Survey on the Automated Analysis

of Feature Models. XV Jornadas de Ingenieria del Software y Bases de Datos JISBD’06.

José Riquelme - Pere Botella (Eds). CIMNE, Barcelona, 2006.

Bjorner D., Software Engineering 3: Domains, requirements and Software Design. Springer-

Verlag 2006

Czarnecki K., Helsen S., Eisenecker U., Formalizing cardinality-based feature models and

their specialization. Software Process Improvement and Practice, 10(1):7– 29, 2005

Czarnecki K., Pietroszek K., Verifying Feature-Based Model Templates Against Well-

Formedness OCL Constraints. 5th Int. Conference on Generative Programming and

Component Engineering, 2006.

Elfaki A., Phon-Amnuaisuk S., Kuan Ho C., Using First Order Logic to Validate Feature

Model. Third Int. Workshop VaMoS, 2009

Fantechi A., Gnesi S., Lami G., Nesti E., A Methodology for the Derivation and Verification

of Use Cases for Product Lines. In proceedings of SPLC2004, Boston, 2004.

Gurp J., Bosch J., Svahnberg M., On the Notion of Variability in Software Product Lines. In

the Working IEEE/IFIP Conference on Software Architecture (WICSA), 2001.

Janota M., Kiniry J., Reasoning about Feature Models in Higher-Order Logic. In 11th Int.

Software Product Line Conference (SPLC07), 2007.

Kang K., Cohen S., Hess J., Novak W., Peterson S., Feature-Oriented Domain Analysis

(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering

Institute, Carnegie Mellon University, November, 1990.

Metzger A., Heymans P., Pohl, K., Schobbens P., Saval G., Disambiguating the

Documentation of Variability in Software Product Lines. In Proc. of RE’07, 2007.

Osman A., Phon-Amnuaisuk S., Kuan Ho C., Knowledge Based Method to Validate Feature

Models. 12th Int. Software Product Line Conference, 2008.

Salinesi C., Rolland C., Mazo R., VMWare: Tool Support for Automatic Verification of

Structural and Semantic Correctness in Product Line Models. Third International

Workshop VaMoS, Spain, 2009.

SEI, Software Engineering Institute, Carnegie Mellon University, last consulted 11-04-2010

http://www.sei.cmu.edu/productlines/

Streitferdt D., Family-Oriented Requirements Engineering. PhD Thesis, Technical University

Ilmenau, 2003.

Trinidad P., Benavides D., Durán A., Ruiz-Cortés A., Toro M., Automated error analysis for

the agilization of feature modeling. Journal of Systems & Software – Elsevier, 2008.

Turner C., Fuggetta A., Lavazza L., Wolf A., A conceptual basis for feature engineering. J.

System Software 49, 1999.

van den Broek P., Galvão I., Analysis of Feature Models using Generalised Feature Trees.

Third International Workshop VaMoS, Sevilla-Spain, 2009.

von der Massen T., Lichter H., Deficiencies in feature models- Towards Tool Support,

Workshop on Software Variability Management for Product Derivation, 2004.

Wang H., Fang Li Y., Sun J., Zhang H., Verify Feature Models using Protégé-OWL.

ACM’05, Chiba, Japan, 2005.

Zhang W., Zhao H., Mei H., A propositional Logic-based Method for Verification of Feature

Models. 6th Int. Conference on Formal Engineering Methods ICEFEM, 2004.

http://www.sei.cmu.edu/productlines/

