
HAL Id: hal-00707523
https://hal.science/hal-00707523

Submitted on 1 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VMWare: Tool Support for Automatic Verification of
Structural and Semantic Correctness in Product Line

Models
Camille Salinesi, Colette Rolland, Raul Mazo

To cite this version:
Camille Salinesi, Colette Rolland, Raul Mazo. VMWare: Tool Support for Automatic Verification of
Structural and Semantic Correctness in Product Line Models. International Workshop on Variability
Modelling of Software-intensive Systems (VaMos), Jan 2009, Sevilla, Spain. pp.173. �hal-00707523�

https://hal.science/hal-00707523
https://hal.archives-ouvertes.fr

VMWare: Tool Support for Automatic Verification of Structural and
Semantic Correctness in Product Line Models

Camille Salinesi1, Colette Rolland1, Raúl Mazo1,2
1 CRI, Université Paris 1 – Sorbonne, 90, rue de Tolbiac, 75013 Paris, France

2 Ingeniería & Software, Universidad de Antioquia, Medellín, Colombia
{Camille.salinesi, Colette.Rolland}@univ-paris1.fr, raulmazo@gmail.com

Abstract

The verification of variability models is recognized
as one of the key challenges for automated
development of product lines. Some computational
tools have been proposed to verify product line models
and product line configurations models. VMWare is a
tool integrating different criteria to verify structural
and semantic correctness of models derived from the
FORE metamodel. Our tool gives the possibility of (i)
build feature-based product line models and product
line configuration models, (ii) verify their structural
and semantic correctness in a completely automated
manner and (iii) import/export them in XMI files.

1. Introduction

Feature Modelling is a mechanism to represent
requirements in the context of Software Product Lines
(SPL). A Feature Model (FM) defines features and
their usage constraints in product-lines (PL). Their
main purposes are: (i) to capture feature commonalities
and variabilities; (ii) to represent dependencies
between features; and (iii) to determine combinations
of features that are allowed and disallowed in the
product line. A feature is a product characteristic that
some stakeholders (e.g. users, sellers, engineers,
customers) consider important to include in the
description of the product line.

Automated analysis of FMs is recognized in the
literature as an important challenge in PL engineering
and is considered as an open issue by many SPL
researchers [1], [2], [4], [10]. Verification of FMs is
important for industry because any error in a Product
Line Model (PLM) will inevitably affect the
configuration models (PLCMs) and thereafter final
products. By verification of FMs we mean the formal
process of determining whether or not they satisfy well
defined verification criteria. Verification criteria can be
determined either by means of properties of the

specification itself, or by means of a collection of
properties of some other specification. FMs correctness
includes structural correctness and semantic
correctness.

This paper presents a prototype tool for PLMs and
PLCMs construction and verification. The tool is based
on a framework for the automated analysis of feature
models. Broadly speaking, it allows: (i) creating PLMs
and PLCMs; (ii) verifying structural correctness
criteria of PLMs and PLCMs; (iii) verifying semantic
correctness of PLMs; and (iv) verifying PLCMs in
regard to PLMs. The implementation is based on a
three-layer architecture and uses XMI files as a
mechanism to exchange the FMs with other tools.

The remainder of the paper is structured as follows.

Section 2 gives a brief overview of feature modeling
and of the verification process. Section 3 describes the
functionality and provides some implementations
details of the framework. Section 4 concludes the paper
and describes future works.

2. Feature Modeling and Verification

Feature modeling is the activity of identifying
externally visible characteristics of products in a
domain and organizing them into a feature model. The
notation considered in this paper is FORE notation
(Feature Oriented Requirements Engineering) [3].

The characteristics of the FORE notation are:  a feature diagram is a Directed Acyclic Graph

(DAG);  a feature is represented by a node of this graph;  relationships between features are represented by
links. There are two types of relationship, namely
variant dependency and transverse dependency;  variant dependencies can be mandatory or
optional. The collection of features related by
variant dependencies take the form of a tree;

 transverse dependencies can be of two kinds: the
excluding one or the requiring one;  optional relationships with the same father can be
grouped into a bundle. A relation can be member
of one and only one bundle;  a bundle has a cardinality that indicates the
minimal and maximal number of features that can
be chosen. The meaningful cardinalities are: 0..1,
1, 0..N, 1..N, N, p, 0..p, 1..p, p..N, m..p, 0..* and
1..*;  graphically, a bundle of variant dependencies is
represented by an arch that related all the
implicated relations;

The FORE notation fits the construction of PLMs,

while eliminating many ambiguities. However, there
are no well established guidelines to identify structural
and semantic errors in FORE models.

The FM verification process that we propose can
be summarized in Figure 1. The process is structured
around two cycles, the first one corresponds to PLMs
verification and the second one corresponds to PLCMs
verification.

Figure 1. FORE-based PLMs and PLCMs correctness
verification process.

2.1. Verify the structural correctness criteria of
the Feature Model

Structural correctness concerns: (i) the correspondence
between the model and the language in which the
model is written; and (ii) the alignment between the
model and a set of structural properties that any model
of the same type must respect.

The purpose of the VMWare tool is to automatically
verify FORE-based models according to a collection of
well defined criteria [11]. To achieve this, we have
divided the collection of criteria into three groups: (i)
general criteria that every FORE-based FM shall

respect; (ii) criteria specific to PLMs; and (iii) criteria
specific to PLCMs.

In order to build a complete and consistent list of
criteria, we undertake a state of the art of
computational tools for construction of variability
models supporting their automated verification. A
summary of the criteria supported by the analysed tools
are presented in Table 1.

Table 1. Structural and semantic correctness criteria
(not) implemented in related tools.

Tool

V
M

W
ar

e

Fe
at

ur
e

Pl
ug

in
 [5

] /

D
E

C
IM

A
L

 [8
]

X
Fe

at
ur

e¹
 [1

3]
 /

Pu
re

::
va

ri
an

ts
² [

7]

R
eq

ui
lin

e³
 [1

2]

FA
M

A
 [9

]

Modeling Formalism FORE
Cons-
traints

FOD
A* /
Class

FOR
E

FOR
M

FOR
E

PLCM Verification Y Y Y Y Y
PLM Verification Y N Y Y Y
Criteria

Root uniqueness Y N Y Y N
Child-father
uniqueness

Y Y Y Y N

Ordered cardinality Y N N N N
Applicable
cardinality

Y N N N N

Optional features
and include
dependencies
coherence

Y N N Y Y

Mandatory features
and exclude
dependencies
coherence

Y N N Y Y

Well limited
cardinalities

Y N Y N N

Consistency
between transversal
dependencies and
cardinalities

Y N N N N

No dead features Y N N N Y

St
ru

ct
ur

al

DAG Structure Y ? Y Y N
Richness – No void
feature models

N ? N ? Y

PLCM’s compliance
to the corresponding
PLM

Y Y Y Y N

Traceability P ? P Y ?
Uniqueness N ? ? N N
Pertinence N ? ? Y N

Se
m

an
tic

Modifiability N ? ? Y ?
Legend: Y = Yes, N = No, P = Partially, ? =
unavailable information
* FODA with cardinality-based feature modeling.
¹http://www.pnp-software.com/XFeature/
²http://www.software-acumen.com/purevariants/feature-models
³http://www-lufgi3.informatik.rwth-aachen.de/TOOLS/requiline

1. Create VMs.

2:
PLCMs

2. Verify structural
correctness of VMs

3. Verify semantic
correctness of VMs

1:
PLM

The criteria that we have chose for VMWare are
defined bellow.

General criteria
1 Root uniqueness: The PLM should have only one

root element.
2 Child-father uniqueness: A child feature should

have one and only one father.
3 Tree structure: Variability structure of PLM, as

well as PLCMs should be represented as
connected and acyclic graphs.

PLM criteria
1 Ordered cardinality: All features grouped by a

cardinality should be ordered in a consecutive
manner.

2 Applicable cardinality: All features intervening in
a cardinality should be optional.

3 Optional features and include dependencies
coherence: This state of structural correctness
criteria is respected when a feature is not at same
time: mandatory and exclude dependent.

4 Mandatory features and exclude dependencies
coherence: The state of structural correctness
criteria is respected when a feature is not
simultaneously: optional and require dependent.

5 Well limited cardinality: The state of structural
correctness is respected when: (i) superior limit >=
||bundle||; and (ii) there are no cardinalities where
both boundaries have 0 value (e.g. “0,0”), or the
superior limit is lower than the inferior one, or
where the inferior limit is a negative number.

6 Consistency between transversal dependencies
and cardinalities: This criterion is determined by
three conditions: (i) cardinality of bundle should
be well formed; (ii) if a feature is involved in a
bundle, then this feature cannot be related by a
transverse relationship with other feature of the
same bundle; and (iii) the same feature must not
belong to two different bundles.

7 No dead features: It should be possible to include
every feature in a PLM in at least one PLCM.

8 DAG structure: In a PLM it is forbidden to find a
collection of features forming a cycle by means of
Transversal Dependencies and/or Variant
Dependencies. In order to evaluate this criterion,
variability dependencies are enriched with a
direction from the father to child. Transversal
dependencies preserve its original directions.
Thus, errors like exclusion (inclusion) of an
ancestor and vice versa are identified.

Each of these criteria has been formally specified

using first order logic predicates [11]. This allows

implementing verification systematically using a SAT-
like solver. For example, criterion child-father
uniqueness was formally defined as follow:

1)()())(

)(()()(

)(.),(






iii

ii

ii

PCPCPoptionalC

PMandatoryCPchildOfCCreChildFeatu
PureFatherFeatPLMCfeaturePfeature



Where “Ɣ” represents a mandatory and “ż” an optional
relationship between father and child features.

3. Implementation

The technologies used in the development process of
our tool are:
(i) The Microsoft .NET Framework v2.0.50727

provided the general libraries.
(ii) Its source code was written using Microsoft Visual

Studio 2005.
(iii) XmlExplorer Controls V1.0.0.0 was used in order

to handle XML files, to record models and to
handle interoperability with other CASE tools.

Functionalities
VMWare tool allows creating three types of
specifications:
(i) Product line models using the FORE notation.
(ii) Product configuration models, in the adequate

subset of FORE as described earlier.
(iii) Textual product line constraint specifications.

Our goal is to support the specification of other
kinds of models such as goal models, aspect models,
etc. A project is a set of several models, one by default.
It includes the following functionalities:
1. Create a PLM.
2. Export and import PLM and PLCMs using an

XMI file. This functionality allows
communicating models from and to other
applications.

3. Verify structural and semantic (partially)
correctness of product line models.

4. Create and verify PLCMs, compared to a PLM.
The set of verified criteria on PLCMs are: root
uniqueness, child-father uniqueness, feature
existence and PLM’s constraint satisfaction.

Example
In VMWare, users can create or open either a project
or a specific model. The “verification” menu offers to
users the functions that allow choosing the different
verification criteria. Figure 2 gives an example of the
feedback provided by the tool after the verification of
the structural correctness of a FM. In Figure 2, Feature

1 and Feature 2 are mandatory features that are linked
by an excludes-type relationship.

Figure 2. Identification of structural error in a PLM.

In order to verify semantic correctness of a PLM, it
is necessary to check: (i) PLCMs’ compliance to the
corresponding PLM; and (ii) PLM’s richness and
traceability, uniqueness, pertinence, modifiability and
usability of each feature. In order to check PLCMs’
compliance, it is necessary to verify the Feature
existence (every feature in a PLCM must also be a
member of the PLM) and the PLM’s Constraint
satisfaction (PLCMs’ structure must to be according to
PLM’s structure and restrictions). At this moment, we
are working in formal definition of these criteria; they
are not implemented in our tool yet.

4. Conclusions and Future Works

Our goal is to develop a generic method that would
automatically help verify any kind of specification
based on one or several VMs. We believe that the
semantic verification criteria can be defined in a
generic level at which any model can be checked. We
are currently experimenting the use of constraint
languages [6] on top of which these generic semantic
verification criteria would be specified. The semantic
verification process shall consist in a transformation of
the verified model into a constraints program, and in a
semantic verification of the constraints program. So far
structural verification is concerned, we hope to be able
to instantiate meta model-specific verification criteria
from an ontology on generic criteria associated to an
ontology on general meta-model concepts.

VMWare is not a mature tool yet, and many
improvements remain, such us: (i) to support the

definition and verification of VMs; (ii) to implant the
multi-model verification criteria to validate consistency
between PLM and PLCMs as well as between multiple
PLMs; (iii) to implant other semantic correctness
properties to verify and validate, like traceability,
uniqueness, pertinence and modifiability of features
and its relationships; and (iv) to support incremental
verification.

References

[1] D. Batory, “Feature models, grammars, and propositional
formulas”, Software Product Lines Conference, LNCS 3714,
pages 7–20, 2005.
[2] D. Batory, D. Benavides, and A. Ruiz-Cortés,
“Automated analysis of feature models: Challenges ahead”,
Communications of the ACM, December, 2006.
[3] D. Streitferdt, “Family-Oriented Requirements
Engineering”, PhD Thesis, Technical University Ilmenau,
2003.
[4] Kim Lauenroth, Klaus Pohl, “Towards Automated
Consistency Checks of Product Line Requirements
Specifications”, ACM/IEEE Intl. Conference on Automated
Software Engineering, 2007, pp. 373-376.
[5] M. Antkiewicz, K. Czarnecki, “FeaturePlugin: feature
modeling plug-in for Eclipse”, OOPSLA’04 Eclipse
Technology eXchange (ETX) Workshop, pp. 67-72.
[6] O. Djebbi, and C. Salinesi, "Towards an Automatic PL
Requirements Configuration through Constraints Reasoning",
Int. Workshop on Variability Modelling of Software-
intensive Systems (VaMoS), Essen, Germany, January 2008.
[7] O. Spinczyk, D. Beuche, “Modeling and Building
Software Product Lines with Eclipse”, International
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2004.
[8] P. Padmanabhan, R. Lutz, “Tool-Supported Verification
of Product Line Requirements”, Automated Software
Engineering, Vol. 12, No. 4, 2005, pp. 447-465.
[9] P. Trinidad, A. Ruiz-Cortés, D. Benavides, S. Segura, A.
Jimenez, “FAMA Framework”, 12th Int. Software Product
Line Conference (SPLC), 2008.
[10] Klaus Pohl, Gunter Bockle, Frank van der Linden,
“Software Product Line Engineering: Foundations, Principles
and Techniques”, Springer, July 2005.
[11] Raul Mazo, Camille Salinesi, “Methods, techniques and
tools for product line model verification. Research report”,
Centre de Recherche en Informatique CRI, Université Paris 1
Panthéon Sorbonne, 2008. In: http://halshs.archives-
ouvertes.fr/docs/00/32/36/75/PDF/Methods_Techniques_and
_Tools_for_PLM_Verification.pdf
[12] T. von der Maßen, H. Lichter, “RequiLine - A
Requirements Engineering Tool for Software Product Lines”,
Software Product-Family Engineering, Springer LNCS 3014,
2004.
[13] V. Cechticky, A.Pasetti, O. Rohlik, and W.
Schaufelberger, “Xml-based feature modelling”, LNCS,
Software Reuse: Methods, Techniques and Tools: 8th ICSR
2004. Proceedings, 3107:101–114, 2004.

	1. Introduction

