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ABSTRACT 
Drawing from an analogy between features based Product Line (PL) models and Constraint 
Programming (CP), this paper explores the use of CP in the Domain Engineering and 
Application Engineering activities that are put in motion in a Product Line Engineering strategy. 
The start idea is simple: both CP and PL engineering deal with variables, and constraints that 
these variables must satisfy. Therefore, specifying a PL as a constraint program instead of a 
feature model, or another kind of PL formalism, carries out two important qualities of CP: 
expressiveness and direct automation. On the one hand, variables in CP can take values over 
boolean, integer, real or even complex domains (i.e., lists, arrays and trees) and not only boolean 
values as in most PL languages such as the Feature-Oriented Domain Analysis (FODA). 
Specifying boolean, arithmetic, symbolic and reified constraint, provides a power of expression 
that spans beyond that provided by the boolean dependencies in FODA models. On the other 
hand, PL models expressed as constraint programs can directly be executed and analyzed by off-
the-shelf solvers. Starting with a working example, this paper explores the issues of (a) how to 
specify a PL model using CP, including in the presence of multi-model representation, (b) how 
to verify PL specifications, (c) how to specify configuration requirements and (d) how to support 
the product configuration activity. Tests performed on a benchmark of 50 PL models show that 
the approach is efficient and scales up easily to very large and complex PL specifications.  
 
Keywords: Computer science, information systems, constraints, product line specification, 
product line reasoning, product line analysis, product line verification, product line integration, 
product line configuration, constraint-based product lines, transformation of product lines into 
constraint programs. 
 
INTRODUCTION  
 
Many experiences in the industry have shown that Product Lines engineering is an effective way 
to deal efficiently with reuse during analysis, design, development, test or even delivery of series 
of products that contain similar and varying features. Starting from 3 products, the Product Line 
engineering strategy has positive effects on time to market, product quality and customer 
satisfaction (Clements and Northrop 2001). Product Line success stories gathered in the SPLC 
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“Hall of Fame” 1 show companies such as Boeing, Cummins, HP, Nokia, Philips Medical 
Systems, or Toshiba benefited from the Product Line strategy in many ways, spanning from a 
drastic reduction of time to market, number of defects per product, engineering effort to deploy 
and maintain products, combined with a substantial increase in the number of products that can 
be deployed. The business benefits are multiple: reduced time to revenue, higher profit margins, 
improved ability to aim at market windows, higher profit margins, reduced risk in product 
deployment, and even improved reputation of the company due to better product quality2. 

The Product Line engineering strategy entails two activities: domain engineering and 
application engineering.  
Application engineering consists in analysing, designing, building, customizing, or testing one 
product by reuse. Different kinds of artefacts can be reused: requirements, design fragments, 
architecture, code, test cases, etc. The reuse strategy is based on the exploitation of Product Line 
models built during domain engineering.  

Domain engineering consists in specifying artefacts for reuse. This means specifying the 
artefacts to make them readily reusable, as well as specifying their reuse conditions. Many 
different specification languages have been proposed to support this. The most well known is 
probably FODA and its dialects (Kang et al. 1990). However OVM (Pohl et al. 2005), UML 
extensions (Ziadi 2004), (van der Maßen, Lichter 2002), Dopler (Dhungana et al. 2010), the text-
based variability language (TVL, cf. Boucher et al. 2010 and Classen et al. 2011) and the DSL 
proposed in (Mannion 2002) are noteworthy alternatives as they allow specifying Product Lines 
with complementary viewpoints such as marketing, architecture, logistics, maintenance, etc.  

In our view, the approaches that exploit these formalisms have in common that they 
emphasize the role of constraints at both the level of domain engineering and application 
engineering. Indeed, domain engineering can be seen in these approaches as the specification of 
variables (“features”, “attributes”, “variation points”, etc) and constraints (“dependencies”). 
Application engineering then consists in defining values for these variables, while ensuring that 
the constraints are satisfied. Therefore, variables specify what can vary from a product to the 
other, in other terms the characteristics of artefacts that can be reused. On the other hand, 
constraints specify the reuse conditions, ie when artefacts can (or should) be reused or not.  

Our approach is grounded on former research works that proposed to transform traditional 
Product Line Models  (PLMs) into propositional logic (Mannion 2002, Zhang et al. 2004, Batory 
2005, White et al. 2008) or boolean constraints programs in order to reason about them 
(Benavides et al. 2005, Trinidad et al. 2008, Mendonça et al. 2009). As these works showed it, 
using traditional Product Line specification formalisms raises a series of problems:  

 being different they are necessary to specify multiple views, but at the same time they are 
difficult to integrate;  

 they are often quite limited in the sense that they are not rich enough to specify complex 
requirements or configuration constraints; 

 they are contemplative, and therefore it is difficult to automate verification, analysis and 
configuration activities. 

The approach taken in this paper makes a step beyond the aforementioned ones: we believe 
that constraints programming should be at the core of product line engineering rather than just a 
                                                             
1 http://www.splc.net/fame.html 
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tool or a by-product issued after transforming classical models. Not only this allows specifying 
domain models that would not be specified when starting with traditional formalisms, but also it 
allows integrating multiple views, it provides users with a rich language to specify their 
requirements, and it brings Product Line specifications that are readily available for automated 
reasoning using constraints solvers. 

Different kinds of constraint programs can be built; each can be solved with a specific kind of 
solver. The choice depends on the types of variables on which the reasoning applies (Jaffar and 
Maher 1994). : 

 Boolean variables can be treated with SAT (Le Berre 2010), BDD (Akers 1978), or SMV 
(Specification and Verification Center 2010);  

 Integer can be handled with GNU Prolog (Diaz and Codognet 2001), or CHOCO (Ecole 
de Mines de Nantes 2010);  

 Reals can be handled for instance using clp(R) (Jaffar et al. 1992) ; 
 Trees and Lists can be handled with Prolog-III (Colmerauer 1990).  
It has been shown that FODA models can be represented as boolean constraint programs 

through a series of boolean variables, where each variable corresponds to a feature (Benavides et 
al. 2005), (White et al. 2009). A configuration is then generated using a SAT solver, under the 
form of a value for each variable, where TRUE means that the product has the corresponding 
feature.  

Only few approaches have dealt with integer CP (or finite domain CP) (Benavides et al.  
2006, Djebbi et al. 2007, Salinesi et al. 2010a and 2010b, Mazo et al. 2011a). In our previous 
works (Mazo et al. 2011d, Salinesi et al. 2011), we observed that transforming feature models 
into integer CP provides many advantages, including dealing with advanced characteristics of 
FODA dialects (such as attributes or feature cardinalities), specifying more complex 
requirements than select/de-select a feature, or making complex analyses and verifications 
(Salinesi et al. 2010a and 2010b, Mazo et al. 2011a).  
Another observation is that most existing approaches consist in transforming existing PL models 
into CP. We believe that this way of working hinders the full exploitation of the versatility of 
CP. Our research goal is to explore the expressiveness of constraint programming to specify 
product line models and to support its automation and reasoning. This goal has two facets: (i) at 
the domain engineering level, to widen the power of expression of PL specifications and support 
domain level PL analysis, and (ii) at the application engineering level, to provide new analysis 
and configuration features.  

Our research strategy to achieve this was the following: first, we explored the power of 
expression of integer CP by specifying a simple but real PL (Djebbi and Salinesi 2007). This 
allowed us both to evaluate the feasibility of the approach, but also to explore the analysis 
capability offered by off the shelf constraint solvers supporting the chosen integer CP language. 
The approach was then discussed with PL experts of companies like ADN, Renault, Stago and 
Baxter (Salinesi et al. 2010). Besides, we developed a series of transformation strategies to 
specify FODA models (Kang et al. 1990), UML-based variability models (Ziadi 2004), (van der 
Maßen, Lichter 2002) and OVMs (Pohl et al. 2005) using integer CP (Djebbi et al. 2007). Then, 
we explored different case studies to evaluate our approach and further develop it (Mazo et al. 
2011d), (Salinesi et al. 2011). Last, we experimented the performance and scalability of our 
approach using a large benchmark (Mazo et al. 2011d). 

One driving working hypothesis in this work was to choose a CP language that can be 
handled by a solver. In this respect, Object Constraint Language (OCL) was not considered as a 



relevant language, even though OCL could be used to specify PL constraints. The reason for this 
decision was that even if OCL is a well known language to represent constraints, OCL rules are 
executed by an interpreter and not by a solver, loosing, in the way, some reasoning capabilities 
important in the domain of product lines, for instance to calculate the number of valid products 
represented in the product line model. 

The rest of the paper is structured as follows: Section II introduces the UNIX working 
example, which is used in the rest of the paper to illustrate our approach. Section III describes 
the approach by presenting CP with a meta-model and the various kinds of constraints that can 
be used to specify a PL. In addition, Section III presents the mapping between several product 
line modelling languages and our constraint programming approach to represent product line 
models. Once product line models are represented as constraint programs, we show how to 
integrate them in Section IV, verify them in Section V, analyze them in Section VI, and 
configure products from them in Section VII. Section VIII presents the evaluation of our 
approach from the implementation, computation scalability, feasibility with real cases and 
usability points of view. Section IX discusses works related to the specification of PLMs by 
means of CP. Other works that deal with other CP aspects are spread out throughout the paper. 
To finish, Section X concludes the paper by summarizing its outcomes and presenting some 
research directions.  
 
WORKING EXAMPLE 
 
The example taken in this paper is that of the UNIX operating system. UNIX was first developed 
in the 1960s, and has been under constant development ever since. As other operating systems, it 
is a suite of programs that makes computers work. In particular, UNIX is a stable, multi-user and 
multi-tasking system for many different types of computing devices such as servers, desktops, 
laptops, down to embedded calculators, routers, or even mobile phones. There are many different 
versions of UNIX, although they share common similarities. The most popular varieties of UNIX 
are Sun Solaris, Berkeley (BSD), GNU/Linux, and MacOS X.  

The UNIX operating system is made up of three parts: the kernel, the shell and the programs; 
and two constituent elements: files and processes. Thus, these three parts consist in a collection 
of files and processes allowing interaction among the parts. The kernel of UNIX is the hub of the 
operating system: it allocates time and memory to programs and handles the file-store and 
communications in response to system calls. The shell acts as an interface between the user and 
the kernel, interprets the commands (programs) typed in by users and arranges for them to be 
carried out. As an illustration of the way the shell, the programs and the kernel work together, 
suppose a user types rm myfile (which has the effect of removing the file myfile). The shell 
searches the file-store for the file containing the program rm, and then requests the kernel, 
through system calls, to execute the program rm on myfile. The process rm removes myfile using 
a specific system-call. When the process rm myfile has finished running, the shell gives the user 
the possibility to execute further commands.  

As for any Product Line, our example emphasizes the common and variable elements of the 
UNIX family and the constraints among these elements. This example is built from our 
experience with UNIX operating systems and it does not pretend to be exhaustive, neither on the 
constituent elements nor on the constraints among these elements. The example is presented with 
two views. The first view is about the technical aspects of UNIX; for instance, the technical 
specification of the screen resolution according to the available types of interface. To depict this 



view, we propose eight constraints and their corresponding representation in CP. The second 
view is the one of final users; for instance, it looks at what utility programs or what kinds of 
interfaces are available for a particular user. 
 
Technical view: 
 
Constraint 1. UNIX has one KERNEL. 
 
Constraint 2. Some mandatory functions of the KERNEL are:  

 ALLOCATING THE MACHINE'S MEMORY to each PROCESS 
 SCHEDULING the PROCESSES  
 ACCOMPLISHING THE TRANSFER OF DATA from one part of the machine to 

another 
 
Constraint 3. UNIX has zero or several PROCESSES for each user. For the sake of simplicity 

will consider only two users in this running example: ROOT_USER and GUEST_USER. 
The collection of PROCESSES varies even when the UNIX product is fully configured. 

 
Constraint 4. UNIX offers a logical view of the FILE SYSTEM. A FILE SYSTEM is a logical 

method for organising and storing large amounts of information in a way that makes its 
management easy.  

 
Constraint 5. The KERNEL is composed of static or dynamic software modules. If the kernel 

was compiled for a specific hardware platform and cannot be changed, it is called a static 
Kernel. If the Kernel has the ability to dynamically load modules so that it can 'adapt' to a 
platform, it is called a dynamic Kernel. For instance, the modules SUPPORT_USB, 
CDROM_ATECH, and PCMCIA_SUPPORT cannot be charged, be charged in a static way 
or be charged in a dynamic way. For each module, let us number these three different options 
0, 1 and 2, respectively.  

 
Constraint 6. The SHELL is a command interpreter; it takes each command and passes it to the 

KERNEL to be acted upon. 
 
Constraint 7. The GRAPHICAL interface is characterized by a WIDTH RESOLUTION and a 

HEIGHT RESOLUTION that can have the following couples of values [800,600], 
[1024,768] and [1366,768]. 

 
User view: 
 
Constraint 8. UNIX can be installed or not and the installation can be from a CDROM, a USB 

device or from the NET.  
 
Constraint 9. UNIX provides several hundred UTILITY PROGRAMS for each user. The 

collection of UTILITY PROGRAMS varies even when the UNIX product is full-configured. 
 



Constraint 10. The SHELL is a kind of UTILITY PROGRAM. Different USERS may 
use different SHELLS. Initially, the USER administrator supplies a default shell, that can be 
overridden or changed by users. Some common SHELLS are: 
 Bourne shell (SH) 
 TC Shell (TCSH) 
 Bourne Again Shell (BASH) 

 
Constraint 11. Some functions accomplished by the UTILITY PROGRAMS are: 

 EDITING (mandatory and requires USER INTERFACE) 
 FILE MAINTENANCE (mandatory and requires USER INTERFACE) 
 PROGRAMMING SUPPORT (optional and requires USER INTERFACE) 
 ONLINE INFO (optional and requires USER INTERFACE) 

 
The USER INTERFACE can be GRAPHICAL and/or TEXTUAL. 
 
SPECIFYING AND ANALYZING PL WITH FINITE DOMAIN CONSTRAINT 
PROGRAMMING 
 
Our theory is that a Constraint Language (CL) can be used as a primary concept to model product 
lines. The language that we propose is introduced in the first sub-section, then, the second sub-
section illustrates its use with the working example. The last sub-section shows mappings 
between traditional PL formalisms and our CP-based formalism for CP specification. 

 
The Constraint Language 
 
The core constructs, of our Constraint Language (CL) are Constraints and Operators that are 
applied to Variables and Values. Figure 1 presents our metamodel using UML notation (UML 
was chosen for the sake of clarity; an example of formal grammar of one popular CP notation can 
be found in (S. de Boer and Palamidessi 1991)). As the metamodel shows it, a variable has a 
domain, and at a given moment in time, a value. The domain of variables can be boolean, integer, 
interval, enumeration or string. This metamodel improves the version originally presented in 
(Salinesi et al. 2011) in two respects:  

(i) it distinguishes between constraints and operators. Thus, a constrains can be symbolic, 
arithmetic or boolean and contain zero or several operators. Operators are of three types: 
multiplication (*), addition (+) and subtraction (-), which were considered exclusively as 
arithmetic operations in the previous version of the metamodel. Still, these operations can take 
place both in symbolic constrains (e.g., exactly(A+B, 5)) and in boolean constraints (e.g. A*B  
 C).  

(ii) Resolution operators, are no longer considered as part of the CP language to specify 
product line models, but to help in the automatic reasoning of product line models. 

Constraints are used to specify PLs. There are three types of constraints: boolean, arithmetic 
and symbolic. Symbolic constraints are applied on a set of variables at a time.  

Constraints may be simple, but also reified. A reified constraint is a constraint whose truth 
value can be captured with a boolean variable, which can itself be part of another constraint. 
Reified constraints make it for instance possible to reason on the realisation of constraints at 
different times.  



 

 

Figure 1. Meta-model of a constraint over finite domain language 

 
Defining PL elements. Modelling PL using the CL consists in specifying constraints on PL 

elements (e.g., features, requirements, design fragments, components, or any other reused 
artefact) that are referred to using variables. Indicating that a PL element, such as a function, can 
be either included or excluded is simply done by giving a [0..1] domain to the corresponding 
variable, where the 1 value means that the element is included in a configuration, and the 0 value 
means that it is not. 

The statement domain([E1..Ek], 0, 1) specifies that variables E1..Ek are Booleans. In the 
UNIX example, the graphical interface is specified with a boolean variable because it can be 
integrated or not in a UNIX operating system. This is specified by:  

domain([Graphical], 0, 1) 
Also, it may be necessary to reason on the number of times a PL element can be repeated in a 

product, as suggested by (Czarnecki et al. 2005). In the UNIX example, a UNIX system can 
contain from zero to several thousands of processes. One may also deal with quantifiable elements 
such as performance, quantity or capacity.  

This kind of constraints over variables that can appear several times in a configuration can be 
specified with a variable E with a finite domain [m..n], n being for instance the maximum number 
of occurrences of E, or its maximum value or with an enumeration, as follows: 

elements E1..Ek are integer elements: domain([E1..Ek], m, n) 
elements E1..Ek are enumeration elements: domain([E1..Ek],[value1,..., valuen]) 
In the UNIX example, width resolution is represented by an enumerated variable:  
domain([WidthResolution], [800, 1024, 1366]) 



 
Reasoning about Boolean variables. Basic and complex constraints can be specified over 

Boolean variables as follows. 
Two elements E1 and E2 can only be either both present or both absent of a configuration: E2=E1 
A configuration can contain an element E2 only if it also contains E1: E2 ≤ E1 
The elements E1 and E2 cannot be simultaneously included in the same configuration: E1+E2≤1 
A configuration can contain a number of at least Min (or at most Max) elements within a group 

of E1..Ek elements: Min ≤ Σ1..k Ei and Σ1..k Ei ≤ Max 
If E3 is included in a configuration, then either E1 or E2 is included; otherwise all are excluded: 

(E3  E1 + E2 = 1) ⋀ (¬E3  E1 + E2 = 0), or more concisely E1 + E2 = E3. For 
instance in the UNIX example (Constraint 11), Editing implies the inclusion of 
UserInterface. This can be specified by the constraint:  
Editing  UserInterface 

Given two sets of elements S1 = {E1, E2} and S2 = {E3, E4}, a configuration should contain 
more elements from the set S1 than from the set S2: E1 + E2 > E3 + E4. This constraint 
can, of course, be extended to larger sets. 

Either E1 is included in a configuration, or both E2 and E3: 2 * E1 + E2 + E3 = 2 
Multiple requires: if the boolean element Ez ∉ {E1..Ek} belongs to a configuration, then the 

elements {E1..Ek} should be there too. The corresponding constraint is: Ez   (E1⋀..⋀Ek )  
Multiple exclusion: if the boolean elements {E1..Ek} belong to a configuration, then Ez ∉ 

{E1..Ek} should be excluded. The corresponding constraint is: (E1⋀..⋀Ek)  ¬Ez  
 
Reasoning about integer variables. Basic and complex constraints can be specified over 

integer variables as follows. 
E1 > a: to indicate that element E1 shall be included at least a times (i.e., it has at least a 

occurrences in a given configuration); if the variable represents an attribute, then the 
constraint means that its value shall be superior to a. 

E1 = a: to specify that the number of times element E1 can be included in a configuration is a 
fixed constant. For instance, if the variable Graphical = 0, then WidthResolution = 0 
and vice versa. 

E1 ≠ a: to indicate that element E1 shall not be included a times in a configuration. 
Multiple requires: if the integer element Ez ∉ {E1..Ek} belongs to a configuration, then the 

integer elements {E1..Ek} should be there too. The corresponding constraint is: (Ez > 0)  
((E1> 0)⋀..⋀(Ek > 0)) 

Multiple exclusion: if the integer elements {E1..Ek} belong to a configuration, then Ez ∉ 
{E1..Ek} should be excluded. The corresponding constraint is: ((E1> 0)⋀..⋀(Ek > 0))  
(Ez = 0) 

Mutual exclusion: elements E1 and E2 are mutually exclusive, that is, both are excluded or if one 
is included in a configuration, then the other should be excluded from that configuration: E1 
* E2 = 0 

A configuration should include more occurrences of an element than of another: E1 > E2  
A configuration should include as many occurrences of an element E1 as of two other elements 

(E2 and E3) together: E1 = E2 + E3; this is for example useful to specify that a UNIX system 
may be installed by one of three methods presented in Constraint 8: UNIX = Cdrom + Usb 
+ Net.  

Numeric dependency: in the example, n additional kernels are needed for other purposes when 
UNIX is configured. This is specified by: UNIX > 0 ⋀ Kernel = n. 

A configuration should include more occurrences of a pair of elements (E3, E4) than of another 
pair of elements (E1, E2) together: E1 + E2 < E3 + E4.  



The number of occurrences of E1 should be the half of the number of occurrences of E2: 2 * 
E1 = E2. 

 
Symbolic Constraints. CP over finite domains supports the specification and analysis of 

symbolic constraints, i.e. constraints that are checked on collections of variables. Here are some 
symbolic constraints: 

alldifferent([E1, .., Ek]): specifies that in any configuration the value of each of the 
E1...Ek elements should be different pair wise. 

atmost(n, [E1..Ek], a): specifies that at most n of the E1...Ek elements are equal to a. 
atleast(n, [E1..Ek], a): specifies that at least n of the E1...Ek elements are equal to a. 
exactly(n, [E1..Ek], a): specifies that exactly n of the E1...Ek elements are equal to a. 
relation([E1..Ek],{[a1..ak]}): constraints the tuple of elements [E1..Ek] to be equal to at 

least one tuple in the collection of tuples [a1..ak]. This allows to specify extensively a 
predetermined collection of compatible values for a series of elements. 

In the UNIX example (Constraint 8), symbolic constraints can be used to specify predefined 
combinations of the values that WidthResolution and HeightResolution can take in a 
particular configuration : 
relation ([WidthResolution,HeightResolution], [[800, 600], [1024, 768], [1366, 
768]]) 

 
Constraint Reification. In CP, the reification of a constraintC into a variable C of the [0..1] 

domain is achieved by a constraint: 
C  contraintC 

that establishes a correspondence between a constraint constraintC and C as follows: 
constraintC shall be verified in a configuration iff  C is true (thus the other way round C is true 
iff constraintC is verified). 

For instance, some constraints should be verified in a configuration only if some elements are 
included / excluded from this configuration:  

E1 = 1  C: whenever E1 is included, the constraint constraintC reified with the C variable 
should be satisfied. Conversely, as soon as ¬C is detected, E1 is set to 0. 

E1 = 0  C: whenever E1 is excluded, the constraint constraintC reified with C should be 
satisfied. 
 

In the UNIX example, if the shell feature is selected in a particular configuration, then, several 
kinds of shells can be selected for each user, as presented in rule 10 of the user view: 

Shell    
   ((1 * ROOT_USER ≤ ROOT_USERSH + ROOT_USERTCSH + ROOT_USERBASH ≤ 3 * 

ROOT_USER) ⋀  
   (1 * GUEST_USER ≤ GUEST_USERSH + GUEST_USERTCSH + GUEST_USERBASH ≤ 3 * 

GUEST_USER)) 
 
Application on the example  
 
Developing a constraint program that specifies a product line model and resolving it is quite 
straightforward. For example, the UNIX product line presented in Section 2 can be specified 
using the rules presented in Subsection A with the following program.  

 
 
 



Technical view: 
[UNIX, Kernel, Scheduling, ExecutingInstructions, InterpretingInstructions, 

AccomplishingTheTransferOfData, AllocatingTheMachine’sMemory, Shell, 
FileSystem, UserInterface, Graphical, Process1,...,Processk] ∈ {0,1} ⋀ 

WidthResolution ∈ {800, 1024, 1366} ⋀ 
HeightResolution ∈ {600, 768} ⋀ 
[Support_usb, Cdrom_atech, Pcmcia_support] ∈ {0,1,2} ⋀ 
UNIX = Kernel ⋀ 
(Kernel = AllocatingTheMachine'sMemory)  Process ⋀ 
(Kernel = Scheduling)  Process ⋀ 
(Kernel = AccomplishingTheTransferOfData)  Process ⋀ 
Shell (Kernel = InterpretingInstructions) ⋀ 
Shell (Kernel = ExecutingInstructions) ⋀  
(UNIX = Process1 V...V UNIX = Processk) ⋀ 
UNIX = FileSystem ⋀ 
(Support_Usb > 0)  A ⋀ 
(Cdrom_Atech > 0)  B ⋀ 
(Pcmcia_Support > 0)  C ⋀ 
Kernel > 0  (0 ≤ A + B + C) ⋀ 
Kernel > 0  (A + B + C ≤ 3) ⋀ 
Shell  Kernel ⋀ 
Graphical = 1  (WidthResolution = W1 ⋀  HeightResolution = H1) ⋀ 
Graphical = 0  (WidthResolution = 0 ⋀  HeightResolution = 0) ⋀ 
relation([W1, H1], [[800, 600], [1024, 768], [1366, 768]])  
 

User view: 
[UNIX, UserInterface, Textual, Graphical, Cdrom, Usb, Net, UtilityProgram, 

Editing, FileMaintenance, ProgrammingSupport, OnlineInfo, Shell, 
ROOT_USERSH, ROOT_USERTCSH, ROOT_USERBASH, GUEST_USERSH, GUEST_USERTCSH, 
GUEST_USERBASH] ∈ {0,1} ⋀ 

UNIX ≤ Cdrom + Usb + Net ≤ UNIX ⋀ 
UtilityProgram ≤ UNIX ⋀ 
Shell  UtilityProgram ⋀ 
Shell   ((1 * ROOT_USER ≤ ROOT_USERSH + ROOT_USERTCSH + ROOT_USERBASH ≤ 3 * 

ROOT_USER) ⋀ (1 * GUEST_USER ≤ GUEST_USERSH + GUEST_USERTCSH + 
GUEST_USERBASH ≤ 3 * GUEST_USER)) ⋀ 

Editing = UtilityProgram ⋀ 
FileMaintenance = UtilityProgram ⋀ 
Printing ≤ UtilityProgram ⋀  
UserInterface ≤ UtilityProgram ⋀ 
ProgrammingSupport ≤ UtilityProgram ⋀ 
OnlineInfo ≤ UtilityProgram ⋀ 
1 * UserInterface ≤ Graphical + Textual ≤ 2 * UserInterface 
 

Any constraint solver can be then used to solve this constraint program. We used GNU Prolog 
(Diaz, Codognet 2001) to analyze the UNIX system. With the technical view, we obtained a list 
of 100440 products that were generated (in 515 milliseconds CPU time) and with the user view, 
we obtained a list of 408 products (in 15 ms CPU time).  

If the product line is already specified with a traditional formalism, then, it is possible to 
transform the models into CPs. For instance, Mazo et al. show how to transform Dopler and 
feature models, respectively, into CPs to verify and analyze them (Mazo et al. 2011a, Mazo et al. 
2011d).  
 



Mapping Between Constraint Programming Product Line Specification and Other 
Formalisms 
 
CP is a paradigm that maps with numerous variability notations. Tables 2 to 6 in the appendix 
present the constrain representation of some common constructs different PL modelling 
formalisms.  

Table 2 deals with FODA-like models (Kang et al. 2002), and Feature models with 
cardinalities (Riebisch et al. 2002, Czarnecki et al. 2005) and attributes (Benavides et al. 2005c, 
Streitferdt et al. 2006, White et al. 2009). While the constructs of the former FODA dialect can be 
mapped into Boolean variables and Boolean constrains, the constructs of the second one map into 
Boolean and Integer variables, and Boolean, Arithmetic, Symbolic and Reified constraints.  

Table 3 deals with Orthogonal Variability Models (OVMs) (Pohl et al. 2005) and the Textual 
Variability Language (TVL) (Boucher et al. 2010). The constraints that map the constructs for 
OVM are boolean, arithmetic, symbolic and reified. All these constraints and several symbolic 
constraints like sum, mul, min, max, avg and count map with the TVL. The variables that map 
with elements and attributes from these two formalisms have Boolean, Integer and Real domains.  

Table 4 presents the mapping between CP and the constructs of the Class-based (Ziadi 2004), 
(Korherr & List 2007) and the Use case-based (Van der Maßen & Lichter 2002) formalisms. The 
variables that map with elements of the Class-based language are boolean, integer and real. Those 
that map with elements of the Use case-based language are boolean. The constructs of both 
modelling languages are represented in CP as Boolean and Arithmetic constraints.  

Table 5 presents the constructs of the Dopler variability language (Dhungana et al. 2010) and 
the variability language defined at the French Commissariat à l'Energie Atomique (CEA). The 
Dopler language is already semantically rich as it uses the Java constraints and domains. We 
therefore suggest to use the same kind of constraints and variables to represent the constructs of 
Dopler models with CP. The constructs of the CEA language map with Arithmetic and Boolean 
constrains over boolean variables.  

Finally, Table 6 presents the mapping between CP and constructs of the Renault Documentary 
Language (RDL) and the Latice language proposed by (Mannion 2002). In both cases, all the 
constructs map with Boolean constraints over Boolean variables. 

The lessons learned from these mapping rules can be summarized as follows: 
A. All the classic or industry-specific product line modelling formalisms that we considered in 

this study could be represented as constraint programs. 
B. The same constraints have different representations in the different formalism, and even 

different representations in the same formalism. For instance in feature-based languages, an 
exclusion constraint can be represented by means of the exclusion relationship or by an 
XOR construct. 

C. There are constraints that do not map with any construct in any of the product line 
modelling formalism considered in the study. For instance, “at least n of the E1...Ek 
elements are equal to a” can easily be specified with CP while it can neither with FODA 
dialect nor with OVM, TVL, UML-based, or DOPLER. 

An interesting observation is that being notation-independent, the constraints presented in the 
tables shown in the appendix can be compiled in any of the languages of the off-the-shelf solvers 
in which they shall be executed. This way, one can exploit the best characteristics (performance, 
functions) of each off-the-shelf solver to execute each analysis or configuration operation. We 
propose, on the one hand, to use Constraint Logic Programming (CLP) solvers to deal with PLMs 



containing boolean and non-boolean variables, which is very common, for instance, in feature 
models with attributes (Streitferdt et al. 2003), (White et al. 2009). On the other hand, when the 
model has only Boolean variables, if the goal is to compute the number of configurations, we 
suggest to use SAT-based model counters (or possibly Linear and Binary Decision Diagram 
solvers even if they have well known limitations when variables are entered in a wrong order; cf. 
Mendonça et al. 2009b). Indeed, these kinds of solvers are designed to efficiently calculate the 
number of solutions of constraints programs (Mendonça et al. 2009b). In addition we propose to 
use CLP solvers for models with non-boolean variables (integer, real, etc.) and SAT or 
Satisfiability Modulo Theories (SMT) solvers for models with only Boolean variables. Indeed, 
SMT solvers show good performances when executing satisfiability operations on arithmetic 
constrains over Boolean variables.  

Representing PLMs as constrain programs over different domains allows taking advantage of 
the best characteristics of the different existing solvers. This idea is summarized in the framework 
presented in Figure 2. In the figure, not only PLMs but any kind of variability models are 
represented as constraints with a unique CP notation that encompass other constraint languages 
(e.g., over Booleans, Integers, Reals, trees, lists, etc.). Therefore, the CP language acts as an 
interoperability notation as (a) it is able to deal with different meta-models, (b) it helps deal with 
several models at the same time, as we show it in the following sections, and (c) it can be 
executed with different solvers that can be chosen depending on the context. 

 

Figure 2. Generic constraints to represent variability models. 



As Figure 2 shows it, once variability models are specified as generic constraints, they can be 
transformed into concrete constraints. By “generic” we mean platform independent (Saraswat 
1992). This means that wherever they come from, constraints can be compiled with the platform 
into any constraint language. The language and associated solver are chosen depending on the 
analysis to achieve and expected performance. 
 
INTEGRATION OF CONSTRAINT-BASED PRODUCT LINE MODELS 
 
An important challenge in PL domain engineering and application engineering is that product 
lines are often, in practice, specified using several models at the same time (Djebbi et al. 2007, 
Segura et al. 2008, Rosenmüller et al. 2011). As when describing the architecture of any kind of 
system, this allows dealing with various facets of the PL and products, and representing the 
viewpoints of various stakeholders such as executives, developers, distributors, marketing, 
architects, testers, etc. (Nuseibeh et al. 1994). For example, analysts may deliver a requirements 
model that specifies user-oriented system functionality, while architects may deliver a feature-
based model focusing on the system structure from a more technical design-oriented point of 
view. In the absence of a global model, and given the number models in which the PL can be 
specified, requirements can get missed or misunderstood (Finkelstein et al. 1992) both during 
domain and application engineering activities. There are 2 other problems related with multi-
model PL specifications: inadequate support for multi model specification, and weak support for 
the maintenance of the global PL specification. 

The size and complexity of industrial product lines motivates the specification of PL models 
by heterogeneous teams (Dhungana et al. 2006), (Segura et al. 2008). However, existing tools 
provide only little support to integrate multiple models and to perform the analysis and 
configuration activities on the global level. To our knowledge, there is no proposal so far to 
integrate PL models specified with different formalisms. 

Besides, it is a fact of industrial life that product line models evolve over time, for instance to 
reflect new marketing requirements, product level innovations that should be capitalized at the PL 
level, or new design decisions about the PL architecture. The problem is that any change in a 
model can impact other models too. For example, changes in the architecture can make the 
corresponding model inconsistent with the technical solution models, or with the PL models that 
represent the sales and marketing viewpoints. To the best of our knowledge, there is no tool that 
provides automated mechanisms for analysing the impact of changes of a PL model onto another 
one, or for ensuring the global consistency of changes achieved on multi-model PL specifications.  

CP can be exploited in the context of multi-model PL engineering to capture in a unified way 
the various models, and to arrange them into a unique specification. As a result, domain and 
application engineering activities such as PL analysis or product configuration are facilitated. 
Indeed, the unique representation facilitates the propagation of constraints between variables that 
belong to the different models. When configuration entails a variable in a model, it entails the 
variable in all the other models to which the variable belongs. 

Another considerable advantage is that having all the models of the PL integrated in a single 
CP allows specifying constraints between different variables that belong to different models. Our 
literature survey did not reveal any interoperability meta-model that would have allowed relating 
several PL models as proposed here. 

Motivated by the pertinence of the subject and the requirements of our industrial partners, we 
developed a constraint-based integration process for product line models. In our process, 
integrating two PLMs consists in (i) integrating the variables that correspond to reusable 
elements; (ii) integrating attributes and their domains and; (iii) integrating the relationships among 



reusable elements. Integrating two models can be done in two steps: matching and merging 
(Finkelstein et al. 1992), (Fleurey et al. 2007). The matching step specifies which element in the 
language can match and how they can match. The merge step defines, how two model elements 
that match are merged, as well as a mechanism to handle the non-matching elements of the input 
models. For example, if two feature models (Kang et al. 1990) that specify a single PL own the 
same feature A, which is being required by another feature in the first model, and which is 
excluded by another feature in the second model, then the situation match because of the feature 
A. However, the decision to include or not feature A in the resulting model depends of the 
merging rules and the integration strategy. In particular, one has to reason on the dependencies 
between feature A and the other features in the two models. 

Integration strategies are about the ways in which models are merged. Indeed, different 
merging rules exist and may be used in given matching situations. One scenario can be, for 
instance, when a company decides to lengthen the production spectrum of the PL, and therefore 
integrates the PLMs of two headquarters and keeps in the resulting PLM the reusable elements 
and the production capacity of both headquarters. We identified five different strategies that may 
be used to integrate PLMs: two restrictive strategies, two conservative strategies and one 
disjunctive strategy.  

Strategy N° 1 is restrictive in the sense that it allows representing in the resulting PLM the 
common products represented in both input models that can be configured with the common 
reusable elements and attributes.  

Strategy N° 2 is also restrictive, but differently from the first one: the products can be 
configured with all reusable elements and attributes available on both input models (Hacher et al. 
2010).  

Strategy N° 3 is conservative in the sense that it allows configuring the products represented in 
both input models by using only the common reusable elements and attributes.  

Strategy N° 4 is also conservative but this time allows configure products with all reusable 
elements and attributes available in both input models (Segura et al. 2008), (Hacher et al. 2010).  

Strategy N° 5 is disjunctive in the sense that the resulting model allows configuring the 
products presented on one of the input models by using the reusable elements and attributes of 
one of the particular models but not these of the other one.  

We propose 89 constraint-based integration rules for product line models (Mazo 2011); these 
rules are not presented here because it is out of scope of this paper. However, one example of 
each integration strategy is presented in Table 1. The example used to illustrate the five 
integration strategies consists in a mandatory relationship between variables A and B in the first 
model and an optional relationship between variables A and B followed by an implication to 
variable C. As is presented in Table 1, for the strategy 1 we only keep the variables present in both 
models and we related them with the most restrictive constraint; that is, we use the equality 
constraint instead of the superior or equal inequality due to the fact that the first one is more 
restrictive than the second one.  

Table 1. Example of application of the 5 PLM integration strategies 

Strategy Base model 1 Base model 2 Resulting model 
1 A = B (A ≥ B) ⇒C A = B 
2 A = B (A ≥ B) ⇒C (A = B) ⇒C 
3 A = B (A ≥ B) ⇒C A ≥ B 
4 A = B (A ≥ B) ⇒C (A ≥ B) ⇒C 
5 A = B (A ≥ B) ⇒C (A = B) ⊕ ((A ≥ B) ⇒C) 



To illustrate the fact that the equality constraint is more restrictive that the superior or equal 
inequality, please consider the two simple cases A = B and A ≥ B. Assuming that A and B are 
boolean variables; in the first case we can generate two configurations: Conf1= {A=0, B=0}, 
Conf2= {A=1, B=1} and in the second case we can generate three configurations: Conf1= {A=0, 
B=0}, Conf2= {A=1, B=0}, Conf3= { A=1, B=1}. The other two examples shown in Table 1 
apply the same reasoning based on the aforementioned integration strategies. 
 
VERIFICATION OF CONSTRAINT-BASED PRODUCT LINE MODELS 
 
The use of constraint programming for software verification is not new (Collavizza & Rueher 
2006), nor is the verification of product line models (Benavides et al. 2005, Trinidad et al. 2008, 
Salinesi et al. 2010, Mazo et al. 2011a). Verification of product line models consists in finding 
errors on these models. As in the case of analysis of product line models, these models must 
often be specified with a formalism that allows automatic verification (Batory et al. 2001, 
Benavides et al. 2005, Karataş et al. 2010, Mazo et al. 2011d). Automatic verification of product 
line models is highly needed: indeed their manual verification is an error–prone, tedious and 
sometimes infeasible task due to the complexity of these models (Benavides et al. 2005), 
(Trinidad et al. 2008), (Salinesi et al. 2010).  

Verifying PLMs entails several aspects. On the one hand, a product line model, independently 
of the formalism used to specify it, must respect certain properties associated with the domain of 
product lines. On the other hand, certain properties are associated with the fact that each PLM 
respects the syntactic rules of the formalism in which it is specified. Therefore, some properties 
of PLMs are independent of the formalism while other ones are particular to each formalism.  

In light of this observation, we propose a typology of verification criteria (Salinesi et al. 
2010a) that is summarized in Figure 3. This typology shows that not all criteria are equivalent. 
Some result of the formalization of the PL with a model (conformance checking; c.f., Mazo et al. 
2011c), whereas others can be used to verify PLMs independent of their metamodel (domain-
specific verification). Our experience with both kinds of verification shows that constraint logic 
programming (in this framework, constraints are embedded in the logic programming paradigm (Apt & 
Wallace 2006)) can be used to verify both kinds of verifications. In the context of domain-specific 
verification, there is a collection of verification criteria that every PLM must respect, 
independently of the formalism in which the model is specified. For instance, every PLM must 
allow configuring several products; that is to say the PLM must not be a void model. Our 
research have also demonstrated that in the context of conformance checking the criteria are not 
generic; on the contrary, they depend on the metamodel of the language in which each PLM is 
represented (Mazo et al. 2011b). For instance, a feature model must not have more than one root 
feature or must not have two features with the same name. 
 



 

Figure 3. Typology of verification criteria on PLMs 

The outcomes of the typology are multiple:  
A. each defect can be searched for using a given criterion;  
B. the typology facilitates the identification of defects for which no verification criterion is 

available elsewhere in the literature (Mazo et al. 2011a); 
C. the classification behind the typology makes it easier the proposition of a standard and 

reusable approach to verify the domain-specific criteria of PLMs; and 
D. the typology can be used to select the criteria that one wants to use to verify a PLM 

according to the impact that these criteria have or the expected level of quality of a 
particular PLM. 

 
An example of consistency criteria is the absence of false optional variables on PLMs. In our 

running example, UserInterface is a false optional variable. Indeed, the variable is specified as 
optional but it is in fact present in all products of the PLM.  
Another example of criteria is the following one: a PLM is satisfiable or not void if at least one 
product can be configured from the PLM. A void PLM is a model that does not allow 
configuring products; it is thus a useless PL model. 
 
ANALYSIS OF CONSTRAINT-BASED PRODUCT LINE MODELS 
 
Analysing product line models consists in the extraction of information from these models. As 
shown in Figure 4, specifying PL models with CP allows automatic analysis at both the domain 
and the application levels. When analysis is done at the domain level it helps reasoning on the PL 
itself. When achieved at the application level, it helps reasoning about products, mainly by 
generating either partial or full configuration (which corresponds to a valuation of some/all the 
variables). To our knowledge, the most extensive collection of analysis operations on feature 
models is the one presented in (Benavides et al. 2010). Most of these operations are discussed in 
this section. 

 



 

Figure 4. Product line analysis using the Constraint Language (Salinesi et al. 2011). 

Domain Level Analysis.  
 
Domain level analysis is performed on the PL itself, and not on the configured products. Some 
common operations on the domain level are: 
1. Calculating the number of valid products represented by the PLM. This operation may be 

useful to determine the richness of a PLM. For instance, in our UNIX example, we obtain a 
list of 100440 products in the technical view and 408 products in the user view.  

2. Calculating commonality of a collection of variables. This is the ratio between the number of 
products in which a collection of variables (e.g., a configuration) is present and the number 
of products represented in the PLM. 

3. Calculating homogeneity: this indicates to which degree the elements appear in various 
products. A more homogeneous PLM would be one with few unique variables (a unique 
variable equals 1 only in one product) while a less homogeneous PLM would be one with a 
lot of unique variables. By definition Homogeneity = 1 - (#unicVar / 
#products) where #unicVar is the number of unique variables in one product and 
#products denotes the total number of products represented by the PLM. In our running 
example Homogeneity is equal to 0,99998. 

4. Calculating variability factor: this operation returns the ratio between the number of products 
and 2n where n is the number of variables considered. In particular, 2n is the potential 
number of products represented by a PLM, assuming that there are not transverse 
dependencies (in the sense of FODA) in the model and that all PLM’s variables are boolean. 
Variability factor = NProd / 2n. This function is not applicable to our UNIX’s 
technical and user views because these models have integer variables and a lot of cross-tree 
constraints. 



 

 

Figure 5. Some analysis functions over our UNIX’s technical view, using our tool VariaMos  

 
Application Level Analysis 
 
The analysis operations at this level are the following ones: 
5. Finding a valid product, if any. A valid product is a configuration that respects all the 

constraints of the PLM. For instance, finding a valid product configured with the UNIX 
technical view model is (as shown in Figure 5):  
P1 = {UNIX=1, Kernel=1, Scheduling=0, ExecutingInstructions=1, 
InterpretingInstructions=1, AccomplishingTheTransferOfData=0, 



AllocatingTheMachinesMemory=1, Shell=1, FileSystem=1, UserInterface=1, 
Graphical=1, Process1=1, Process2=1, Process3=0, Process4=0, Process5=1, 
WidthResolution=1024, HeightResolution=768, Support_usb=0, Cdrom_atech=2, 
Pcmcia_support=2}.  

It is worth noting that for boolean variables like Graphical the value 1 means that the 
corresponding element is present in the product, for WidthResolution the value 1024 represents 
the number of pixels corresponding the to the width resolution of the configured product, the 
value 2 of variables Cdrom_atech and Pcmcia_support means that these modules are static in 
the product, and the value 0 affected to Support_usb means that this module is not selected in 
the product. 
6. Obtaining the list of all valid products represented by the PLM, if any exist. This operation 

may be useful to compare two product line models. For the sake of space, the comprehensive 
list cannot be presented in this paper, but as the screenshot shows it in Figure 5, tool support 
provides users with the possibility to navigate in the list of products using the Next and 
Previous buttons. 

 
CONFIGURATION OF CONSTRAINT-BASED PRODUCT LINE MODELS 
 

Product configuration is hard because of the quantity of product line elements, of their 
diversity and of the complex interdependencies between them. This problem becomes more 
complex when the product line is represented by multiple views, as in the case of our running 
example. Furthermore, customers typically have requirements that cannot be fulfilled by the 
product line. Also, they are lost with the number of choices and they find it difficult to find a 
product that belongs to the PL because they do not take configuration constraints into account 
when they specify their requirements. Therefore, automated mechanisms to propagate 
configuration decisions and guide the user in the configuration process are highly needed. Our 
experience with configuration of product line models (Djebbi et al. 2008), (Djebbi & Salinesi 
2008) shows that constraints play a prominent role in the configuration process: in fact, 
stakeholders have a much richer power of expression when they use constraints to specify their 
configuration requirements. Our position is that configuration requirements should be considered 
as a first class concept. We have discovered that various kinds of configuration requirements can 
be specified using CP. Based on our observations we distinguish between three categories of 
configuration requirements: simple full closure, optimization, and partial closure. 

Simple full closure: these simple full closure configuration requirements consist in allocating 
a given value to a variable. This kind of requirement is the most common one, as traditional PL 
specification formalisms are usually used in configurations to indicate whether or not a 
configuration should include a feature, a variant, etc. In CP terms, this kind of requirement is 
simply specified with a constraint V = val, where val is one of the possible values in the 
domain of V.  

Optimization requirements consist in indicating that the configuration should be optimal in 
terms of one of the variables that define it (if the variable can be maximized of minimized). 
Examples of optimization requirements are maximization of revenue, of performance, or 
minimization of cost, delivery time, response time, etc. Optimization requirements can be 
combined, but this raises a hard problem as it may be difficult (i.e. NP complete from a 
calculability point of view) to satisfy all the requirements at the same time. Current researches on 
CP try to solve these issues by using smart strategies. Two approaches can be used at the PL 
levels. On the one hand, priorities can be used to specify which optimization requirement should 
be satisfied first. The other approach consists in proceeding in an incremental way by lowering 
the level of expectations for some of the optimization by specifying partial closure requirements. 



Partial closure requirements are specified with constraints that reduce the possible list of 
values of one or several variables that specify the PL. For example a partial closure requirement 
can be specified to indicate close to optimal values for an attribute. Partial closure requirements 
can be complex in the sense that they may involve several variables at the same time. Of course, 
they can be simple too, as e.g. WidthResolution ≥ 800 which involves one variable only. 
Examples of partial closure requirements are preferences (e.g., the user prefers X over Y), 
dependencies (e.g., if X is included in the configuration, then Y is not needed), and open choices 
(e.g., the configuration shall include at least 3 instances of X). 

 
The following paragraphs present some configuration requirements patterns that are 

implemented in the VariaMos tool (Mazo et al. 2012). The following list shows some of the 
configuration requirements patterns and operations that can be performed with VariaMos to deal 
with configuration requirements. 
1. Optimal product: maximize(WidthResolution+ HeightResolution) allows to find a 

solution such that the objective function WidthResolution+ HeightResolution is 
maximized. Conversely, minimize(WidthResolution+HeightResolution) allows to find a 
product with the minimum resolution allowed by the product line model.  

2. Global optimization requirements. Examples of global optimization are the maximization of 
reuse (e.g., any generated configuration must include at least k elements), and the 
minimization of components cost (e.g., the maximum cost of any generated configuration 
should not exceed a certain value). Detection of “optimal” products is very important for 
decision makers as presented in (Djebbi & Salinesi, 2007, Salinesi et al., 2010b). Specifying 
them may require the specification of additional variables that did not exist in the PL 
specification. 

3. Preselected configuration. Configurations may be partial or total. A valid partial 
configuration is a collection of variables that respect the constraints of the PLM but not 
necessarily representing a valid product (some variables of the PL are not valuated). A total 
configuration is a collection of variables values that respect the constraints of the PL 
specification, and where there is no variable that needs to be valued to specify a valid 
product. An operation that helps specifying partial pre-selected configurations may be useful 
to determine if there are not contradictions in a configuration requirement. In our running 
example, the product: 
P2 = UNIX=1, Kernel=_, Scheduling=_, ExecutingInstructions=_, 
InterpretingInstructions=_, AccomplishingTheTransferOfData=_, 
AllocatingTheMachinesMemory=_, Shell=_, FileSystem=_, UserInterface=_, 
Graphical=0, Process1=_, Process2=_, Process3=_, Process4=_, Process5=_, 
WidthResolution=1024, HeightResolution=768, Support_usb=_, Cdrom_atech=2, 
Pcmcia_support=_} 
Which is configured in our tool VariaMos as shown in Figure 6 (note that the symbol “_” 
assigned to a variable means that there is not a predefined value for the variable). 

 



 

Figure 6. Requirement specification in order to create a filter with a certain configuration and 
supplementary constraints. 

4. Propagating dependency requirements. The purpose is to look for all the possible solutions 
after assigning some fixed value to a collection of variables. In our running example, if one 
selects the Support_usb (that is, by assigning the value of 1 or 2, to the Support_usb 
variable), the variables Kernel, UNIX and FileSystem must be selected as well because of the 
constraints: UNIX = Kernel ⋀ UNIX = FileSystem ⋀ (Support_usb ≤ Kernel)  
FileSystem. The number of products that satisfy this requirement is 66960. 

5. Filter. This operation takes a partial configuration (i.e. a set of valued variables), the PL 
constraints specification, a collection of supplementary constraints that specify various kinds 



of requirements. In return, it generates the collection of products that include the input partial 
configuration and respect both the constraints of the PLM and the configuration 
requirements. 

6. Calculating the number of products after applying a filter. This is useful when too many 
products can be configured to navigate between. If we apply a filter constraining products 
with a resolution of 1204x768 and products where Support_usb > 0, there are 22320 
correct configurations, which indicates to the stakeholder that further requirements are 
needed to come up with a manageable collection of configurations.  

 
EVALUATION 
 

We evaluated the effectiveness of our approach by testing its implementation, scalability and 
feasibility. 

 
Tool implementation. We developed an interactive environment composed of two tools: 

VariaMos (Mazo et al. 2012) and GNU Prolog (Diaz & Codognet 2001). VariaMos is an Eclipse 
plug-in that allows managing constraint programs (e.g., creating, editing and saving them) to 
specify PL models. Besides, VariaMos offers rich collection of PL engineering functions such as 
verification (detect void models, false product line models, dead variables, false optional 
variables, not attainable domains and redundant constraints), analysis (supporting most of the 
aforementioned analysis functions) and configuration requirements specification (e.g., configure 
a product, define a filter or a partial configuration and specify extra constraints or particular 
requirements).  

 
Computational Scalability. We assessed the scalability of our approach with 50 models, out 

of which 48 were taken from the SPLOT repository (Mendonca et al. 2009a). The other two 
models were developed during industry collaboration projects (Djebbi et al. 2007), (Lora-
Michiels et al. 2010). The size of the models are distributed as follows: 30 models contained 
from 9 to 49 variables, 4 from 50 to 99, 4 from 100 to 999 and 9 from 1000 to 5000. The PL 
covered various domains such as insurance, entertainment, web applications, home automation, 
search engines, and databases. Note that the original SPLOT models only contained [m..n] 
cardinalities with m equal to 0 or 1, and they did not contain any attribute. Therefore, in order to 
increase the complexity, numerical attributes (such as WidthResolution ∈ {800, 1024, 
1366}) were introduced in a random way, so as to have models with attributes associated with 
30%, 60% or 100% of the other elements. Following the same logic, we changed 50% of the 
SPLOT cardinalities in order to have more general cases than the original ones. In order to do 
that, we created a simple tool3 that translates models in the SPLOT format into constraints 
programs. This was achieved using the transformation patterns presented in (Salinesi et al. 2011), 
and by assigning artificial attributes and lower bound cardinalities in a random way as long as m 
≥ n ≥ 0. The evaluation was performed in the following environment: desktop Intel Pentium 4 
3.2 GHz PC with Windows Seven 32 bits, 4,00 GB RAM memory, GNU Prolog 1.3.0. The 
evaluation results are shown in Figure 7. The results are presented in a logarithmic scale for the 
sake of readability of the data distribution. 

The experimental results presented in Figure 7 indicate that PLMs can be analyzed in an 
acceptable time. The best results from the point of view of scalability are obtained on the 

                                                             
3 opt_semantic_parser_sxfm.jar available at: https://sites.google.com/site/raulmazo/  



analysis operations. We were able to avoid computing all configurations to perform analysis 
functions by using a CLP solver to execute all the analysis operations discussed in the previous 
section. This kind of solver is not optimized to compute the number of solutions of a CP. 
However, this kind of solver (and SAT-based solvers too) is designed to be efficient on 
satisfiability operations like “check if the PLM is void or not”. Owing to this, the worst 
computation times of VariaMos are 3,5 ms (c.f.,  Figure 7(a)) to test void models, 1.6 sec. (e.g., 
Figure 7(d)) to calculate the “variability factor”, and 1,8 sec. (c.f., Figure 7(e)) to execute the 
“validate a configuration” operation.  

Interestingly, Figure 7(g) shows an abnormal behaviour for a model of 89 variables. The time 
to calculate the whole collection of configurations from this model is very high: 15 min. The 
difficulty to analyze certain product line models (with a very high variability factor or with a 
very large number of cross-tree constrains) is treated in detail in (Mendonça et al. 2009). We 
have not yet found a systematic solution to overcome this issue. 

 
Feasibility study with a real case application. One particular question that can be raised 

about the new kinds of constraints that have been identified in this paper is “are they useful?” 
Although only long term experience shall provide a definitive answer to this question, one might 
be interested in looking for special constraints that could be specified in a real case. To do so, we 
have applied our CP over Finite Domains (FD) approach to specify constraints on a family of 
blood analysis automatons (Djebbi & Salinesi 2007) in the context of a cooperation with the 
STAGO industry partner.  

Using FD constraints allowed us to specify constraints to reason about cost and revenue of 
features of the STAGO instruments in the PL. In order to do this, we associated to each feature, 
two variables to specify costs and benefits respectively. For example, we specified constraints on 
the minimal number of measurement wells depending on the required tests and the required 
cadence for these tests. 
Chronometric.NumberOfWells + Colorimetric.NumberOfWells + 
Immunologic.NumberOfWells ≥ max(LaunchTest.TestCadence) * 
max(LaunchTest.TestDuration) 

We could also specify complex dependencies that could not be specified in FODA dialects. 
For instance “the optional function ‘Agitate’ shall be implemented if one of the tests TCA, ATIII 
or PC are not included in the configuration”. 

(LaunchTest.TestType ≠ TCA)  (LaunchTest.TestType ≠ ATIII)  
(LaunchTest.TestType ≠ PC)  Agitate = 1 

Looking at our list of specific constraints, we identified the following constraints which could 
not be specified with {true, false} features, but could be specified with our integer constraint 
notation: 

 constraints on both [0..n] features and feature attributes. For example, we could play 
with the number of chronometric, colorimetric and immunologic measures and specify a 
constraint on the number of their occurrence with regard to the cadence and duration of 
the test.  
Chronometric + Colorimetric + Immunologic ≥ LauchTest.TestCadence* 
LauchTest.TestDuration 

 Some symbolic constraints such as Atmost(1,[Agitate,Mix,Incubate],2]) which 
specifies that each activity in a methodology can be repeated at most twice, could have 
been specified with FODA, but this was so difficult, error prone and not flexible, that 
most of them were left apart. 



 Other symbolic constraints could simply not be specified with FODA or its dialects. This 
is for example the case of the following symbolic constraints that was needed to specify 
possible combinations of value of the cadence, duration, and kind of determination for 
different kinds of test types: 
Relation ([LauchTest.TestType, LauchTest.TestDuration, 
LauchTest.TestCadence, determination], [[TP, 2, 14, simple], [TP, 2, 
14, double],[TCA, 2, 14, simple],[TT, 3, 2, double],[Fib, 10, 5, 
double],[ATIII, 15, 3, double],[VwF, 13, 8, double],[PC, 2, 6, 
simple],[DDi, 6, 8, simple]]) 

 Last, we needed to specify reified constraints such as: 
LaunchTest.TestType = TCA  C ⋀ C  Chronometric=1 ⋀ 
Chronometric.Speed = normal 
which enforces the use chronometric measurement technique when TCA test is 
demanded, and specifies the required speed for this test. This constraint could not be 
specified using FODA dialects. 

We also used feature attributes to support cost/benefit analysis on measurement techniques. 
The following goals could for instance be specified: 

Min(Chronometric.Cost * Chronometric.NumberOfWells + Colorimetric.Cost* 
Colorimetric.NumberOfWells+Immunologic.Cost*Immunologic.NumberOfWells) 
⋀ Max (Chronometric.Revenue * Chronometric.NumberOfWells + 
Colorimetric.Revenue * Colorimetric.NumberOfWells + Immunologic.Revenue 
* Immunologic.NumberOfWells) 

The results obtained with the STAGO product line are encouraging and confirm that CP over 
FD is well suited to precisely model and efficiently configure PL. 

 

Figure 7. CPU time to execute our analysis operations over our 47 PLMs. Axe Y: time in 
milliseconds. Axe X Log 10 (Number of features) 



 
Usability. This paper does not address how to best visualize our constraint-based approach 

neither the results obtained from the constraint-based product line models. Even if these issues 
are very important due to the fact that in some cases these models exceed hundreds of constraints 
and millions of products, much of this problem has to do with human-computer interaction. 
However, we propose a graphical representation of the constraint-based PLMs as a constraint 
network and a friendly user interface to present the results obtained from our analysis operations 
over the models. In the first case, the constraint network is a graph where each node corresponds 
to a constraint and each arch corresponds to the relationships among the variables of each 
constraint. For instance, in our running example, UNIX = Kernel is a constraint and therefore it 
is graphically represented as one node (N1) and (Kernel = Scheduling)  Process is 
another constraint and therefore it is graphically represented as one node (N2). Due to the fact 
that N1 and N2 share one variable (Kernel), there is one arch between N1 and N2. In the second 
case, we present the results step by step by means of matrix that contains collections of results 
(ten by ten) and the user can interact with the tool to configurated the number of solutions that 
he/she want to have in the screen.  

Another important issue that is not addressed in this paper is the downstream economic 
benefits. For example, one could raise the question how does analysis operations really benefit 
software engineering at large? How much does it cost if such an analysis approach does not 
exists in a PL production environment? These complex issues have yet to be investigated. 
 
RELATED WORKS AND DISCUSION 
 
This paper is not the first one to explore the use of constraints programming in the context of PL. 
For instance, Mannion (2002) and Zhang et al. (2004) use propositional logic to represent PLMs, 
and Batory (2005) uses Conjunctive Normal Form (CNF) formulas to represent FMs and SAT 
solvers to analyze them. In these formulas, features are Boolean variables (either they are 
included or not in a configuration). Czarnecki's proposals of staged configuration, features 
cardinalities and feature attributes have created an opportunity to move from boolean to integer 
constraints specification. Our approach belongs to this family of approaches that relies on integer 
domain constraints rather than on boolean ones. The simple fact of replacing the {true, false} 
domain by [0..1] opens the door to kinds of constraints that did not exist in the aforementioned 
approaches. In particular, Benavides's works (Benavides et al. 2005 and 200) have shown how 
feature models could be analyzed by specifying integer constraints on attributes associated with 
features. In Benavides's approach, features themselves still have a {true, false} domain, while 
our approach allows dealing with [0..n] features.  White et al. (2009) also provide a CP support 
for multi-step configuration over time, while respecting resource constraints. We believe 
reification constraints able to deal with progressive configuration either by providing successive 
complete products as in (White et al. 2009) or successive partial configurations as in (Czarnecki 
et al. 2005).  

More recent works (Karataş et al. 2010, Salinesi et al. 2010, Mazo et al. 2011d) show that 
specifying PL in CP rather than the original graphical language is not pertinent just because it 
facilitate the automatic reasoning on them but also because it increases the power of expression. 
Indeed, the drawback of graphical formalisms is that their power of expression is largely reduced 
because of the graphical notation. On the other hand CP has the advantages of the text based 
languages to represent and support reasoning on PLMs in an efficient way. The drawbacks of the 
graphical PL notations were well demonstrated by Heymans, Boucher and Classen who proposed 
a Text-based Variability Language (Boucher et al. 2010) and (Classen et al. 2011) to overcome 



them. Some of these drawbacks are: (i) to create a large PLM with a graphical syntax “is a 
burden and cannot be mastered without dedicated tool support”, (ii) given the tree and two 
dimensional structure of most of the PL notations “there will inevitably be large physical 
distances between features, which makes it hard to navigate, search or interpret the model”, and 
(iii) “most notations do not have graphical means to represent constructs like attributes and 
constraints which are essential for industrial FMs”. On the other hand, the advantages of non-
graphical languages are: (i) the expressiveness to represent variability and commonality 
constructs that are forbidden in some graphical notations due to the limited syntax of the these 
languages; and (ii) the possibility to reason directly on the model (with, in some cases, a 
compilation instead of transformation to a low-level language). This latest property avoids 
problems related to loss of information and misinterpretation when PLMs are transformed from 
their original formalisms to an executable language. In addition, our experience has shown that 
both, structure and semantic of product line models can be represented by means of logic and 
constraint constructs. 

Besides, the aforementioned approaches consider only single monolithic feature models. As 
shown Tables 2 to 6 in the appendix, our approach is able to deal with several models including 
when they are specified using different formalisms. Furthermore, our approach explores more 
FD Constraint Programming capabilities that have not been exploited so far. For instance it 
provides numerous types of constraints (e.g. symbolic and reified constraints) that had not been 
proposed by other approaches before. 
 
CONCLUSION  
 
The international community is nowadays very interested in the use of constraints programming 
to support PL Engineering. Indeed, the analogy between PL specification formalisms and CP can 
easily be drawn: both are collections of variables and constraints that should be satisfied. We 
believe, like many other researchers in the community, that specifying a product line as a 
constraint program rather than with a more traditional formalism such as a feature model (Kang 
et al. 1990) has two important advantages: the expressiveness and the direct automation. On the 
one hand, variables in CP can take values over Boolean, Integer, Real or even complex domains 
(i.e., lists, arrays and trees) and not just boolean values as in Feature-Oriented Domain Analysis 
(FODA) models (Kang et al. 1990). On the other hand, constraints in CP can be boolean, 
arithmetic, symbolic and reified, and not only boolean as in FODA models. Besides, PL models 
expressed as constraint programs can directly be executed and analyzed by off-the-shelf solvers. 
This last property avoids problems related to loss of information and misinterpretation when de 
PL model is transformed from its original formalism to an executable language. The loss of 
information can be of two types: loss of structural information and loss of semantic information. 
In the first case, we do not have the possibility to identify anomalies related to the structure 
neither derivate a product guided by the structure of the PL model, because the structural 
properties of the model are lost. In the second case, we lose information about the semantic of 
the model, e.g. the number of products that can be derived from the PL model or knowledge 
about the ability of the PL model to derive products.  
This paper showed how to specify product lines as a finite domain constraint program i.e. not 
just a boolean program that implements features selection in a FODA-like models, but a series of 



constraints that apply to integer variables and other constraints too. We believe our approach is 
original as (a) it is a first attempt to integrate various variability models through a unique 
representation, (b) it supports direct reasoning on product line models (c) it supports the 
specification of complex configuration requirements. 
Nonetheless, some further work is required for the multi-valuated PL elements, on which 
constraints may need some adjustments. Besides, the approach can be extended to deal with 
reals, which can for example allow performing some probabilistic reasoning (some industries 
like Renault have expressed the need to plan pieces logistics). We have explored constraint 
programming on finite domains, but many other domains could be relevant: Intervals, Trees, 
Lists, and Sets. Constraint Programming is versatile in that it adapts quite well to different 
applications. We have little doubt that the systematic exploration of these domains will generate 
new knowledge about product lines engineering. 
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Anexe 

Tables 2 to 6 compile the constructs, and its corresponding CP representations, of the most 
popular languages used to specify PLMs. 

Table 2. Compilation of the feature-based languages’ constructs and the corresponding 
representation as CPs.  

Constructor and domains vs. 
Languages 

FODA-like models (Kang et al., 
2002) 

Feature models with cardinalities 
(Riebisch et al. 2002; Czarnecki et al. 
2005) and attributes (Benavides et 
al. 2005c; Streitferdt et al. 2006; 
White et al. 2009) 

Root. The root element must be 
selected in all the configurations. 

If {Root} ∈ {true, false} then 
Root = true  
If {Root} ∈ {0, 1} then    Root = 
1 

If {Root} ∈ {true, false} then Root = 
true  
If {Root} ∈ ℤ then Root ≥ 1 



Optional. If the father element is 
selected, the child element can but 
needs not be selected. Otherwise, if the 
child element is selected, the father 
element must as well be selected. 

If {Father, Child} ∈ {true, false} 
then Child ⇒ Father 
If {Father, Child} ∈ {0, 1} then 
Father ≥ Child 

If {Father, Child} ∈ {true, false} then 
Child ⇒ Father 
If {Father, Child} ∈ {0, 1} then 
Father ≥ Child 
If {Father, Child} ∈ ℤ then Child  ≥ 1 
⇒ Father  ≥ 1 

Mandatory. If the father element is 
selected, the child element must be 
selected as well and vice versa. 

If {Father, Child} ∈ {true, false} 
then Father ⇔ Child  
If {Father, Child} ∈ {0, 1} then 
Father = Child 

If {Father, Child} ∈ {true, false} then 
Father ⇔ Child  
If {Father, Child} ∈ {0, 1} then 
Father = Child 
If {Father, Child} ∈ ℤ then Child  ≥ 1 
⇔ Father  ≥ 1 

Requires (includes). If the requiring 
element is selected, the required 
element(s) has(have) to be selected as 
well, but not vice-versa. 

If {Requiring, Required} ∈ 
{true, false, 0, 1} then Requiring 
⇒ Required 

If {Requiring, Required} ∈ {true, 
false, 0, 1} then Requiring ⇒ 
Required 
If  {Requiring, Required} ∈ ℤ then 
Requiring ≥ 1 ⇒ Required ≥ 1 

Exclusion. Indicates that both excluded 
elements cannot be selected in one 
product configuration. 

If {Excluding, Excluded} ∈ 
{true, false} then Excluding ⊕ 
Excluded 
If {Father, Child} ∈ {0, 1} then 
Excluding + Excluded ≤ 1 

If {Excluding, Excluded} ∈ {true, 
false} then Excluding ⊕ Excluded 
If {Father, Child} ∈ {0, 1} then 
Excluding + Excluded ≤ 1 
If {Father, Child} ∈ ℤ then Excluding 
* Excluded = 0 

Alternative/xor-decomposition. A set 
of child elements are defined as 
alternative if only one element can be 
selected when its parent element is part 
of the product. 

If {Father, Child1, …, ChildN} 
∈ {true, false} then: 
(Child1⇔(¬Child2 ⋀...⋀ 
¬ChildN ⋀ Father) ⋀ Child2 ⇔ 
(¬Child1 ⋀...⋀ ¬ChildN ⋀ 
Father) ⋀ ChildN ⇔ (¬Child1 
⋀...⋀ ¬ChildN-1 ⋀ Father)) 

 

Or-Relation. A set of child elements 
are defined as an or-relation if one or 
more of them can be included in the 
products in which its parent element 
appears. 

If {Father, Child1, …, ChildN} 
∈ {true, false} then: 
Father ⇔ Child1 ... ChildN 

 

Group cardinality. Cardinality 
determines how many variants (with 
the same father) may be chosen, at least 
M and at most N of the group. Besides, 
if one of the children is selected, the 
father element must be selected as well. 

 If {Father, Child1, …, ChildN} ∈ {0, 
1} then 
Father ≥ Child1 ⋀ …⋀ Father ≥ 
ChildN ⋀ 
M*Father ≤ Child1+...+ChildN ≤ 
N*Father 

A feature cardinality is represented as 
a sequence of intervals [min..max] 
determining the number of instances of 
a particular feature that can be part of a 
product. Each instance is called a 
clone. 

 If {Father, Clone1, …, CloneN} ∈ { 
0, 1} then: 
Clone1 ⇒ Father ⋀ ...⋀ CloneN ⇒ 
Father ⋀  
Father ⇒ (M ≤ Clone1 + … + CloneN 
≤ N) 

Attribute. An attribute is a variable 
associated to a reusable element. An 
attribute has a name, a domain, and a 
value (consistent with the domain) at a 
given configuration time. 

 value ∈ Domain ⋀ Attribute = value 
⋀ 
ReusableElement⇔Attribute > 0 

Domain of the variables found in the 
language 

Boolean.  Features are usually boolean, but they 
can also be Integer or Real variables. 
However if there are attributes in the 
FODA model, they are usually 
Integers or Reals 

Constraints type: boolean, linear, Boolean, reified, =, >, >, ≥, ≤ Boolean, arithmetic, polynomial, 



polynomial, reified, symbolic, others. 
Operators used. 

symbolic, reified, =, >, >, ≥, ≤ 

Special operators: Different and 
negation 

¬ ≠ 

 

Table 3. Compilation of the OVM and TVL’s constructs and the corresponding representation as 
CPs.  

Constructor and domains vs. 
Languages 

Orthogonal Variability Models 
(OVM) (Pohl et al. 2005) 

Textual Variability Language 
(TVL) (Boucher et al. 2010) 

Root. The root element must be 
selected in all the configurations. 

 root Element 

Dependency/and-decomposition: 
operator allOf. The selection of 
the children depends of the 
selection of the father element and 
vice versa 

 Father ⇔ (Child1 ⋀…⋀ ChildN) 

Optional. If the father element is 
selected, the child element can but 
needs not be selected. Otherwise, if 
the child element is selected, the 
father element must as well be 
selected. 

If {Element1, Element2} ∈ {true, 
false} then Element2 ⇒ Element1 
if {Element1, Element2} ∈ {0, 1} 
then Element1 ≥ Element2 
If {Element1, Element2} ∈ ℤ then 
Element2 ≥ 1 ⇒ Element1 ≥ 1 

Child ⇒ Father 

Mandatory. If the father element is 
selected, the child element must be 
selected as well and vice versa. 

If {Element1, Element2} ∈ {true, 
false} then Element1 ⇔ Element2 
If {Element1t, Element2} ∈ {0, 1} 
then Element1 = Element2 
if {Element1, Element2} ∈ ℤ then 
Element2  ≥ 1 ⇔ Element1 ≥ 1 

Father ⇔ Child 

Requires (includes). If the 
requiring element is selected, the 
required element(s) has(have) to be 
selected as well, but not vice-versa. 

If {Requiring, Required} ∈ {true, 
false, 0, 1} then Requiring ⇒ 
Required 
If  {Requiring, Required} ∈ ℤ then 
Requiring ≥ 1 ⇒ Required ≥ 1 

If {Requiring, Required} ∈ {true, 
false, 0, 1} then Requiring ⇒ 
Required 

Exclusion. Indicates that both 
excluded elements cannot be 
selected in one product 
configuration. 

If {Excluding, Excluded} ∈ {true, 
false} then Excluding ⊕ Excluded 
If {Father, Child} ∈ {0, 1} then 
Excluding+Excluded ≤ 1 
If {Father, Child} ∈ ℤ then 
Excluding * Excluded = 0 

 

Alternative/xor-decomposition. A 
set of child elements are defined as 
alternative if only one element can 
be selected when its parent element 
is part of the product. 

 If {Father, Child1, …, ChildN} ∈ {0, 
1} then: 
(Child1⇔(¬Child2 ⋀...⋀ ¬ChildN ⋀ 
Father) ⋀ Child2 ⇔ (¬Child1 ⋀...⋀ 
¬ChildN ⋀ Father) ⋀ ChildN ⇔ 
(¬Child1 ⋀...⋀ ¬ChildN-1 ⋀ Father)) 

Or-Relation. A set of child 
elements are defined as an or-
relation if one or more of them can 
be included in the products in 
which its parent element appears. 

 If {Father, Child1, …, ChildN} ∈ {0, 
1} then: 
Father ⇔ Child1 ... ChildN 

Group cardinality. Cardinality 
determines how many variants 
(with the same father) may be 
chosen, at least M and at most N of 
the group. Besides, if one of the 
children is selected, the father 

If {VariationPoint, Variant1, …, 
VariantN} ∈ {0, 1} then 
VariationPoint ≥ Variant1 ⋀ …⋀ 
VariationPoint ≥ VariantN ⋀ 
M*VariationPoint ≤ Variant1+...+ 
VariantN ≤ N*VariationPoint 

If {Father, Child1, …, ChildN} ∈ {0, 
1} then 
Father ≥ Child1 ⋀ …⋀ Father ≥ 
ChildN ⋀ 
M*Father ≤ Child1+...+ChildN ≤ 
N*Father 



element must be selected as well. 
Individual cardinality is 
represented as a sequence of 
intervals [min..max] determining 
the number of instances of a 
particular feature that can be part of 
a product. Each instance is called a 
clone. 

If {Father, Clone1, …, CloneN} ∈ { 
0, 1} then: 
Clone1 ⇒ Father ⋀ ...⋀ CloneN ⇒ 
Father ⋀  
Father ⇒ (M ≤ Clone1 + … + 
CloneN ≤ N) 

If {Father, Clone1, …, CloneN} ∈ { 
0, 1} then: 
Clone1 ⇒ Father ⋀ ...⋀ CloneN ⇒ 
Father ⋀  
Father ⇒ (M ≤ Clone1 + … + CloneN 
≤ N) 

Attribute. An attribute is a variable 
associated to a reusable element. 
An attribute has a name, a domain, 
and a value (consistent with the 
domain) at a given configuration 
time. 

 Attribute ∈ { integer, real, boolean, 
enumeration} ⋀ 
Attribute = value ⋀ 
ReusableElement ⇔ Attribute > 0 

Domain of the variables found in 
the language 

Boolean, Integer, Real Features: boolean. 
Attributes: integer (int), real (real), 
Boolean (bool) and enumeration 
(enum) 

Constraints type: boolean, linear, 
polynomial, reified, symbolic, 
others. Operators used. 

Boolean, arithmetic, polynomial, 
symbolic, reified, =, >, >, ≥, ≤ 

All the constraints of C: +, -, /, *, abs, 
for numeric values; !, &&, jj, ->, <-> 
for Boolean values as well as 
comparison operators >, >=, < or <=. 
And aggregation functions like sum, 
mul, min, max, avg, count, and, or 
and xor 

Special operators: Different and 
negation 

≠ ≠, ¬ 

 

Table 4. Compilation of the Class-based and Use case-based variability languages’ constructs 
and the corresponding representation as CPs.  

Constructor and domains vs. 
Languages 

Class-based PLMs (Ziadi 2004), 
(Korherr, List 2007) 

Use case-based PLMs (Van der 
Maßen, Lichter 2002) 

Optional. If the father element is 
selected, the child element can but 
needs not be selected. Otherwise, if 
the child element is selected, the 
father element must as well be 
selected. 

If {Element1, Element2} ∈ {true, false} 
then Element2 ⇒ Element1 
If {Element1, Element2} ∈ {0, 1} then 
Element1 ≥ Element2 

If {Element1, Element2} ∈ {true, 
false} then Element2 ⇒ Element1 
If {Element1, Element2} ∈ {0, 1} 
then Element1 ≥ Element2 

Mandatory. If the father element is 
selected, the child element must be 
selected as well and vice versa. 

If {Element1, Element2} ∈ {true, false} 
then Element1 ⇔ Element2 
If {Element1t, Element2} ∈ {0, 1} then 
Element1 = Element2 

If {Element1, Element2} ∈ {true, 
false} then Element1 ⇔ Element2 
If {Element1t, Element2} ∈ {0, 1} 
then Element1 = Element2 

Requires (includes). If the 
requiring element is selected, the 
required element(s) has(have) to be 
selected as well, but not vice-versa. 

If {Requiring, Required} ∈ {true, false, 
0, 1} then Requiring ⇒ Required 
If  {Requiring, Required} ∈ ℤ then 
Requiring ≥ 1 ⇒ Required ≥ 1 

If {Requiring, Required} ∈ {true, 
false, 0, 1} then Requiring ⇒ 
Required 
If  {Requiring, Required} ∈ ℤ 
then Requiring ≥ 1 ⇒ Required ≥ 
1 

Group cardinality. Cardinality 
determines how many variants 
(with the same father) may be 
chosen, at least M and at most N of 
the group. Besides, if one of the 
children is selected, the father 
element must be selected as well. 

 If {Father, Child1, …, ChildN} ∈ 
{0, 1} then 
Father ≥ Child1 ⋀ …⋀ Father ≥ 
ChildN ⋀ 
M*Father ≤ Child1+...+ChildN ≤ 
N*Father 
 

Individual cardinality is If {FatherClass, Clone1, …, CloneN} ∈  



represented as a sequence of 
intervals [min..max] determining 
the number of instances of a 
particular feature that can be part of 
a product. Each instance is called a 
clone. 

{ 0, 1} then: 
Clone1 ⇒ FatherClass ⋀ ...⋀ CloneN ⇒ 
FatherClass ⋀  
FatherClass ⇒ (M ≤ Clone1 + … + 
CloneN ≤ N) 

Domain of the variables found in 
the language 

Boolean, Integer, Real Boolean 

Constraints type: boolean, linear, 
polynomial, reified, symbolic, 
others. Operators used. 

Boolean, arithmetic Boolean, arithmetic 

 

Table 5. Compilation of the Dopler and CEA variability languages’ constructs and the 
corresponding representation as CPs.  

Constructor and domains vs. 
Languages 

Dopler variability language 
(Dhungana et al. 2010) 

CEA - variability language 

Root/Visibility Condition. The 
root decision must be solved in all 
the configurations. 

Decision = true ∨ Decision = false  

Mandatory. If the father element 
is selected, the child element must 
be selected as well and vice versa. 

 If {Element1, Element2} ∈ {true, 
false} then Element1 ⇔ Element2 
If {Element1, Element2} ∈ {0, 1} then 
Element1 = Element2 

Requires/Decision Effects/ 
Inclusion Conditions. If the 
requiring element is selected, the 
required element(s) has(have) to 
be selected as well, but not vice-
versa. 

Constraint1 ⇒ Constraint2; 
Asset ⇒ Decision 

 

Validity condition. RDL 
equivalent: "sauf". The Validity 
Condition constrains the range of 
possible values for a particular 
decision. 

 If {Element1, Element2} ∈ {true, 
false, 0, 1} then Element1 ⇒ 
Element2 
If  {Element1, Element2} ∈ ℤ then 
Element1 ≥ 1 ⇒ Element2 ≥ 1 

Asset Dependencies define 
relationships between assets. 
Arbitrary relationship types with 
different semantics like requires, 
contributes to, excludes or 
implements. 

 If {Element1, Element2, …, 
ElementN} ∈ {true, false} then: 
Element1 ∨... ∨ ElementN = true 
If {Element1, Element2, …, 
ElementN} ∈ {1, 0} then: Element1 + 
...+ElementN ≥ 1 

Group cardinality/ Enumeration 
Decision Type/. Cardinality 
determines how many variants 
(with the same father) may be 
chosen, at least M and at most N 
of the group. Besides, if one of the 
children is selected, the father 
element must be selected as well. 

Decision ∈ ValidityCondition ⋀ 
Decision ≥ DecisionOption1 ⋀ …⋀ 
Decision ≥ DecisionOptionN ⋀ 
M*Decision ≤ DecisionOption1+...+ 
DecisionOptionN ≤ N*Decision 

 

Domain of the variables found 
in the language 

Boolean, String, Number(real) and 
Enumeration 

 

Constraints type: boolean, linear, 
polynomial, reified, symbolic, 
others. Operators used. 

All the constraints of Java  

Special operators: Different and 
negation 

≠, ¬  

 



Table 6. Compilation of the RDL and Latice variability languages’ constructs and the 
corresponding representation as CPs.  

Constructor and domains vs. 
Languages 

Renaul Documentary Language (RDL) Latice (Mannion 2002) 

Root. The root element must be 
selected in all the configurations. 

root Projet_Vehicule  

Dependency/and-decomposition: 
operator allOf. The selection of the 
children depends of the selection of 
the father element and vice versa 

 Father ⋀ (Child1 ⋀…⋀ 
ChildN) 

Optional. If the father element is 
selected, the child element can but 
needs not be selected. Otherwise, if 
the child element is selected, the 
father element must as well be 
selected. 

if {Use_Case, Element} ∈ {true, false} then 
Element ⇒ Use_Case 
if {Use_Case, Element} ∈ {0, 1} then Use_Case 
≥ Element 

 

Mandatory. If the father element is 
selected, the child element must be 
selected as well and vice versa. 

if {Use_Case, Element} ∈ {true, false} then 
Use_Case ⇔ Element 
if {Use_Case, Element} ∈ {0, 1} then Use_Case 
= Element 

Father ⇔ Child 

Requires (includes). If the requiring 
element is selected, the required 
element(s) has(have) to be selected as 
well, but not vice-versa. 

if {Requiring, Required} ∈ {true, false, 0, 1} 
then Requiring ⇒ Required 
If  {Requiring, Required} ∈ ℤ then Requiring ≥ 
1 ⇒ Required ≥ 1 

 

Exclusion. Indicates that both 
excluded elements cannot be selected 
in one product configuration. 

if {Excluding, Excluded} ∈ {true, false} then 
Excluding ⇒ ¬Excluded 
if {Excluding, Excluding} ∈ {0, 1} then 
Excluding - Excluded ≥ 1 

Excluding ⊕ Excluded 

Alternative/xor-decomposition. A 
set of child elements are defined as 
alternative if only one element can be 
selected when its parent element is 
part of the product. 

if {Use_Case, Element1, …, ElementN} ∈ 
{true, false} then: 
(Element1⇔(¬Element2 ⋀...⋀ ¬ElementN ⋀ 
Father) ⋀ Element2 ⇔ (¬Element1 ⋀...⋀ 
¬ElementN ⋀ Use_Case) ⋀ ElementN ⇔ 
(¬Element1 ⋀...⋀ ¬ElementN-1 ⋀ Use_Case)) 
if {Use_Case, Element1, …, ElementN} ∈ℤ 
then: Use_Case - (Element1 + ...+ ElementN) = 
0 

 

Or-Relation. A set of child elements 
are defined as an or-relation if one or 
more of them can be included in the 
products in which its parent element 
appears. 

if {Father, Child1, …, ChildN} ∈ {true, false} 
then: 
Father ⇔ Child1 ∨...∨ ChildN 
if {Use_Case, Element1, …, ElementN} ∈ℤ 
then: Use_Case - (Element1 + ...+ ElementN) ≥ 
0 

Father ⇔ Child1 ∨...∨ 
ChildN 

Validity condition. RDL equivalent: 
"sauf". It constrains the range of 
possible values for a particular use 
case. 

if {Relation1, Use_Case} ∈ {true, false} then 
Relation1 ⇒ Use_Case 
if {Relation1, Use_Case} ∈ {0, 1} then 
Use_Case - Relation1 ≥ 0 

 

Conjunction of subgraphs. If Gi and 
Gj are the logical expressions for two 
different subgraphs of a lattice, the 
PLM is con conjunction of Gi and Gj 

 Gi ⋀ Gj 

Domain des variables du language.  Boolean 
Constraints type: boolean, linear, 
polynomial, reified, symbolic, others. 
Operators used. 

 Boolean 

 
 


