
HAL Id: hal-00707522
https://hal.science/hal-00707522

Submitted on 12 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraints: the Heart of Domain and Application
Engineering in the Product Lines Engineering Strategy

Raul Mazo, Camille Salinesi, Olfa Djebbi, Daniel Diaz, Alberto Lora-Michiels

To cite this version:
Raul Mazo, Camille Salinesi, Olfa Djebbi, Daniel Diaz, Alberto Lora-Michiels. Constraints: the Heart
of Domain and Application Engineering in the Product Lines Engineering Strategy. International
Journal of Information System Modeling and Design, 2012, 3 (2), pp.50. �hal-00707522�

https://hal.science/hal-00707522
https://hal.archives-ouvertes.fr

Constraints: the Heart of Domain and
Application Engineering in the Product Lines

Engineering Strategy

Raúl Mazo, University of Antioquia & CRI Panthéon Sorbonne University, France
Camille Salinesi, CRI Panthéon Sorbonne University, France

Daniel Diaz, CRI Panthéon Sorbonne University, France
Olfa Djebbi, CRI Panthéon Sorbonne University, France
Alberto Lora-Michiels, Baxter International Inc, Belgium

ABSTRACT
Drawing from an analogy between features based Product Line (PL) models and Constraint
Programming (CP), this paper explores the use of CP in the Domain Engineering and
Application Engineering activities that are put in motion in a Product Line Engineering strategy.
The start idea is simple: both CP and PL engineering deal with variables, and constraints that
these variables must satisfy. Therefore, specifying a PL as a constraint program instead of a
feature model, or another kind of PL formalism, carries out two important qualities of CP:
expressiveness and direct automation. On the one hand, variables in CP can take values over
boolean, integer, real or even complex domains (i.e., lists, arrays and trees) and not only boolean
values as in most PL languages such as the Feature-Oriented Domain Analysis (FODA).
Specifying boolean, arithmetic, symbolic and reified constraint, provides a power of expression
that spans beyond that provided by the boolean dependencies in FODA models. On the other
hand, PL models expressed as constraint programs can directly be executed and analyzed by off-
the-shelf solvers. Starting with a working example, this paper explores the issues of (a) how to
specify a PL model using CP, including in the presence of multi-model representation, (b) how
to verify PL specifications, (c) how to specify configuration requirements and (d) how to support
the product configuration activity. Tests performed on a benchmark of 50 PL models show that
the approach is efficient and scales up easily to very large and complex PL specifications.

Keywords: Computer science, information systems, constraints, product line specification,
product line reasoning, product line analysis, product line verification, product line integration,
product line configuration, constraint-based product lines, transformation of product lines into
constraint programs.

INTRODUCTION

Many experiences in the industry have shown that Product Lines engineering is an effective way
to deal efficiently with reuse during analysis, design, development, test or even delivery of series
of products that contain similar and varying features. Starting from 3 products, the Product Line
engineering strategy has positive effects on time to market, product quality and customer
satisfaction (Clements and Northrop 2001). Product Line success stories gathered in the SPLC

International Journal of Information System Modeling and Design IJISMD. ISSN 1947-8186,
eISSN 1947-819. April-June 2012, Vol. 3, No. 2.

“Hall of Fame” 1 show companies such as Boeing, Cummins, HP, Nokia, Philips Medical
Systems, or Toshiba benefited from the Product Line strategy in many ways, spanning from a
drastic reduction of time to market, number of defects per product, engineering effort to deploy
and maintain products, combined with a substantial increase in the number of products that can
be deployed. The business benefits are multiple: reduced time to revenue, higher profit margins,
improved ability to aim at market windows, higher profit margins, reduced risk in product
deployment, and even improved reputation of the company due to better product quality2.

The Product Line engineering strategy entails two activities: domain engineering and
application engineering.
Application engineering consists in analysing, designing, building, customizing, or testing one
product by reuse. Different kinds of artefacts can be reused: requirements, design fragments,
architecture, code, test cases, etc. The reuse strategy is based on the exploitation of Product Line
models built during domain engineering.

Domain engineering consists in specifying artefacts for reuse. This means specifying the
artefacts to make them readily reusable, as well as specifying their reuse conditions. Many
different specification languages have been proposed to support this. The most well known is
probably FODA and its dialects (Kang et al. 1990). However OVM (Pohl et al. 2005), UML
extensions (Ziadi 2004), (van der Maßen, Lichter 2002), Dopler (Dhungana et al. 2010), the text-
based variability language (TVL, cf. Boucher et al. 2010 and Classen et al. 2011) and the DSL
proposed in (Mannion 2002) are noteworthy alternatives as they allow specifying Product Lines
with complementary viewpoints such as marketing, architecture, logistics, maintenance, etc.

In our view, the approaches that exploit these formalisms have in common that they
emphasize the role of constraints at both the level of domain engineering and application
engineering. Indeed, domain engineering can be seen in these approaches as the specification of
variables (“features”, “attributes”, “variation points”, etc) and constraints (“dependencies”).
Application engineering then consists in defining values for these variables, while ensuring that
the constraints are satisfied. Therefore, variables specify what can vary from a product to the
other, in other terms the characteristics of artefacts that can be reused. On the other hand,
constraints specify the reuse conditions, ie when artefacts can (or should) be reused or not.

Our approach is grounded on former research works that proposed to transform traditional
Product Line Models (PLMs) into propositional logic (Mannion 2002, Zhang et al. 2004, Batory
2005, White et al. 2008) or boolean constraints programs in order to reason about them
(Benavides et al. 2005, Trinidad et al. 2008, Mendonça et al. 2009). As these works showed it,
using traditional Product Line specification formalisms raises a series of problems:

 being different they are necessary to specify multiple views, but at the same time they are
difficult to integrate;

 they are often quite limited in the sense that they are not rich enough to specify complex
requirements or configuration constraints;

 they are contemplative, and therefore it is difficult to automate verification, analysis and
configuration activities.

The approach taken in this paper makes a step beyond the aforementioned ones: we believe
that constraints programming should be at the core of product line engineering rather than just a

1 http://www.splc.net/fame.html

2 http://www.softwareproductlines.com/benefits/benefits.html

tool or a by-product issued after transforming classical models. Not only this allows specifying
domain models that would not be specified when starting with traditional formalisms, but also it
allows integrating multiple views, it provides users with a rich language to specify their
requirements, and it brings Product Line specifications that are readily available for automated
reasoning using constraints solvers.

Different kinds of constraint programs can be built; each can be solved with a specific kind of
solver. The choice depends on the types of variables on which the reasoning applies (Jaffar and
Maher 1994). :

 Boolean variables can be treated with SAT (Le Berre 2010), BDD (Akers 1978), or SMV
(Specification and Verification Center 2010);

 Integer can be handled with GNU Prolog (Diaz and Codognet 2001), or CHOCO (Ecole
de Mines de Nantes 2010);

 Reals can be handled for instance using clp(R) (Jaffar et al. 1992) ;
 Trees and Lists can be handled with Prolog-III (Colmerauer 1990).
It has been shown that FODA models can be represented as boolean constraint programs

through a series of boolean variables, where each variable corresponds to a feature (Benavides et
al. 2005), (White et al. 2009). A configuration is then generated using a SAT solver, under the
form of a value for each variable, where TRUE means that the product has the corresponding
feature.

Only few approaches have dealt with integer CP (or finite domain CP) (Benavides et al.
2006, Djebbi et al. 2007, Salinesi et al. 2010a and 2010b, Mazo et al. 2011a). In our previous
works (Mazo et al. 2011d, Salinesi et al. 2011), we observed that transforming feature models
into integer CP provides many advantages, including dealing with advanced characteristics of
FODA dialects (such as attributes or feature cardinalities), specifying more complex
requirements than select/de-select a feature, or making complex analyses and verifications
(Salinesi et al. 2010a and 2010b, Mazo et al. 2011a).
Another observation is that most existing approaches consist in transforming existing PL models
into CP. We believe that this way of working hinders the full exploitation of the versatility of
CP. Our research goal is to explore the expressiveness of constraint programming to specify
product line models and to support its automation and reasoning. This goal has two facets: (i) at
the domain engineering level, to widen the power of expression of PL specifications and support
domain level PL analysis, and (ii) at the application engineering level, to provide new analysis
and configuration features.

Our research strategy to achieve this was the following: first, we explored the power of
expression of integer CP by specifying a simple but real PL (Djebbi and Salinesi 2007). This
allowed us both to evaluate the feasibility of the approach, but also to explore the analysis
capability offered by off the shelf constraint solvers supporting the chosen integer CP language.
The approach was then discussed with PL experts of companies like ADN, Renault, Stago and
Baxter (Salinesi et al. 2010). Besides, we developed a series of transformation strategies to
specify FODA models (Kang et al. 1990), UML-based variability models (Ziadi 2004), (van der
Maßen, Lichter 2002) and OVMs (Pohl et al. 2005) using integer CP (Djebbi et al. 2007). Then,
we explored different case studies to evaluate our approach and further develop it (Mazo et al.
2011d), (Salinesi et al. 2011). Last, we experimented the performance and scalability of our
approach using a large benchmark (Mazo et al. 2011d).

One driving working hypothesis in this work was to choose a CP language that can be
handled by a solver. In this respect, Object Constraint Language (OCL) was not considered as a

relevant language, even though OCL could be used to specify PL constraints. The reason for this
decision was that even if OCL is a well known language to represent constraints, OCL rules are
executed by an interpreter and not by a solver, loosing, in the way, some reasoning capabilities
important in the domain of product lines, for instance to calculate the number of valid products
represented in the product line model.

The rest of the paper is structured as follows: Section II introduces the UNIX working
example, which is used in the rest of the paper to illustrate our approach. Section III describes
the approach by presenting CP with a meta-model and the various kinds of constraints that can
be used to specify a PL. In addition, Section III presents the mapping between several product
line modelling languages and our constraint programming approach to represent product line
models. Once product line models are represented as constraint programs, we show how to
integrate them in Section IV, verify them in Section V, analyze them in Section VI, and
configure products from them in Section VII. Section VIII presents the evaluation of our
approach from the implementation, computation scalability, feasibility with real cases and
usability points of view. Section IX discusses works related to the specification of PLMs by
means of CP. Other works that deal with other CP aspects are spread out throughout the paper.
To finish, Section X concludes the paper by summarizing its outcomes and presenting some
research directions.

WORKING EXAMPLE

The example taken in this paper is that of the UNIX operating system. UNIX was first developed
in the 1960s, and has been under constant development ever since. As other operating systems, it
is a suite of programs that makes computers work. In particular, UNIX is a stable, multi-user and
multi-tasking system for many different types of computing devices such as servers, desktops,
laptops, down to embedded calculators, routers, or even mobile phones. There are many different
versions of UNIX, although they share common similarities. The most popular varieties of UNIX
are Sun Solaris, Berkeley (BSD), GNU/Linux, and MacOS X.

The UNIX operating system is made up of three parts: the kernel, the shell and the programs;
and two constituent elements: files and processes. Thus, these three parts consist in a collection
of files and processes allowing interaction among the parts. The kernel of UNIX is the hub of the
operating system: it allocates time and memory to programs and handles the file-store and
communications in response to system calls. The shell acts as an interface between the user and
the kernel, interprets the commands (programs) typed in by users and arranges for them to be
carried out. As an illustration of the way the shell, the programs and the kernel work together,
suppose a user types rm myfile (which has the effect of removing the file myfile). The shell
searches the file-store for the file containing the program rm, and then requests the kernel,
through system calls, to execute the program rm on myfile. The process rm removes myfile using
a specific system-call. When the process rm myfile has finished running, the shell gives the user
the possibility to execute further commands.

As for any Product Line, our example emphasizes the common and variable elements of the
UNIX family and the constraints among these elements. This example is built from our
experience with UNIX operating systems and it does not pretend to be exhaustive, neither on the
constituent elements nor on the constraints among these elements. The example is presented with
two views. The first view is about the technical aspects of UNIX; for instance, the technical
specification of the screen resolution according to the available types of interface. To depict this

view, we propose eight constraints and their corresponding representation in CP. The second
view is the one of final users; for instance, it looks at what utility programs or what kinds of
interfaces are available for a particular user.

Technical view:

Constraint 1. UNIX has one KERNEL.

Constraint 2. Some mandatory functions of the KERNEL are:

 ALLOCATING THE MACHINE'S MEMORY to each PROCESS
 SCHEDULING the PROCESSES
 ACCOMPLISHING THE TRANSFER OF DATA from one part of the machine to

another

Constraint 3. UNIX has zero or several PROCESSES for each user. For the sake of simplicity

will consider only two users in this running example: ROOT_USER and GUEST_USER.
The collection of PROCESSES varies even when the UNIX product is fully configured.

Constraint 4. UNIX offers a logical view of the FILE SYSTEM. A FILE SYSTEM is a logical

method for organising and storing large amounts of information in a way that makes its
management easy.

Constraint 5. The KERNEL is composed of static or dynamic software modules. If the kernel

was compiled for a specific hardware platform and cannot be changed, it is called a static
Kernel. If the Kernel has the ability to dynamically load modules so that it can 'adapt' to a
platform, it is called a dynamic Kernel. For instance, the modules SUPPORT_USB,
CDROM_ATECH, and PCMCIA_SUPPORT cannot be charged, be charged in a static way
or be charged in a dynamic way. For each module, let us number these three different options
0, 1 and 2, respectively.

Constraint 6. The SHELL is a command interpreter; it takes each command and passes it to the

KERNEL to be acted upon.

Constraint 7. The GRAPHICAL interface is characterized by a WIDTH RESOLUTION and a

HEIGHT RESOLUTION that can have the following couples of values [800,600],
[1024,768] and [1366,768].

User view:

Constraint 8. UNIX can be installed or not and the installation can be from a CDROM, a USB

device or from the NET.

Constraint 9. UNIX provides several hundred UTILITY PROGRAMS for each user. The

collection of UTILITY PROGRAMS varies even when the UNIX product is full-configured.

Constraint 10. The SHELL is a kind of UTILITY PROGRAM. Different USERS may
use different SHELLS. Initially, the USER administrator supplies a default shell, that can be
overridden or changed by users. Some common SHELLS are:
 Bourne shell (SH)
 TC Shell (TCSH)
 Bourne Again Shell (BASH)

Constraint 11. Some functions accomplished by the UTILITY PROGRAMS are:

 EDITING (mandatory and requires USER INTERFACE)
 FILE MAINTENANCE (mandatory and requires USER INTERFACE)
 PROGRAMMING SUPPORT (optional and requires USER INTERFACE)
 ONLINE INFO (optional and requires USER INTERFACE)

The USER INTERFACE can be GRAPHICAL and/or TEXTUAL.

SPECIFYING AND ANALYZING PL WITH FINITE DOMAIN CONSTRAINT
PROGRAMMING

Our theory is that a Constraint Language (CL) can be used as a primary concept to model product
lines. The language that we propose is introduced in the first sub-section, then, the second sub-
section illustrates its use with the working example. The last sub-section shows mappings
between traditional PL formalisms and our CP-based formalism for CP specification.

The Constraint Language

The core constructs, of our Constraint Language (CL) are Constraints and Operators that are
applied to Variables and Values. Figure 1 presents our metamodel using UML notation (UML
was chosen for the sake of clarity; an example of formal grammar of one popular CP notation can
be found in (S. de Boer and Palamidessi 1991)). As the metamodel shows it, a variable has a
domain, and at a given moment in time, a value. The domain of variables can be boolean, integer,
interval, enumeration or string. This metamodel improves the version originally presented in
(Salinesi et al. 2011) in two respects:

(i) it distinguishes between constraints and operators. Thus, a constrains can be symbolic,
arithmetic or boolean and contain zero or several operators. Operators are of three types:
multiplication (*), addition (+) and subtraction (-), which were considered exclusively as
arithmetic operations in the previous version of the metamodel. Still, these operations can take
place both in symbolic constrains (e.g., exactly(A+B, 5)) and in boolean constraints (e.g. A*B
 C).

(ii) Resolution operators, are no longer considered as part of the CP language to specify
product line models, but to help in the automatic reasoning of product line models.

Constraints are used to specify PLs. There are three types of constraints: boolean, arithmetic
and symbolic. Symbolic constraints are applied on a set of variables at a time.

Constraints may be simple, but also reified. A reified constraint is a constraint whose truth
value can be captured with a boolean variable, which can itself be part of another constraint.
Reified constraints make it for instance possible to reason on the realisation of constraints at
different times.

Figure 1. Meta-model of a constraint over finite domain language

Defining PL elements. Modelling PL using the CL consists in specifying constraints on PL

elements (e.g., features, requirements, design fragments, components, or any other reused
artefact) that are referred to using variables. Indicating that a PL element, such as a function, can
be either included or excluded is simply done by giving a [0..1] domain to the corresponding
variable, where the 1 value means that the element is included in a configuration, and the 0 value
means that it is not.

The statement domain([E1..Ek], 0, 1) specifies that variables E1..Ek are Booleans. In the
UNIX example, the graphical interface is specified with a boolean variable because it can be
integrated or not in a UNIX operating system. This is specified by:

domain([Graphical], 0, 1)
Also, it may be necessary to reason on the number of times a PL element can be repeated in a

product, as suggested by (Czarnecki et al. 2005). In the UNIX example, a UNIX system can
contain from zero to several thousands of processes. One may also deal with quantifiable elements
such as performance, quantity or capacity.

This kind of constraints over variables that can appear several times in a configuration can be
specified with a variable E with a finite domain [m..n], n being for instance the maximum number
of occurrences of E, or its maximum value or with an enumeration, as follows:

elements E1..Ek are integer elements: domain([E1..Ek], m, n)
elements E1..Ek are enumeration elements: domain([E1..Ek],[value1,..., valuen])
In the UNIX example, width resolution is represented by an enumerated variable:
domain([WidthResolution], [800, 1024, 1366])

Reasoning about Boolean variables. Basic and complex constraints can be specified over

Boolean variables as follows.
Two elements E1 and E2 can only be either both present or both absent of a configuration: E2=E1
A configuration can contain an element E2 only if it also contains E1: E2 ≤ E1
The elements E1 and E2 cannot be simultaneously included in the same configuration: E1+E2≤1
A configuration can contain a number of at least Min (or at most Max) elements within a group

of E1..Ek elements: Min ≤ Σ1..k Ei and Σ1..k Ei ≤ Max
If E3 is included in a configuration, then either E1 or E2 is included; otherwise all are excluded:

(E3  E1 + E2 = 1) ⋀ (¬E3  E1 + E2 = 0), or more concisely E1 + E2 = E3. For
instance in the UNIX example (Constraint 11), Editing implies the inclusion of
UserInterface. This can be specified by the constraint:
Editing  UserInterface

Given two sets of elements S1 = {E1, E2} and S2 = {E3, E4}, a configuration should contain
more elements from the set S1 than from the set S2: E1 + E2 > E3 + E4. This constraint
can, of course, be extended to larger sets.

Either E1 is included in a configuration, or both E2 and E3: 2 * E1 + E2 + E3 = 2
Multiple requires: if the boolean element Ez ∉ {E1..Ek} belongs to a configuration, then the

elements {E1..Ek} should be there too. The corresponding constraint is: Ez  (E1⋀..⋀Ek)
Multiple exclusion: if the boolean elements {E1..Ek} belong to a configuration, then Ez ∉

{E1..Ek} should be excluded. The corresponding constraint is: (E1⋀..⋀Ek)  ¬Ez

Reasoning about integer variables. Basic and complex constraints can be specified over

integer variables as follows.
E1 > a: to indicate that element E1 shall be included at least a times (i.e., it has at least a

occurrences in a given configuration); if the variable represents an attribute, then the
constraint means that its value shall be superior to a.

E1 = a: to specify that the number of times element E1 can be included in a configuration is a
fixed constant. For instance, if the variable Graphical = 0, then WidthResolution = 0
and vice versa.

E1 ≠ a: to indicate that element E1 shall not be included a times in a configuration.
Multiple requires: if the integer element Ez ∉ {E1..Ek} belongs to a configuration, then the

integer elements {E1..Ek} should be there too. The corresponding constraint is: (Ez > 0) 
((E1> 0)⋀..⋀(Ek > 0))

Multiple exclusion: if the integer elements {E1..Ek} belong to a configuration, then Ez ∉
{E1..Ek} should be excluded. The corresponding constraint is: ((E1> 0)⋀..⋀(Ek > 0)) 
(Ez = 0)

Mutual exclusion: elements E1 and E2 are mutually exclusive, that is, both are excluded or if one
is included in a configuration, then the other should be excluded from that configuration: E1
* E2 = 0

A configuration should include more occurrences of an element than of another: E1 > E2
A configuration should include as many occurrences of an element E1 as of two other elements

(E2 and E3) together: E1 = E2 + E3; this is for example useful to specify that a UNIX system
may be installed by one of three methods presented in Constraint 8: UNIX = Cdrom + Usb
+ Net.

Numeric dependency: in the example, n additional kernels are needed for other purposes when
UNIX is configured. This is specified by: UNIX > 0 ⋀ Kernel = n.

A configuration should include more occurrences of a pair of elements (E3, E4) than of another
pair of elements (E1, E2) together: E1 + E2 < E3 + E4.

The number of occurrences of E1 should be the half of the number of occurrences of E2: 2 *
E1 = E2.

Symbolic Constraints. CP over finite domains supports the specification and analysis of

symbolic constraints, i.e. constraints that are checked on collections of variables. Here are some
symbolic constraints:

alldifferent([E1, .., Ek]): specifies that in any configuration the value of each of the
E1...Ek elements should be different pair wise.

atmost(n, [E1..Ek], a): specifies that at most n of the E1...Ek elements are equal to a.
atleast(n, [E1..Ek], a): specifies that at least n of the E1...Ek elements are equal to a.
exactly(n, [E1..Ek], a): specifies that exactly n of the E1...Ek elements are equal to a.
relation([E1..Ek],{[a1..ak]}): constraints the tuple of elements [E1..Ek] to be equal to at

least one tuple in the collection of tuples [a1..ak]. This allows to specify extensively a
predetermined collection of compatible values for a series of elements.

In the UNIX example (Constraint 8), symbolic constraints can be used to specify predefined
combinations of the values that WidthResolution and HeightResolution can take in a
particular configuration :
relation ([WidthResolution,HeightResolution], [[800, 600], [1024, 768], [1366,
768]])

Constraint Reification. In CP, the reification of a constraintC into a variable C of the [0..1]

domain is achieved by a constraint:
C  contraintC

that establishes a correspondence between a constraint constraintC and C as follows:
constraintC shall be verified in a configuration iff C is true (thus the other way round C is true
iff constraintC is verified).

For instance, some constraints should be verified in a configuration only if some elements are
included / excluded from this configuration:

E1 = 1  C: whenever E1 is included, the constraint constraintC reified with the C variable
should be satisfied. Conversely, as soon as ¬C is detected, E1 is set to 0.

E1 = 0  C: whenever E1 is excluded, the constraint constraintC reified with C should be
satisfied.

In the UNIX example, if the shell feature is selected in a particular configuration, then, several
kinds of shells can be selected for each user, as presented in rule 10 of the user view:

Shell 
 ((1 * ROOT_USER ≤ ROOT_USERSH + ROOT_USERTCSH + ROOT_USERBASH ≤ 3 *

ROOT_USER) ⋀
 (1 * GUEST_USER ≤ GUEST_USERSH + GUEST_USERTCSH + GUEST_USERBASH ≤ 3 *

GUEST_USER))

Application on the example

Developing a constraint program that specifies a product line model and resolving it is quite
straightforward. For example, the UNIX product line presented in Section 2 can be specified
using the rules presented in Subsection A with the following program.

Technical view:
[UNIX, Kernel, Scheduling, ExecutingInstructions, InterpretingInstructions,

AccomplishingTheTransferOfData, AllocatingTheMachine’sMemory, Shell,
FileSystem, UserInterface, Graphical, Process1,...,Processk] ∈ {0,1} ⋀

WidthResolution ∈ {800, 1024, 1366} ⋀
HeightResolution ∈ {600, 768} ⋀
[Support_usb, Cdrom_atech, Pcmcia_support] ∈ {0,1,2} ⋀
UNIX = Kernel ⋀
(Kernel = AllocatingTheMachine'sMemory)  Process ⋀
(Kernel = Scheduling)  Process ⋀
(Kernel = AccomplishingTheTransferOfData)  Process ⋀
Shell (Kernel = InterpretingInstructions) ⋀
Shell (Kernel = ExecutingInstructions) ⋀
(UNIX = Process1 V...V UNIX = Processk) ⋀
UNIX = FileSystem ⋀
(Support_Usb > 0)  A ⋀
(Cdrom_Atech > 0)  B ⋀
(Pcmcia_Support > 0)  C ⋀
Kernel > 0  (0 ≤ A + B + C) ⋀
Kernel > 0  (A + B + C ≤ 3) ⋀
Shell  Kernel ⋀
Graphical = 1  (WidthResolution = W1 ⋀ HeightResolution = H1) ⋀
Graphical = 0  (WidthResolution = 0 ⋀ HeightResolution = 0) ⋀
relation([W1, H1], [[800, 600], [1024, 768], [1366, 768]])

User view:
[UNIX, UserInterface, Textual, Graphical, Cdrom, Usb, Net, UtilityProgram,

Editing, FileMaintenance, ProgrammingSupport, OnlineInfo, Shell,
ROOT_USERSH, ROOT_USERTCSH, ROOT_USERBASH, GUEST_USERSH, GUEST_USERTCSH,
GUEST_USERBASH] ∈ {0,1} ⋀

UNIX ≤ Cdrom + Usb + Net ≤ UNIX ⋀
UtilityProgram ≤ UNIX ⋀
Shell  UtilityProgram ⋀
Shell  ((1 * ROOT_USER ≤ ROOT_USERSH + ROOT_USERTCSH + ROOT_USERBASH ≤ 3 *

ROOT_USER) ⋀ (1 * GUEST_USER ≤ GUEST_USERSH + GUEST_USERTCSH +
GUEST_USERBASH ≤ 3 * GUEST_USER)) ⋀

Editing = UtilityProgram ⋀
FileMaintenance = UtilityProgram ⋀
Printing ≤ UtilityProgram ⋀
UserInterface ≤ UtilityProgram ⋀
ProgrammingSupport ≤ UtilityProgram ⋀
OnlineInfo ≤ UtilityProgram ⋀
1 * UserInterface ≤ Graphical + Textual ≤ 2 * UserInterface

Any constraint solver can be then used to solve this constraint program. We used GNU Prolog
(Diaz, Codognet 2001) to analyze the UNIX system. With the technical view, we obtained a list
of 100440 products that were generated (in 515 milliseconds CPU time) and with the user view,
we obtained a list of 408 products (in 15 ms CPU time).

If the product line is already specified with a traditional formalism, then, it is possible to
transform the models into CPs. For instance, Mazo et al. show how to transform Dopler and
feature models, respectively, into CPs to verify and analyze them (Mazo et al. 2011a, Mazo et al.
2011d).

Mapping Between Constraint Programming Product Line Specification and Other
Formalisms

CP is a paradigm that maps with numerous variability notations. Tables 2 to 6 in the appendix
present the constrain representation of some common constructs different PL modelling
formalisms.

Table 2 deals with FODA-like models (Kang et al. 2002), and Feature models with
cardinalities (Riebisch et al. 2002, Czarnecki et al. 2005) and attributes (Benavides et al. 2005c,
Streitferdt et al. 2006, White et al. 2009). While the constructs of the former FODA dialect can be
mapped into Boolean variables and Boolean constrains, the constructs of the second one map into
Boolean and Integer variables, and Boolean, Arithmetic, Symbolic and Reified constraints.

Table 3 deals with Orthogonal Variability Models (OVMs) (Pohl et al. 2005) and the Textual
Variability Language (TVL) (Boucher et al. 2010). The constraints that map the constructs for
OVM are boolean, arithmetic, symbolic and reified. All these constraints and several symbolic
constraints like sum, mul, min, max, avg and count map with the TVL. The variables that map
with elements and attributes from these two formalisms have Boolean, Integer and Real domains.

Table 4 presents the mapping between CP and the constructs of the Class-based (Ziadi 2004),
(Korherr & List 2007) and the Use case-based (Van der Maßen & Lichter 2002) formalisms. The
variables that map with elements of the Class-based language are boolean, integer and real. Those
that map with elements of the Use case-based language are boolean. The constructs of both
modelling languages are represented in CP as Boolean and Arithmetic constraints.

Table 5 presents the constructs of the Dopler variability language (Dhungana et al. 2010) and
the variability language defined at the French Commissariat à l'Energie Atomique (CEA). The
Dopler language is already semantically rich as it uses the Java constraints and domains. We
therefore suggest to use the same kind of constraints and variables to represent the constructs of
Dopler models with CP. The constructs of the CEA language map with Arithmetic and Boolean
constrains over boolean variables.

Finally, Table 6 presents the mapping between CP and constructs of the Renault Documentary
Language (RDL) and the Latice language proposed by (Mannion 2002). In both cases, all the
constructs map with Boolean constraints over Boolean variables.

The lessons learned from these mapping rules can be summarized as follows:
A. All the classic or industry-specific product line modelling formalisms that we considered in

this study could be represented as constraint programs.
B. The same constraints have different representations in the different formalism, and even

different representations in the same formalism. For instance in feature-based languages, an
exclusion constraint can be represented by means of the exclusion relationship or by an
XOR construct.

C. There are constraints that do not map with any construct in any of the product line
modelling formalism considered in the study. For instance, “at least n of the E1...Ek
elements are equal to a” can easily be specified with CP while it can neither with FODA
dialect nor with OVM, TVL, UML-based, or DOPLER.

An interesting observation is that being notation-independent, the constraints presented in the
tables shown in the appendix can be compiled in any of the languages of the off-the-shelf solvers
in which they shall be executed. This way, one can exploit the best characteristics (performance,
functions) of each off-the-shelf solver to execute each analysis or configuration operation. We
propose, on the one hand, to use Constraint Logic Programming (CLP) solvers to deal with PLMs

containing boolean and non-boolean variables, which is very common, for instance, in feature
models with attributes (Streitferdt et al. 2003), (White et al. 2009). On the other hand, when the
model has only Boolean variables, if the goal is to compute the number of configurations, we
suggest to use SAT-based model counters (or possibly Linear and Binary Decision Diagram
solvers even if they have well known limitations when variables are entered in a wrong order; cf.
Mendonça et al. 2009b). Indeed, these kinds of solvers are designed to efficiently calculate the
number of solutions of constraints programs (Mendonça et al. 2009b). In addition we propose to
use CLP solvers for models with non-boolean variables (integer, real, etc.) and SAT or
Satisfiability Modulo Theories (SMT) solvers for models with only Boolean variables. Indeed,
SMT solvers show good performances when executing satisfiability operations on arithmetic
constrains over Boolean variables.

Representing PLMs as constrain programs over different domains allows taking advantage of
the best characteristics of the different existing solvers. This idea is summarized in the framework
presented in Figure 2. In the figure, not only PLMs but any kind of variability models are
represented as constraints with a unique CP notation that encompass other constraint languages
(e.g., over Booleans, Integers, Reals, trees, lists, etc.). Therefore, the CP language acts as an
interoperability notation as (a) it is able to deal with different meta-models, (b) it helps deal with
several models at the same time, as we show it in the following sections, and (c) it can be
executed with different solvers that can be chosen depending on the context.

Figure 2. Generic constraints to represent variability models.

As Figure 2 shows it, once variability models are specified as generic constraints, they can be
transformed into concrete constraints. By “generic” we mean platform independent (Saraswat
1992). This means that wherever they come from, constraints can be compiled with the platform
into any constraint language. The language and associated solver are chosen depending on the
analysis to achieve and expected performance.

INTEGRATION OF CONSTRAINT-BASED PRODUCT LINE MODELS

An important challenge in PL domain engineering and application engineering is that product
lines are often, in practice, specified using several models at the same time (Djebbi et al. 2007,
Segura et al. 2008, Rosenmüller et al. 2011). As when describing the architecture of any kind of
system, this allows dealing with various facets of the PL and products, and representing the
viewpoints of various stakeholders such as executives, developers, distributors, marketing,
architects, testers, etc. (Nuseibeh et al. 1994). For example, analysts may deliver a requirements
model that specifies user-oriented system functionality, while architects may deliver a feature-
based model focusing on the system structure from a more technical design-oriented point of
view. In the absence of a global model, and given the number models in which the PL can be
specified, requirements can get missed or misunderstood (Finkelstein et al. 1992) both during
domain and application engineering activities. There are 2 other problems related with multi-
model PL specifications: inadequate support for multi model specification, and weak support for
the maintenance of the global PL specification.

The size and complexity of industrial product lines motivates the specification of PL models
by heterogeneous teams (Dhungana et al. 2006), (Segura et al. 2008). However, existing tools
provide only little support to integrate multiple models and to perform the analysis and
configuration activities on the global level. To our knowledge, there is no proposal so far to
integrate PL models specified with different formalisms.

Besides, it is a fact of industrial life that product line models evolve over time, for instance to
reflect new marketing requirements, product level innovations that should be capitalized at the PL
level, or new design decisions about the PL architecture. The problem is that any change in a
model can impact other models too. For example, changes in the architecture can make the
corresponding model inconsistent with the technical solution models, or with the PL models that
represent the sales and marketing viewpoints. To the best of our knowledge, there is no tool that
provides automated mechanisms for analysing the impact of changes of a PL model onto another
one, or for ensuring the global consistency of changes achieved on multi-model PL specifications.

CP can be exploited in the context of multi-model PL engineering to capture in a unified way
the various models, and to arrange them into a unique specification. As a result, domain and
application engineering activities such as PL analysis or product configuration are facilitated.
Indeed, the unique representation facilitates the propagation of constraints between variables that
belong to the different models. When configuration entails a variable in a model, it entails the
variable in all the other models to which the variable belongs.

Another considerable advantage is that having all the models of the PL integrated in a single
CP allows specifying constraints between different variables that belong to different models. Our
literature survey did not reveal any interoperability meta-model that would have allowed relating
several PL models as proposed here.

Motivated by the pertinence of the subject and the requirements of our industrial partners, we
developed a constraint-based integration process for product line models. In our process,
integrating two PLMs consists in (i) integrating the variables that correspond to reusable
elements; (ii) integrating attributes and their domains and; (iii) integrating the relationships among

reusable elements. Integrating two models can be done in two steps: matching and merging
(Finkelstein et al. 1992), (Fleurey et al. 2007). The matching step specifies which element in the
language can match and how they can match. The merge step defines, how two model elements
that match are merged, as well as a mechanism to handle the non-matching elements of the input
models. For example, if two feature models (Kang et al. 1990) that specify a single PL own the
same feature A, which is being required by another feature in the first model, and which is
excluded by another feature in the second model, then the situation match because of the feature
A. However, the decision to include or not feature A in the resulting model depends of the
merging rules and the integration strategy. In particular, one has to reason on the dependencies
between feature A and the other features in the two models.

Integration strategies are about the ways in which models are merged. Indeed, different
merging rules exist and may be used in given matching situations. One scenario can be, for
instance, when a company decides to lengthen the production spectrum of the PL, and therefore
integrates the PLMs of two headquarters and keeps in the resulting PLM the reusable elements
and the production capacity of both headquarters. We identified five different strategies that may
be used to integrate PLMs: two restrictive strategies, two conservative strategies and one
disjunctive strategy.

Strategy N° 1 is restrictive in the sense that it allows representing in the resulting PLM the
common products represented in both input models that can be configured with the common
reusable elements and attributes.

Strategy N° 2 is also restrictive, but differently from the first one: the products can be
configured with all reusable elements and attributes available on both input models (Hacher et al.
2010).

Strategy N° 3 is conservative in the sense that it allows configuring the products represented in
both input models by using only the common reusable elements and attributes.

Strategy N° 4 is also conservative but this time allows configure products with all reusable
elements and attributes available in both input models (Segura et al. 2008), (Hacher et al. 2010).

Strategy N° 5 is disjunctive in the sense that the resulting model allows configuring the
products presented on one of the input models by using the reusable elements and attributes of
one of the particular models but not these of the other one.

We propose 89 constraint-based integration rules for product line models (Mazo 2011); these
rules are not presented here because it is out of scope of this paper. However, one example of
each integration strategy is presented in Table 1. The example used to illustrate the five
integration strategies consists in a mandatory relationship between variables A and B in the first
model and an optional relationship between variables A and B followed by an implication to
variable C. As is presented in Table 1, for the strategy 1 we only keep the variables present in both
models and we related them with the most restrictive constraint; that is, we use the equality
constraint instead of the superior or equal inequality due to the fact that the first one is more
restrictive than the second one.

Table 1. Example of application of the 5 PLM integration strategies

Strategy Base model 1 Base model 2 Resulting model
1 A = B (A ≥ B) ⇒C A = B
2 A = B (A ≥ B) ⇒C (A = B) ⇒C
3 A = B (A ≥ B) ⇒C A ≥ B
4 A = B (A ≥ B) ⇒C (A ≥ B) ⇒C
5 A = B (A ≥ B) ⇒C (A = B) ⊕ ((A ≥ B) ⇒C)

To illustrate the fact that the equality constraint is more restrictive that the superior or equal
inequality, please consider the two simple cases A = B and A ≥ B. Assuming that A and B are
boolean variables; in the first case we can generate two configurations: Conf1= {A=0, B=0},
Conf2= {A=1, B=1} and in the second case we can generate three configurations: Conf1= {A=0,
B=0}, Conf2= {A=1, B=0}, Conf3= { A=1, B=1}. The other two examples shown in Table 1
apply the same reasoning based on the aforementioned integration strategies.

VERIFICATION OF CONSTRAINT-BASED PRODUCT LINE MODELS

The use of constraint programming for software verification is not new (Collavizza & Rueher
2006), nor is the verification of product line models (Benavides et al. 2005, Trinidad et al. 2008,
Salinesi et al. 2010, Mazo et al. 2011a). Verification of product line models consists in finding
errors on these models. As in the case of analysis of product line models, these models must
often be specified with a formalism that allows automatic verification (Batory et al. 2001,
Benavides et al. 2005, Karataş et al. 2010, Mazo et al. 2011d). Automatic verification of product
line models is highly needed: indeed their manual verification is an error–prone, tedious and
sometimes infeasible task due to the complexity of these models (Benavides et al. 2005),
(Trinidad et al. 2008), (Salinesi et al. 2010).

Verifying PLMs entails several aspects. On the one hand, a product line model, independently
of the formalism used to specify it, must respect certain properties associated with the domain of
product lines. On the other hand, certain properties are associated with the fact that each PLM
respects the syntactic rules of the formalism in which it is specified. Therefore, some properties
of PLMs are independent of the formalism while other ones are particular to each formalism.

In light of this observation, we propose a typology of verification criteria (Salinesi et al.
2010a) that is summarized in Figure 3. This typology shows that not all criteria are equivalent.
Some result of the formalization of the PL with a model (conformance checking; c.f., Mazo et al.
2011c), whereas others can be used to verify PLMs independent of their metamodel (domain-
specific verification). Our experience with both kinds of verification shows that constraint logic
programming (in this framework, constraints are embedded in the logic programming paradigm (Apt &
Wallace 2006)) can be used to verify both kinds of verifications. In the context of domain-specific
verification, there is a collection of verification criteria that every PLM must respect,
independently of the formalism in which the model is specified. For instance, every PLM must
allow configuring several products; that is to say the PLM must not be a void model. Our
research have also demonstrated that in the context of conformance checking the criteria are not
generic; on the contrary, they depend on the metamodel of the language in which each PLM is
represented (Mazo et al. 2011b). For instance, a feature model must not have more than one root
feature or must not have two features with the same name.

Figure 3. Typology of verification criteria on PLMs

The outcomes of the typology are multiple:
A. each defect can be searched for using a given criterion;
B. the typology facilitates the identification of defects for which no verification criterion is

available elsewhere in the literature (Mazo et al. 2011a);
C. the classification behind the typology makes it easier the proposition of a standard and

reusable approach to verify the domain-specific criteria of PLMs; and
D. the typology can be used to select the criteria that one wants to use to verify a PLM

according to the impact that these criteria have or the expected level of quality of a
particular PLM.

An example of consistency criteria is the absence of false optional variables on PLMs. In our

running example, UserInterface is a false optional variable. Indeed, the variable is specified as
optional but it is in fact present in all products of the PLM.
Another example of criteria is the following one: a PLM is satisfiable or not void if at least one
product can be configured from the PLM. A void PLM is a model that does not allow
configuring products; it is thus a useless PL model.

ANALYSIS OF CONSTRAINT-BASED PRODUCT LINE MODELS

Analysing product line models consists in the extraction of information from these models. As
shown in Figure 4, specifying PL models with CP allows automatic analysis at both the domain
and the application levels. When analysis is done at the domain level it helps reasoning on the PL
itself. When achieved at the application level, it helps reasoning about products, mainly by
generating either partial or full configuration (which corresponds to a valuation of some/all the
variables). To our knowledge, the most extensive collection of analysis operations on feature
models is the one presented in (Benavides et al. 2010). Most of these operations are discussed in
this section.

Figure 4. Product line analysis using the Constraint Language (Salinesi et al. 2011).

Domain Level Analysis.

Domain level analysis is performed on the PL itself, and not on the configured products. Some
common operations on the domain level are:
1. Calculating the number of valid products represented by the PLM. This operation may be

useful to determine the richness of a PLM. For instance, in our UNIX example, we obtain a
list of 100440 products in the technical view and 408 products in the user view.

2. Calculating commonality of a collection of variables. This is the ratio between the number of
products in which a collection of variables (e.g., a configuration) is present and the number
of products represented in the PLM.

3. Calculating homogeneity: this indicates to which degree the elements appear in various
products. A more homogeneous PLM would be one with few unique variables (a unique
variable equals 1 only in one product) while a less homogeneous PLM would be one with a
lot of unique variables. By definition Homogeneity = 1 - (#unicVar /
#products) where #unicVar is the number of unique variables in one product and
#products denotes the total number of products represented by the PLM. In our running
example Homogeneity is equal to 0,99998.

4. Calculating variability factor: this operation returns the ratio between the number of products
and 2n where n is the number of variables considered. In particular, 2n is the potential
number of products represented by a PLM, assuming that there are not transverse
dependencies (in the sense of FODA) in the model and that all PLM’s variables are boolean.
Variability factor = NProd / 2n. This function is not applicable to our UNIX’s
technical and user views because these models have integer variables and a lot of cross-tree
constraints.

Figure 5. Some analysis functions over our UNIX’s technical view, using our tool VariaMos

Application Level Analysis

The analysis operations at this level are the following ones:
5. Finding a valid product, if any. A valid product is a configuration that respects all the

constraints of the PLM. For instance, finding a valid product configured with the UNIX
technical view model is (as shown in Figure 5):
P1 = {UNIX=1, Kernel=1, Scheduling=0, ExecutingInstructions=1,
InterpretingInstructions=1, AccomplishingTheTransferOfData=0,

AllocatingTheMachinesMemory=1, Shell=1, FileSystem=1, UserInterface=1,
Graphical=1, Process1=1, Process2=1, Process3=0, Process4=0, Process5=1,
WidthResolution=1024, HeightResolution=768, Support_usb=0, Cdrom_atech=2,
Pcmcia_support=2}.

It is worth noting that for boolean variables like Graphical the value 1 means that the
corresponding element is present in the product, for WidthResolution the value 1024 represents
the number of pixels corresponding the to the width resolution of the configured product, the
value 2 of variables Cdrom_atech and Pcmcia_support means that these modules are static in
the product, and the value 0 affected to Support_usb means that this module is not selected in
the product.
6. Obtaining the list of all valid products represented by the PLM, if any exist. This operation

may be useful to compare two product line models. For the sake of space, the comprehensive
list cannot be presented in this paper, but as the screenshot shows it in Figure 5, tool support
provides users with the possibility to navigate in the list of products using the Next and
Previous buttons.

CONFIGURATION OF CONSTRAINT-BASED PRODUCT LINE MODELS

Product configuration is hard because of the quantity of product line elements, of their
diversity and of the complex interdependencies between them. This problem becomes more
complex when the product line is represented by multiple views, as in the case of our running
example. Furthermore, customers typically have requirements that cannot be fulfilled by the
product line. Also, they are lost with the number of choices and they find it difficult to find a
product that belongs to the PL because they do not take configuration constraints into account
when they specify their requirements. Therefore, automated mechanisms to propagate
configuration decisions and guide the user in the configuration process are highly needed. Our
experience with configuration of product line models (Djebbi et al. 2008), (Djebbi & Salinesi
2008) shows that constraints play a prominent role in the configuration process: in fact,
stakeholders have a much richer power of expression when they use constraints to specify their
configuration requirements. Our position is that configuration requirements should be considered
as a first class concept. We have discovered that various kinds of configuration requirements can
be specified using CP. Based on our observations we distinguish between three categories of
configuration requirements: simple full closure, optimization, and partial closure.

Simple full closure: these simple full closure configuration requirements consist in allocating
a given value to a variable. This kind of requirement is the most common one, as traditional PL
specification formalisms are usually used in configurations to indicate whether or not a
configuration should include a feature, a variant, etc. In CP terms, this kind of requirement is
simply specified with a constraint V = val, where val is one of the possible values in the
domain of V.

Optimization requirements consist in indicating that the configuration should be optimal in
terms of one of the variables that define it (if the variable can be maximized of minimized).
Examples of optimization requirements are maximization of revenue, of performance, or
minimization of cost, delivery time, response time, etc. Optimization requirements can be
combined, but this raises a hard problem as it may be difficult (i.e. NP complete from a
calculability point of view) to satisfy all the requirements at the same time. Current researches on
CP try to solve these issues by using smart strategies. Two approaches can be used at the PL
levels. On the one hand, priorities can be used to specify which optimization requirement should
be satisfied first. The other approach consists in proceeding in an incremental way by lowering
the level of expectations for some of the optimization by specifying partial closure requirements.

Partial closure requirements are specified with constraints that reduce the possible list of
values of one or several variables that specify the PL. For example a partial closure requirement
can be specified to indicate close to optimal values for an attribute. Partial closure requirements
can be complex in the sense that they may involve several variables at the same time. Of course,
they can be simple too, as e.g. WidthResolution ≥ 800 which involves one variable only.
Examples of partial closure requirements are preferences (e.g., the user prefers X over Y),
dependencies (e.g., if X is included in the configuration, then Y is not needed), and open choices
(e.g., the configuration shall include at least 3 instances of X).

The following paragraphs present some configuration requirements patterns that are

implemented in the VariaMos tool (Mazo et al. 2012). The following list shows some of the
configuration requirements patterns and operations that can be performed with VariaMos to deal
with configuration requirements.
1. Optimal product: maximize(WidthResolution+ HeightResolution) allows to find a

solution such that the objective function WidthResolution+ HeightResolution is
maximized. Conversely, minimize(WidthResolution+HeightResolution) allows to find a
product with the minimum resolution allowed by the product line model.

2. Global optimization requirements. Examples of global optimization are the maximization of
reuse (e.g., any generated configuration must include at least k elements), and the
minimization of components cost (e.g., the maximum cost of any generated configuration
should not exceed a certain value). Detection of “optimal” products is very important for
decision makers as presented in (Djebbi & Salinesi, 2007, Salinesi et al., 2010b). Specifying
them may require the specification of additional variables that did not exist in the PL
specification.

3. Preselected configuration. Configurations may be partial or total. A valid partial
configuration is a collection of variables that respect the constraints of the PLM but not
necessarily representing a valid product (some variables of the PL are not valuated). A total
configuration is a collection of variables values that respect the constraints of the PL
specification, and where there is no variable that needs to be valued to specify a valid
product. An operation that helps specifying partial pre-selected configurations may be useful
to determine if there are not contradictions in a configuration requirement. In our running
example, the product:
P2 = UNIX=1, Kernel=_, Scheduling=_, ExecutingInstructions=_,
InterpretingInstructions=_, AccomplishingTheTransferOfData=_,
AllocatingTheMachinesMemory=_, Shell=_, FileSystem=_, UserInterface=_,
Graphical=0, Process1=_, Process2=_, Process3=_, Process4=_, Process5=_,
WidthResolution=1024, HeightResolution=768, Support_usb=_, Cdrom_atech=2,
Pcmcia_support=_}
Which is configured in our tool VariaMos as shown in Figure 6 (note that the symbol “_”
assigned to a variable means that there is not a predefined value for the variable).

Figure 6. Requirement specification in order to create a filter with a certain configuration and
supplementary constraints.

4. Propagating dependency requirements. The purpose is to look for all the possible solutions
after assigning some fixed value to a collection of variables. In our running example, if one
selects the Support_usb (that is, by assigning the value of 1 or 2, to the Support_usb
variable), the variables Kernel, UNIX and FileSystem must be selected as well because of the
constraints: UNIX = Kernel ⋀ UNIX = FileSystem ⋀ (Support_usb ≤ Kernel) 
FileSystem. The number of products that satisfy this requirement is 66960.

5. Filter. This operation takes a partial configuration (i.e. a set of valued variables), the PL
constraints specification, a collection of supplementary constraints that specify various kinds

of requirements. In return, it generates the collection of products that include the input partial
configuration and respect both the constraints of the PLM and the configuration
requirements.

6. Calculating the number of products after applying a filter. This is useful when too many
products can be configured to navigate between. If we apply a filter constraining products
with a resolution of 1204x768 and products where Support_usb > 0, there are 22320
correct configurations, which indicates to the stakeholder that further requirements are
needed to come up with a manageable collection of configurations.

EVALUATION

We evaluated the effectiveness of our approach by testing its implementation, scalability and
feasibility.

Tool implementation. We developed an interactive environment composed of two tools:

VariaMos (Mazo et al. 2012) and GNU Prolog (Diaz & Codognet 2001). VariaMos is an Eclipse
plug-in that allows managing constraint programs (e.g., creating, editing and saving them) to
specify PL models. Besides, VariaMos offers rich collection of PL engineering functions such as
verification (detect void models, false product line models, dead variables, false optional
variables, not attainable domains and redundant constraints), analysis (supporting most of the
aforementioned analysis functions) and configuration requirements specification (e.g., configure
a product, define a filter or a partial configuration and specify extra constraints or particular
requirements).

Computational Scalability. We assessed the scalability of our approach with 50 models, out

of which 48 were taken from the SPLOT repository (Mendonca et al. 2009a). The other two
models were developed during industry collaboration projects (Djebbi et al. 2007), (Lora-
Michiels et al. 2010). The size of the models are distributed as follows: 30 models contained
from 9 to 49 variables, 4 from 50 to 99, 4 from 100 to 999 and 9 from 1000 to 5000. The PL
covered various domains such as insurance, entertainment, web applications, home automation,
search engines, and databases. Note that the original SPLOT models only contained [m..n]
cardinalities with m equal to 0 or 1, and they did not contain any attribute. Therefore, in order to
increase the complexity, numerical attributes (such as WidthResolution ∈ {800, 1024,
1366}) were introduced in a random way, so as to have models with attributes associated with
30%, 60% or 100% of the other elements. Following the same logic, we changed 50% of the
SPLOT cardinalities in order to have more general cases than the original ones. In order to do
that, we created a simple tool3 that translates models in the SPLOT format into constraints
programs. This was achieved using the transformation patterns presented in (Salinesi et al. 2011),
and by assigning artificial attributes and lower bound cardinalities in a random way as long as m
≥ n ≥ 0. The evaluation was performed in the following environment: desktop Intel Pentium 4
3.2 GHz PC with Windows Seven 32 bits, 4,00 GB RAM memory, GNU Prolog 1.3.0. The
evaluation results are shown in Figure 7. The results are presented in a logarithmic scale for the
sake of readability of the data distribution.

The experimental results presented in Figure 7 indicate that PLMs can be analyzed in an
acceptable time. The best results from the point of view of scalability are obtained on the

3 opt_semantic_parser_sxfm.jar available at: https://sites.google.com/site/raulmazo/

analysis operations. We were able to avoid computing all configurations to perform analysis
functions by using a CLP solver to execute all the analysis operations discussed in the previous
section. This kind of solver is not optimized to compute the number of solutions of a CP.
However, this kind of solver (and SAT-based solvers too) is designed to be efficient on
satisfiability operations like “check if the PLM is void or not”. Owing to this, the worst
computation times of VariaMos are 3,5 ms (c.f., Figure 7(a)) to test void models, 1.6 sec. (e.g.,
Figure 7(d)) to calculate the “variability factor”, and 1,8 sec. (c.f., Figure 7(e)) to execute the
“validate a configuration” operation.

Interestingly, Figure 7(g) shows an abnormal behaviour for a model of 89 variables. The time
to calculate the whole collection of configurations from this model is very high: 15 min. The
difficulty to analyze certain product line models (with a very high variability factor or with a
very large number of cross-tree constrains) is treated in detail in (Mendonça et al. 2009). We
have not yet found a systematic solution to overcome this issue.

Feasibility study with a real case application. One particular question that can be raised

about the new kinds of constraints that have been identified in this paper is “are they useful?”
Although only long term experience shall provide a definitive answer to this question, one might
be interested in looking for special constraints that could be specified in a real case. To do so, we
have applied our CP over Finite Domains (FD) approach to specify constraints on a family of
blood analysis automatons (Djebbi & Salinesi 2007) in the context of a cooperation with the
STAGO industry partner.

Using FD constraints allowed us to specify constraints to reason about cost and revenue of
features of the STAGO instruments in the PL. In order to do this, we associated to each feature,
two variables to specify costs and benefits respectively. For example, we specified constraints on
the minimal number of measurement wells depending on the required tests and the required
cadence for these tests.
Chronometric.NumberOfWells + Colorimetric.NumberOfWells +
Immunologic.NumberOfWells ≥ max(LaunchTest.TestCadence) *
max(LaunchTest.TestDuration)

We could also specify complex dependencies that could not be specified in FODA dialects.
For instance “the optional function ‘Agitate’ shall be implemented if one of the tests TCA, ATIII
or PC are not included in the configuration”.

(LaunchTest.TestType ≠ TCA)  (LaunchTest.TestType ≠ ATIII) 
(LaunchTest.TestType ≠ PC)  Agitate = 1

Looking at our list of specific constraints, we identified the following constraints which could
not be specified with {true, false} features, but could be specified with our integer constraint
notation:

 constraints on both [0..n] features and feature attributes. For example, we could play
with the number of chronometric, colorimetric and immunologic measures and specify a
constraint on the number of their occurrence with regard to the cadence and duration of
the test.
Chronometric + Colorimetric + Immunologic ≥ LauchTest.TestCadence*
LauchTest.TestDuration

 Some symbolic constraints such as Atmost(1,[Agitate,Mix,Incubate],2]) which
specifies that each activity in a methodology can be repeated at most twice, could have
been specified with FODA, but this was so difficult, error prone and not flexible, that
most of them were left apart.

 Other symbolic constraints could simply not be specified with FODA or its dialects. This
is for example the case of the following symbolic constraints that was needed to specify
possible combinations of value of the cadence, duration, and kind of determination for
different kinds of test types:
Relation ([LauchTest.TestType, LauchTest.TestDuration,
LauchTest.TestCadence, determination], [[TP, 2, 14, simple], [TP, 2,
14, double],[TCA, 2, 14, simple],[TT, 3, 2, double],[Fib, 10, 5,
double],[ATIII, 15, 3, double],[VwF, 13, 8, double],[PC, 2, 6,
simple],[DDi, 6, 8, simple]])

 Last, we needed to specify reified constraints such as:
LaunchTest.TestType = TCA  C ⋀ C  Chronometric=1 ⋀
Chronometric.Speed = normal
which enforces the use chronometric measurement technique when TCA test is
demanded, and specifies the required speed for this test. This constraint could not be
specified using FODA dialects.

We also used feature attributes to support cost/benefit analysis on measurement techniques.
The following goals could for instance be specified:

Min(Chronometric.Cost * Chronometric.NumberOfWells + Colorimetric.Cost*
Colorimetric.NumberOfWells+Immunologic.Cost*Immunologic.NumberOfWells)
⋀ Max (Chronometric.Revenue * Chronometric.NumberOfWells +
Colorimetric.Revenue * Colorimetric.NumberOfWells + Immunologic.Revenue
* Immunologic.NumberOfWells)

The results obtained with the STAGO product line are encouraging and confirm that CP over
FD is well suited to precisely model and efficiently configure PL.

Figure 7. CPU time to execute our analysis operations over our 47 PLMs. Axe Y: time in
milliseconds. Axe X Log 10 (Number of features)

Usability. This paper does not address how to best visualize our constraint-based approach

neither the results obtained from the constraint-based product line models. Even if these issues
are very important due to the fact that in some cases these models exceed hundreds of constraints
and millions of products, much of this problem has to do with human-computer interaction.
However, we propose a graphical representation of the constraint-based PLMs as a constraint
network and a friendly user interface to present the results obtained from our analysis operations
over the models. In the first case, the constraint network is a graph where each node corresponds
to a constraint and each arch corresponds to the relationships among the variables of each
constraint. For instance, in our running example, UNIX = Kernel is a constraint and therefore it
is graphically represented as one node (N1) and (Kernel = Scheduling)  Process is
another constraint and therefore it is graphically represented as one node (N2). Due to the fact
that N1 and N2 share one variable (Kernel), there is one arch between N1 and N2. In the second
case, we present the results step by step by means of matrix that contains collections of results
(ten by ten) and the user can interact with the tool to configurated the number of solutions that
he/she want to have in the screen.

Another important issue that is not addressed in this paper is the downstream economic
benefits. For example, one could raise the question how does analysis operations really benefit
software engineering at large? How much does it cost if such an analysis approach does not
exists in a PL production environment? These complex issues have yet to be investigated.

RELATED WORKS AND DISCUSION

This paper is not the first one to explore the use of constraints programming in the context of PL.
For instance, Mannion (2002) and Zhang et al. (2004) use propositional logic to represent PLMs,
and Batory (2005) uses Conjunctive Normal Form (CNF) formulas to represent FMs and SAT
solvers to analyze them. In these formulas, features are Boolean variables (either they are
included or not in a configuration). Czarnecki's proposals of staged configuration, features
cardinalities and feature attributes have created an opportunity to move from boolean to integer
constraints specification. Our approach belongs to this family of approaches that relies on integer
domain constraints rather than on boolean ones. The simple fact of replacing the {true, false}
domain by [0..1] opens the door to kinds of constraints that did not exist in the aforementioned
approaches. In particular, Benavides's works (Benavides et al. 2005 and 200) have shown how
feature models could be analyzed by specifying integer constraints on attributes associated with
features. In Benavides's approach, features themselves still have a {true, false} domain, while
our approach allows dealing with [0..n] features. White et al. (2009) also provide a CP support
for multi-step configuration over time, while respecting resource constraints. We believe
reification constraints able to deal with progressive configuration either by providing successive
complete products as in (White et al. 2009) or successive partial configurations as in (Czarnecki
et al. 2005).

More recent works (Karataş et al. 2010, Salinesi et al. 2010, Mazo et al. 2011d) show that
specifying PL in CP rather than the original graphical language is not pertinent just because it
facilitate the automatic reasoning on them but also because it increases the power of expression.
Indeed, the drawback of graphical formalisms is that their power of expression is largely reduced
because of the graphical notation. On the other hand CP has the advantages of the text based
languages to represent and support reasoning on PLMs in an efficient way. The drawbacks of the
graphical PL notations were well demonstrated by Heymans, Boucher and Classen who proposed
a Text-based Variability Language (Boucher et al. 2010) and (Classen et al. 2011) to overcome

them. Some of these drawbacks are: (i) to create a large PLM with a graphical syntax “is a
burden and cannot be mastered without dedicated tool support”, (ii) given the tree and two
dimensional structure of most of the PL notations “there will inevitably be large physical
distances between features, which makes it hard to navigate, search or interpret the model”, and
(iii) “most notations do not have graphical means to represent constructs like attributes and
constraints which are essential for industrial FMs”. On the other hand, the advantages of non-
graphical languages are: (i) the expressiveness to represent variability and commonality
constructs that are forbidden in some graphical notations due to the limited syntax of the these
languages; and (ii) the possibility to reason directly on the model (with, in some cases, a
compilation instead of transformation to a low-level language). This latest property avoids
problems related to loss of information and misinterpretation when PLMs are transformed from
their original formalisms to an executable language. In addition, our experience has shown that
both, structure and semantic of product line models can be represented by means of logic and
constraint constructs.

Besides, the aforementioned approaches consider only single monolithic feature models. As
shown Tables 2 to 6 in the appendix, our approach is able to deal with several models including
when they are specified using different formalisms. Furthermore, our approach explores more
FD Constraint Programming capabilities that have not been exploited so far. For instance it
provides numerous types of constraints (e.g. symbolic and reified constraints) that had not been
proposed by other approaches before.

CONCLUSION

The international community is nowadays very interested in the use of constraints programming
to support PL Engineering. Indeed, the analogy between PL specification formalisms and CP can
easily be drawn: both are collections of variables and constraints that should be satisfied. We
believe, like many other researchers in the community, that specifying a product line as a
constraint program rather than with a more traditional formalism such as a feature model (Kang
et al. 1990) has two important advantages: the expressiveness and the direct automation. On the
one hand, variables in CP can take values over Boolean, Integer, Real or even complex domains
(i.e., lists, arrays and trees) and not just boolean values as in Feature-Oriented Domain Analysis
(FODA) models (Kang et al. 1990). On the other hand, constraints in CP can be boolean,
arithmetic, symbolic and reified, and not only boolean as in FODA models. Besides, PL models
expressed as constraint programs can directly be executed and analyzed by off-the-shelf solvers.
This last property avoids problems related to loss of information and misinterpretation when de
PL model is transformed from its original formalism to an executable language. The loss of
information can be of two types: loss of structural information and loss of semantic information.
In the first case, we do not have the possibility to identify anomalies related to the structure
neither derivate a product guided by the structure of the PL model, because the structural
properties of the model are lost. In the second case, we lose information about the semantic of
the model, e.g. the number of products that can be derived from the PL model or knowledge
about the ability of the PL model to derive products.
This paper showed how to specify product lines as a finite domain constraint program i.e. not
just a boolean program that implements features selection in a FODA-like models, but a series of

constraints that apply to integer variables and other constraints too. We believe our approach is
original as (a) it is a first attempt to integrate various variability models through a unique
representation, (b) it supports direct reasoning on product line models (c) it supports the
specification of complex configuration requirements.
Nonetheless, some further work is required for the multi-valuated PL elements, on which
constraints may need some adjustments. Besides, the approach can be extended to deal with
reals, which can for example allow performing some probabilistic reasoning (some industries
like Renault have expressed the need to plan pieces logistics). We have explored constraint
programming on finite domains, but many other domains could be relevant: Intervals, Trees,
Lists, and Sets. Constraint Programming is versatile in that it adapts quite well to different
applications. We have little doubt that the systematic exploration of these domains will generate
new knowledge about product lines engineering.

REFERENCES

Akers, S. (1978). Binary Decision Diagrams. IEEE Transactions on Computers, C-27(6), 509–
516.

Apt, K.R., Wallace M.G. (2006). Constraint Logic Programming Using ECLiPSe. Cambridge,
Cambridge University Press.

Batory, D. (2005). Feature models, grammars, and propositional formulas. In Software Product
Lines Conference: Volume 3714 of Lecture Notes in Computer Sciences (pages 7–17). Springer–
Verlag.

Benavides, D. (2007). On the Automated Analysis of Software Product Lines Using Feature
Models. A Framework for Developing Automated Tool Support. Unpublished doctoral
dissertation, University of Seville, Spain.

Benavides, D., Ruiz-Cortés, A., & Trinidad, P. (2005). Using constraint programming to reason
on feature models. In the Seventeenth International Conference on Software Engineering and
Knowledge Engineering, pages 677–682.

Benavides, D., Segura, S., Trinidad, P., & Ruiz-Cortés, A. (2006). Using Java CSP solvers in the
automated analyses of feature models. In Post-Proceedings of the Summer School on Generative
and Transformational Techniques in Software Engineering. PA: Springer LNCS 4143.
Benavides, D., Segura, S. & Ruiz-Cortés, A. (2010). Automated Analysis of Feature Models 20
Years Later: A Literature Review. Journal of Information Systems. Elsevier.

Boucher, Q., Classen, A., Faber, P., & Heymans, P. (2010). Introducing TVL, a Text-based
Feature Modelling. In the International Workshop on Variability Modelling of Software-intensive
Systems. Linz, Austria.

Classen, A., Boucher, Q., & Heymans. (2011). A text-based approach to feature modelling:
Syntax and semantics of TVL. Science of Computer Programming. 76(12), 1130-1143.

Clements, P., & Northrop, L. (2001). Software Product Lines : Practices and Patterns. Reading,
MA, USA, Addison Wesley.

Collavizza, H., &Rueher, M. (2006). Exploration of the capabilities of constraint programming
for software verification. International Conference on. Tools And Algorithms For The
Construction And Analysis Of Systems (pp. 182–196). Vienna, Austria.

Colmerauer, A. (1990). An Introduction to Prolog III. Communications of the ACM, vol. 33(7).

Czarnecki, K., Helsen, S., & Eisenecker, U.W. (2005). Formalizing cardinality-based feature
models and their specialization. Software Process: Improvement and Practice, 10(1), 7–29.

Czarnecki, K., Helsen, S., & Eisenecker, U. (2005). Staged configuration through specialization
and multi-level configuration of feature models. Software Process Improvement and Practice,
10(2).

Djebbi, O., & Salinesi, C. (2007). RED-PL, a Method for Deriving Product Requirements from a
Product Line Requirements Model. International Conference on Advances in Information
Systems Engineering, International Conference on Advanced Information Systems Engineering.
Trondheim, Norway. PA: Springer LNCS 4495.

Djebbi, O., Salinesi, C., & Diaz, D. (2007). Deriving Product Line Requirements: the RED-PL
Guidance Approach. Asian Pacific Software Engineering Conference. Nagoya, Japan. PA: IEEE
Computer Society Digital Library.

Djebbi, O., Salinesi, C., & Rolland, C. (2008). Product Line Requirements Configuration in the
Context of Multiple Models, INSIGHT, INCOSE, 11:3, 19-20.

Djebbi, O., & Salinesi C. (2008). Towards an Automatic PL Requirements Configuration
through Constraints Reasoning. International Workshop on Variability Modelling of Software-
intensive Systems. Essen, Germany. PA: University of Duisburg-Essen Press.

Diaz, D. & Codognet, P. (2001). Design and Implementation of the GNU Prolog System.
Journal of Functional and Logic Programming, Vol. 2001, No. 6.

Ecole de Mines de Nantes. (2010). CHOCO solver. Retrieved March 01, 2010, from
http://www.emn.fr/z-info/choco-solver/index.html.

Jaffar, J., Michaylov, S., Stuckey, P. & Yap, R. (1992). The CLP(R) Language and System.
ACM Transactions on Programming Languages and Systems, 14(3).

Fleurey, F., Baudry, B., France, R.B., & Ghosh, S. (2007). A generic approach for automatic
model composition. In Holger Giese (Ed.): Models in Software Engineering, Workshops and
Symposia at MoDELS 2007, Springer (pp. 7–15). Nashville, TN, USA.

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., & Goedicke M. (1992). Viewpoints: A
framework for integrating multiple perspectives in system development. International Journal of
Software Engineering and Knowledge Engineering 2(1), 31–57.

Jaffar, J., & Maher, M. J. (1994). Constraint logic programming: A survey. Journal of Logic
Programming, Vol. 19/20, 503-581.

Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, S. (1990). Feature- Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21. Carnegie Mellon
University, Software Engineering Institute.

Karataş, A., Oğuztüzün, H., & Doğru, A. (2010). Mapping Extended Feature Models to
Constraint Logic Programming over Finite Domains. Software Product Line Conference. Jeju
Island, Korea. PA: Lecture Notes in Computer Science.

Korherr B., List B. A UML 2 Profile for Variability Models and their Dependency to Business
Processes. 1st International Workshop on Enterprise Information Systems Engineering (WEISE
07), September 2007, Regensburg, Germany, IEEE Press (2007).

Le Berre, D. (2010). SAT4J solver. Retrieved March 01, 2010, from www.sat4j.org.

Lora-Michiels, A., Salinesi, C., & Mazo, R. (2010). A Method based on Association Rules to
Construct Product Line Model. 4th International Workshop on Variability Modelling of
Software-intensive Systems. Linz, Austria. PA: University of Duisburg-Essen Press.

Mannion, M. Using first-order logic for product line model validation. In Proceedings of the
Second Software Product Line Conference (pp. 176–187), San Diego, CA, USA. PA: Springer
LNCS 2379.

Mazo R. A Generic Approach for Automated Verification of Product Line Models. Ph.D. Thesis,
Université Paris 1 Panthéon - Sorbonne. Paris France, 24 November 2011.

Mazo, R., Grünbacher, P., Heider, W., Rabiser, R., Salinesi, C., & Diaz, D. (2011)Using
Constraint Programming to Verify DOPLER Variability Models. Proceedings of the Workshop
on Variability Modelling of Software-intensive Systems. Namur, Belgium. PA: ACM Press.

Mazo, R., Lopez-Herrejon, R., Salinesi, C., Diaz, D., & Egyed, A. (2011). A Constraint
Programming Approach for Checking Conformance in Feature Models. In 35th Annual
International Computer Software and Applications Conference COMPSAC. Munich, Germany.
PA: IEEE Press.

Mazo, R., Salinesi, C., & Diaz, D. Abstract Constraints: A General Framework for Solver-
Independent Reasoning on Product Line Models. (2011). Accepted on INSIGHT - Journal of
International Council on Systems Engineering (INCOSE), to be released the 15 October 2011.

Mazo, R., Salinesi, C., Diaz, D., Lora-Michiels, A. (2011). Transforming Attribute and Clone-
Enabled Feature Models Into Constraint Programs Over Finite Domains. 6th International
Conference on Evaluation of Novel Approaches to Software Engineering, Beijing, China. PA:
Springer Press.

Mazo R., Salinesi C., Diaz D. VariaMos: a Tool for Product Line Driven Systems Engineering
with a Constraint Based Approach. 24th International Conference on Advanced Information
Systems Engineering (CAiSE Forum'12), Springer Press, Gdansk-Poland, 25 – 29 June 2012.
https://sites.google.com/site/raulmazo/

Mendonça, M., Wasowski, A., & Czarnecki, K. (2009). SAT–based analysis of feature models is
easy. In Proceedings of the Sofware Product Line Conference. San Francisco, California, USA.
PA: ACM Digital Library.

Pohl K., Bockle,G., van der Linden,F.J. Software Product Line Engineering: Foundations,
Principles and Techniques.Springer (2005)

Salinesi, C., Mazo, R., & Diaz, D. (2010). Criteria for the verification of feature models. In 28th
INFORSID Conference, (pp. 80-96). Marseille, France.

Salinesi, C., Mazo, R., Diaz, D., & Djebbi, O. (2010). Solving Integer Constraint in Reuse
Based Requirements Engineering. 18th IEEE International Conference on Requirements
Engineering. Sydney, Australia. PA: IEEE Press.

Salinesi, C., Mazo, R., Djebbi, O., Diaz, D., Lora-Michiels, A. (2011). Constraints: the Core of
Product Line Engineering. Fifth IEEE International Conference on Research Challenges in
Information Science (pp. 29-38). Guadeloupe-French West Indies, France. PA: IEEE Press.

Salinesi, C., Rolland, C., Mazo, R. (2009). VMWare: Tool Support for Automatic Verification of
Structural and Semantic Correctness in Product Line Models. In International Workshop on
Variability Modelling of Software-intensive Systems (pp. 85-90). Sevilla, Spain. PA: University
of Duisburg-Essen Press.

Saraswat, V. (1992). The Category of Constraint Systems is Cartesian-Closed. Logic In
Computer Science (pp. 341-345, 1992), IEEE Press.

S. de Boer, F., & Palamidessi, C. (1991). A Fully Abstract Model for Concurrent Constraint
Programming. TAPSOFT, Vol.1, (pp. 296-319). TAPSOFT Editors.

Segura, S., Benavides, D., & Ruiz-Cortés, A., & Trinidad, P. (2008). Automated merging of
feature models using graph transformations. In international summer schools on Generative and
Transformational Techniques in Software Engineering Volume 5235. Springer-Verlag LNCS.

Specification and Verification Center at CM University. (2010). SMV system. Retrieved March
01, 2010, from www.cs.cmu.edu/~modelcheck

Trinidad, P., Benavides, D., Duran, A., Ruiz-Cortés, A., & Toro, M. (2008). Automated error
analysis for the agilization of feature modeling. Journal of Systems and Software, 81(6), 883–
896.

White, J., Doughtery, B., Schmidt, D., & Benavides, D. (2009). Automated reasoning for multi-
step software product line configuration problems. In Proceedings of the Software Product Line
Conference, (pp. 11–20). San Francisco, CA. USA. PA: ACM Digital Library.

White, J., Schmidt, D., Benavides, D., Trinidad, P., & Ruiz-Cortes A. (2008). Automated
diagnosis of product-line configuration errors in feature models. In Proceedings of the Software
Product Line Conference. Limerick, Ireland. PA: ACM Digital Library.

Van der Maßen, T., & Lichter, H. (2002). Modeling Variability by UML Use Case Diagrams.
International Workshop on Requirements Engineering for Product Lines. Avaya Labs Report
series editors, (pp. 18-26). Essen, Germany.

Zhang,W., Zhao, H., & Mei, H. (2004). A propositional logic-based method for verification of
feature models. In Jim Davies, Wolfram Schulte, Michael Barnett (Eds.), Formal Methods and
Software Engineering, 6th International Conference on Formal Engineering Methods volume
3308, (pp. 115–130). Seattle, WA, USA, Springer–Verlag.

Ziadi, T. (2004). Manipulation de Lignes de Produits en UML. Unpublished doctoral
dissertation, IRISA-TRISKELL, Université de Rennes 1, France.

Raúl Mazo is an Adjunct Assistant Lecturer at the Panthéon Sorbonne University and at the
Engineering School EFREI, both located in Paris, France. Before joining the Panthéon
Sorbonne University, Raúl Mazo worked as a Telecommunications Engineer at the University of
Antioquia, Colombia (2004-2006). He received a Computer Science Engineering degree in 2005
from the University of Antioquia, Colombia, and a Master of Science degree in Information
Systems in 2008 from the Panthéon Sorbonne University. At present, he is a Ph.D. student at the
Panthéon Sorbonne University and he intends to finish the Ph.D. in November 2011.
His research interests include software design modeling, requirements engineering, product
lines engineering, ERP systems and network security. His research work focuses on three topics
of product line engineering: (i) definition of constraint-based formalisms to represent complex
product line models; (ii) construction of product line models; and (iii) definition of methods to
validate, verify and analyse variability models.

Dr Camille Salinesi, Professor at Université Paris 1 Panthéon - Sorbonne is the head of the
Centre de Recherche en Informatique, specialized in Information Systems Engineering. He
published more than 70 refereed papers in international conferences and scientific journals on
various topics such as requirements engineering, strategic alignment, or product lines.
Prof. Salinesi was involved in fundamental research projects (FP4 NATURE, FP5 CREWS) and
was the leader for collaborations and consultancy works for various companies such as France
Télécom, SNCF, Renault, MédiaScience, and EDF) He chaired the REFSQ, REP, and RIGIM
workshops and in 2005, he was Organizing Chair of the 13th IEEE International Conference on
Requirements Engineering.

Prof. Salinesi teaches various topics such as Databases, Requirements Engineering, Enterprise
Resource Planning, Information Systems Management, and Enterprise Architecture.
Prof. Salinesi is member of IEEE and INCOSE.

Daniel Diaz is an Assistant Professor at the University of Paris 1 - Pantheon Sorbonne
(FRANCE). Hi is Member of the CRI (Reaserch Center on Computing Science). Daniel Diaz is
the author of GNU Prolog. Previsouly, hi collaborated with the laboratoire INRIA center
Rocquencourt (FRANCE) in the Contraintes Project. His Research Topics are: Logic
Programming, Constraint Programming, Local search and parallelism.

After she was graduated from a Master in Distributed Computing at University of Paris 6, Dr.
Olfa Djebbi conducted her doctoral research within the company Diagnostica Stago, with a fund
support by the French government.
Dr. Olfa Djebbi is interested in Software Engineering, especially in requirements engineering
and product lines development.
Since 2005, she has been involved in the works of the French association of systems engineers
AFIS, French branch of the INCOSE (International Council on Systems Engineering), and which
brings together industrialists and academics around issues of current interest.
Moreover, Mrs. Djebbi worked as teacher and researcher at Sorbonne and Dauphine
Universities and has organized and led missions in various companies (including Peugeot,
Renault, ADN and Sanofi Pasteur).
She has numerous publications in class-A conferences including the IEEE International
Requirements Engineering Conference and the International Conference on Advanced
Information Systems Engineering, as well as more industry-oriented journals such as INCOSE's
INSIGHT.

Alberto Lora Michiels: Industrial Engineer 1999 (Escuela Colombiana de Ingenieria),
Certificate in Statistics (Universidad Nacional de Colombia 2005), M2 en Système
d'information et décision (Univeristé Paris 1 Panthéon Sorbonne). Currently, Material
Requirement Planner Leader Supply Chain Baxter International Inc Lessines Belgique. Research
interests: Product line model construction and data mining.

Anexe

Tables 2 to 6 compile the constructs, and its corresponding CP representations, of the most
popular languages used to specify PLMs.

Table 2. Compilation of the feature-based languages’ constructs and the corresponding
representation as CPs.

Constructor and domains vs.
Languages

FODA-like models (Kang et al.,
2002)

Feature models with cardinalities
(Riebisch et al. 2002; Czarnecki et al.
2005) and attributes (Benavides et
al. 2005c; Streitferdt et al. 2006;
White et al. 2009)

Root. The root element must be
selected in all the configurations.

If {Root} ∈ {true, false} then
Root = true
If {Root} ∈ {0, 1} then Root =
1

If {Root} ∈ {true, false} then Root =
true
If {Root} ∈ ℤ then Root ≥ 1

Optional. If the father element is
selected, the child element can but
needs not be selected. Otherwise, if the
child element is selected, the father
element must as well be selected.

If {Father, Child} ∈ {true, false}
then Child ⇒ Father
If {Father, Child} ∈ {0, 1} then
Father ≥ Child

If {Father, Child} ∈ {true, false} then
Child ⇒ Father
If {Father, Child} ∈ {0, 1} then
Father ≥ Child
If {Father, Child} ∈ ℤ then Child ≥ 1
⇒ Father ≥ 1

Mandatory. If the father element is
selected, the child element must be
selected as well and vice versa.

If {Father, Child} ∈ {true, false}
then Father ⇔ Child
If {Father, Child} ∈ {0, 1} then
Father = Child

If {Father, Child} ∈ {true, false} then
Father ⇔ Child
If {Father, Child} ∈ {0, 1} then
Father = Child
If {Father, Child} ∈ ℤ then Child ≥ 1
⇔ Father ≥ 1

Requires (includes). If the requiring
element is selected, the required
element(s) has(have) to be selected as
well, but not vice-versa.

If {Requiring, Required} ∈
{true, false, 0, 1} then Requiring
⇒ Required

If {Requiring, Required} ∈ {true,
false, 0, 1} then Requiring ⇒
Required
If {Requiring, Required} ∈ ℤ then
Requiring ≥ 1 ⇒ Required ≥ 1

Exclusion. Indicates that both excluded
elements cannot be selected in one
product configuration.

If {Excluding, Excluded} ∈
{true, false} then Excluding ⊕
Excluded
If {Father, Child} ∈ {0, 1} then
Excluding + Excluded ≤ 1

If {Excluding, Excluded} ∈ {true,
false} then Excluding ⊕ Excluded
If {Father, Child} ∈ {0, 1} then
Excluding + Excluded ≤ 1
If {Father, Child} ∈ ℤ then Excluding
* Excluded = 0

Alternative/xor-decomposition. A set
of child elements are defined as
alternative if only one element can be
selected when its parent element is part
of the product.

If {Father, Child1, …, ChildN}
∈ {true, false} then:
(Child1⇔(¬Child2 ⋀...⋀
¬ChildN ⋀ Father) ⋀ Child2 ⇔
(¬Child1 ⋀...⋀ ¬ChildN ⋀
Father) ⋀ ChildN ⇔ (¬Child1
⋀...⋀ ¬ChildN-1 ⋀ Father))

Or-Relation. A set of child elements
are defined as an or-relation if one or
more of them can be included in the
products in which its parent element
appears.

If {Father, Child1, …, ChildN}
∈ {true, false} then:
Father ⇔ Child1 ... ChildN

Group cardinality. Cardinality
determines how many variants (with
the same father) may be chosen, at least
M and at most N of the group. Besides,
if one of the children is selected, the
father element must be selected as well.

 If {Father, Child1, …, ChildN} ∈ {0,
1} then
Father ≥ Child1 ⋀ …⋀ Father ≥
ChildN ⋀
M*Father ≤ Child1+...+ChildN ≤
N*Father

A feature cardinality is represented as
a sequence of intervals [min..max]
determining the number of instances of
a particular feature that can be part of a
product. Each instance is called a
clone.

 If {Father, Clone1, …, CloneN} ∈ {
0, 1} then:
Clone1 ⇒ Father ⋀ ...⋀ CloneN ⇒
Father ⋀
Father ⇒ (M ≤ Clone1 + … + CloneN
≤ N)

Attribute. An attribute is a variable
associated to a reusable element. An
attribute has a name, a domain, and a
value (consistent with the domain) at a
given configuration time.

 value ∈ Domain ⋀ Attribute = value
⋀
ReusableElement⇔Attribute > 0

Domain of the variables found in the
language

Boolean. Features are usually boolean, but they
can also be Integer or Real variables.
However if there are attributes in the
FODA model, they are usually
Integers or Reals

Constraints type: boolean, linear, Boolean, reified, =, >, >, ≥, ≤ Boolean, arithmetic, polynomial,

polynomial, reified, symbolic, others.
Operators used.

symbolic, reified, =, >, >, ≥, ≤

Special operators: Different and
negation

¬ ≠

Table 3. Compilation of the OVM and TVL’s constructs and the corresponding representation as
CPs.

Constructor and domains vs.
Languages

Orthogonal Variability Models
(OVM) (Pohl et al. 2005)

Textual Variability Language
(TVL) (Boucher et al. 2010)

Root. The root element must be
selected in all the configurations.

 root Element

Dependency/and-decomposition:
operator allOf. The selection of
the children depends of the
selection of the father element and
vice versa

 Father ⇔ (Child1 ⋀…⋀ ChildN)

Optional. If the father element is
selected, the child element can but
needs not be selected. Otherwise, if
the child element is selected, the
father element must as well be
selected.

If {Element1, Element2} ∈ {true,
false} then Element2 ⇒ Element1
if {Element1, Element2} ∈ {0, 1}
then Element1 ≥ Element2
If {Element1, Element2} ∈ ℤ then
Element2 ≥ 1 ⇒ Element1 ≥ 1

Child ⇒ Father

Mandatory. If the father element is
selected, the child element must be
selected as well and vice versa.

If {Element1, Element2} ∈ {true,
false} then Element1 ⇔ Element2
If {Element1t, Element2} ∈ {0, 1}
then Element1 = Element2
if {Element1, Element2} ∈ ℤ then
Element2 ≥ 1 ⇔ Element1 ≥ 1

Father ⇔ Child

Requires (includes). If the
requiring element is selected, the
required element(s) has(have) to be
selected as well, but not vice-versa.

If {Requiring, Required} ∈ {true,
false, 0, 1} then Requiring ⇒
Required
If {Requiring, Required} ∈ ℤ then
Requiring ≥ 1 ⇒ Required ≥ 1

If {Requiring, Required} ∈ {true,
false, 0, 1} then Requiring ⇒
Required

Exclusion. Indicates that both
excluded elements cannot be
selected in one product
configuration.

If {Excluding, Excluded} ∈ {true,
false} then Excluding ⊕ Excluded
If {Father, Child} ∈ {0, 1} then
Excluding+Excluded ≤ 1
If {Father, Child} ∈ ℤ then
Excluding * Excluded = 0

Alternative/xor-decomposition. A
set of child elements are defined as
alternative if only one element can
be selected when its parent element
is part of the product.

 If {Father, Child1, …, ChildN} ∈ {0,
1} then:
(Child1⇔(¬Child2 ⋀...⋀ ¬ChildN ⋀
Father) ⋀ Child2 ⇔ (¬Child1 ⋀...⋀
¬ChildN ⋀ Father) ⋀ ChildN ⇔
(¬Child1 ⋀...⋀ ¬ChildN-1 ⋀ Father))

Or-Relation. A set of child
elements are defined as an or-
relation if one or more of them can
be included in the products in
which its parent element appears.

 If {Father, Child1, …, ChildN} ∈ {0,
1} then:
Father ⇔ Child1 ... ChildN

Group cardinality. Cardinality
determines how many variants
(with the same father) may be
chosen, at least M and at most N of
the group. Besides, if one of the
children is selected, the father

If {VariationPoint, Variant1, …,
VariantN} ∈ {0, 1} then
VariationPoint ≥ Variant1 ⋀ …⋀
VariationPoint ≥ VariantN ⋀
M*VariationPoint ≤ Variant1+...+
VariantN ≤ N*VariationPoint

If {Father, Child1, …, ChildN} ∈ {0,
1} then
Father ≥ Child1 ⋀ …⋀ Father ≥
ChildN ⋀
M*Father ≤ Child1+...+ChildN ≤
N*Father

element must be selected as well.
Individual cardinality is
represented as a sequence of
intervals [min..max] determining
the number of instances of a
particular feature that can be part of
a product. Each instance is called a
clone.

If {Father, Clone1, …, CloneN} ∈ {
0, 1} then:
Clone1 ⇒ Father ⋀ ...⋀ CloneN ⇒
Father ⋀
Father ⇒ (M ≤ Clone1 + … +
CloneN ≤ N)

If {Father, Clone1, …, CloneN} ∈ {
0, 1} then:
Clone1 ⇒ Father ⋀ ...⋀ CloneN ⇒
Father ⋀
Father ⇒ (M ≤ Clone1 + … + CloneN
≤ N)

Attribute. An attribute is a variable
associated to a reusable element.
An attribute has a name, a domain,
and a value (consistent with the
domain) at a given configuration
time.

 Attribute ∈ { integer, real, boolean,
enumeration} ⋀
Attribute = value ⋀
ReusableElement ⇔ Attribute > 0

Domain of the variables found in
the language

Boolean, Integer, Real Features: boolean.
Attributes: integer (int), real (real),
Boolean (bool) and enumeration
(enum)

Constraints type: boolean, linear,
polynomial, reified, symbolic,
others. Operators used.

Boolean, arithmetic, polynomial,
symbolic, reified, =, >, >, ≥, ≤

All the constraints of C: +, -, /, *, abs,
for numeric values; !, &&, jj, ->, <->
for Boolean values as well as
comparison operators >, >=, < or <=.
And aggregation functions like sum,
mul, min, max, avg, count, and, or
and xor

Special operators: Different and
negation

≠ ≠, ¬

Table 4. Compilation of the Class-based and Use case-based variability languages’ constructs
and the corresponding representation as CPs.

Constructor and domains vs.
Languages

Class-based PLMs (Ziadi 2004),
(Korherr, List 2007)

Use case-based PLMs (Van der
Maßen, Lichter 2002)

Optional. If the father element is
selected, the child element can but
needs not be selected. Otherwise, if
the child element is selected, the
father element must as well be
selected.

If {Element1, Element2} ∈ {true, false}
then Element2 ⇒ Element1
If {Element1, Element2} ∈ {0, 1} then
Element1 ≥ Element2

If {Element1, Element2} ∈ {true,
false} then Element2 ⇒ Element1
If {Element1, Element2} ∈ {0, 1}
then Element1 ≥ Element2

Mandatory. If the father element is
selected, the child element must be
selected as well and vice versa.

If {Element1, Element2} ∈ {true, false}
then Element1 ⇔ Element2
If {Element1t, Element2} ∈ {0, 1} then
Element1 = Element2

If {Element1, Element2} ∈ {true,
false} then Element1 ⇔ Element2
If {Element1t, Element2} ∈ {0, 1}
then Element1 = Element2

Requires (includes). If the
requiring element is selected, the
required element(s) has(have) to be
selected as well, but not vice-versa.

If {Requiring, Required} ∈ {true, false,
0, 1} then Requiring ⇒ Required
If {Requiring, Required} ∈ ℤ then
Requiring ≥ 1 ⇒ Required ≥ 1

If {Requiring, Required} ∈ {true,
false, 0, 1} then Requiring ⇒
Required
If {Requiring, Required} ∈ ℤ
then Requiring ≥ 1 ⇒ Required ≥
1

Group cardinality. Cardinality
determines how many variants
(with the same father) may be
chosen, at least M and at most N of
the group. Besides, if one of the
children is selected, the father
element must be selected as well.

 If {Father, Child1, …, ChildN} ∈
{0, 1} then
Father ≥ Child1 ⋀ …⋀ Father ≥
ChildN ⋀
M*Father ≤ Child1+...+ChildN ≤
N*Father

Individual cardinality is If {FatherClass, Clone1, …, CloneN} ∈

represented as a sequence of
intervals [min..max] determining
the number of instances of a
particular feature that can be part of
a product. Each instance is called a
clone.

{ 0, 1} then:
Clone1 ⇒ FatherClass ⋀ ...⋀ CloneN ⇒
FatherClass ⋀
FatherClass ⇒ (M ≤ Clone1 + … +
CloneN ≤ N)

Domain of the variables found in
the language

Boolean, Integer, Real Boolean

Constraints type: boolean, linear,
polynomial, reified, symbolic,
others. Operators used.

Boolean, arithmetic Boolean, arithmetic

Table 5. Compilation of the Dopler and CEA variability languages’ constructs and the
corresponding representation as CPs.

Constructor and domains vs.
Languages

Dopler variability language
(Dhungana et al. 2010)

CEA - variability language

Root/Visibility Condition. The
root decision must be solved in all
the configurations.

Decision = true ∨ Decision = false

Mandatory. If the father element
is selected, the child element must
be selected as well and vice versa.

 If {Element1, Element2} ∈ {true,
false} then Element1 ⇔ Element2
If {Element1, Element2} ∈ {0, 1} then
Element1 = Element2

Requires/Decision Effects/
Inclusion Conditions. If the
requiring element is selected, the
required element(s) has(have) to
be selected as well, but not vice-
versa.

Constraint1 ⇒ Constraint2;
Asset ⇒ Decision

Validity condition. RDL
equivalent: "sauf". The Validity
Condition constrains the range of
possible values for a particular
decision.

 If {Element1, Element2} ∈ {true,
false, 0, 1} then Element1 ⇒
Element2
If {Element1, Element2} ∈ ℤ then
Element1 ≥ 1 ⇒ Element2 ≥ 1

Asset Dependencies define
relationships between assets.
Arbitrary relationship types with
different semantics like requires,
contributes to, excludes or
implements.

 If {Element1, Element2, …,
ElementN} ∈ {true, false} then:
Element1 ∨... ∨ ElementN = true
If {Element1, Element2, …,
ElementN} ∈ {1, 0} then: Element1 +
...+ElementN ≥ 1

Group cardinality/ Enumeration
Decision Type/. Cardinality
determines how many variants
(with the same father) may be
chosen, at least M and at most N
of the group. Besides, if one of the
children is selected, the father
element must be selected as well.

Decision ∈ ValidityCondition ⋀
Decision ≥ DecisionOption1 ⋀ …⋀
Decision ≥ DecisionOptionN ⋀
M*Decision ≤ DecisionOption1+...+
DecisionOptionN ≤ N*Decision

Domain of the variables found
in the language

Boolean, String, Number(real) and
Enumeration

Constraints type: boolean, linear,
polynomial, reified, symbolic,
others. Operators used.

All the constraints of Java

Special operators: Different and
negation

≠, ¬

Table 6. Compilation of the RDL and Latice variability languages’ constructs and the
corresponding representation as CPs.

Constructor and domains vs.
Languages

Renaul Documentary Language (RDL) Latice (Mannion 2002)

Root. The root element must be
selected in all the configurations.

root Projet_Vehicule

Dependency/and-decomposition:
operator allOf. The selection of the
children depends of the selection of
the father element and vice versa

 Father ⋀ (Child1 ⋀…⋀
ChildN)

Optional. If the father element is
selected, the child element can but
needs not be selected. Otherwise, if
the child element is selected, the
father element must as well be
selected.

if {Use_Case, Element} ∈ {true, false} then
Element ⇒ Use_Case
if {Use_Case, Element} ∈ {0, 1} then Use_Case
≥ Element

Mandatory. If the father element is
selected, the child element must be
selected as well and vice versa.

if {Use_Case, Element} ∈ {true, false} then
Use_Case ⇔ Element
if {Use_Case, Element} ∈ {0, 1} then Use_Case
= Element

Father ⇔ Child

Requires (includes). If the requiring
element is selected, the required
element(s) has(have) to be selected as
well, but not vice-versa.

if {Requiring, Required} ∈ {true, false, 0, 1}
then Requiring ⇒ Required
If {Requiring, Required} ∈ ℤ then Requiring ≥
1 ⇒ Required ≥ 1

Exclusion. Indicates that both
excluded elements cannot be selected
in one product configuration.

if {Excluding, Excluded} ∈ {true, false} then
Excluding ⇒ ¬Excluded
if {Excluding, Excluding} ∈ {0, 1} then
Excluding - Excluded ≥ 1

Excluding ⊕ Excluded

Alternative/xor-decomposition. A
set of child elements are defined as
alternative if only one element can be
selected when its parent element is
part of the product.

if {Use_Case, Element1, …, ElementN} ∈
{true, false} then:
(Element1⇔(¬Element2 ⋀...⋀ ¬ElementN ⋀
Father) ⋀ Element2 ⇔ (¬Element1 ⋀...⋀
¬ElementN ⋀ Use_Case) ⋀ ElementN ⇔
(¬Element1 ⋀...⋀ ¬ElementN-1 ⋀ Use_Case))
if {Use_Case, Element1, …, ElementN} ∈ℤ
then: Use_Case - (Element1 + ...+ ElementN) =
0

Or-Relation. A set of child elements
are defined as an or-relation if one or
more of them can be included in the
products in which its parent element
appears.

if {Father, Child1, …, ChildN} ∈ {true, false}
then:
Father ⇔ Child1 ∨...∨ ChildN
if {Use_Case, Element1, …, ElementN} ∈ℤ
then: Use_Case - (Element1 + ...+ ElementN) ≥
0

Father ⇔ Child1 ∨...∨
ChildN

Validity condition. RDL equivalent:
"sauf". It constrains the range of
possible values for a particular use
case.

if {Relation1, Use_Case} ∈ {true, false} then
Relation1 ⇒ Use_Case
if {Relation1, Use_Case} ∈ {0, 1} then
Use_Case - Relation1 ≥ 0

Conjunction of subgraphs. If Gi and
Gj are the logical expressions for two
different subgraphs of a lattice, the
PLM is con conjunction of Gi and Gj

 Gi ⋀ Gj

Domain des variables du language. Boolean
Constraints type: boolean, linear,
polynomial, reified, symbolic, others.
Operators used.

 Boolean

