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Abstract : This paper presents the outcome of power series analysis in the
framework of the Asymptotic Numerical Method. We theoretically demon-
strate and numerically evidence that the emergence of geometric power se-
ries in the vicinity of simple bifurcation points is a generic behavior. So we
propose to use this hallmark as a bifurcation indicator to locate and com-
pute very efficiently any simple bifurcation point. Finally, a power series
that recovers an optimal step length is build in the neighborhood of bifurca-
tion points. The reliability and robustness of this powerful approach is then
demonstrated on two application examples from structural mechanics and
hydrodynamics.

Keywords : Path-following, continuation, bifurcation, power series analysis,
Asymptotic Numerical Method.

1 Introduction

The main purpose of continuation or path-following algorithms is to map
steady state solutions in the parameter space by computing branches of so-
lutions for a given range of control parameters |18, 23]. In a more detailed



way, one looks for single or multiple solution ranges, compute bifurcation
diagrams and finally perform stability analyses to determine regions of sta-
ble and unstable solutions [15, 2|. First order predictor-corrector algorithms
(Euler predictor, Newton-Raphson based corrector) with pseudo-arc-length
parameterization have been widely used for decades [18, 15, 23]. Neverthe-
less, step-lengh adaptivity may be in trouble in the vicinity of bifurcation
points leading to a weak computational efficiency and sometimes lack of
convergence.

An alternate way to first order predictor algorithms stands in high-order
predictors that have been introduced in continuation algorithms based on the
Asymptotic Numerical Method (ANM). This method consists in a combina-
tion of a high-order perturbation method, a discretization technique and a
parameterization strategy [13, 3, 9, 16]. It is a general and efficient non-linear
solution method [12], which has been successfully applied in mainly solid and
structural mechanics, but also in few hydrodynamics problems [8, 1, 7, 17].
In the ANM the step length is determined a-posteriori from the convergence
properties of the series at the current step : it shortens as the non lineari-
ties increase and widens as soon as the problem becomes softer, providing a
self adaptivity all along the continuation. However, as the continuation ap-
proaches to a bifurcation point the self adaptive step length can become very
small and the computational efficiency of the ANM procedure becomes sig-
nificantly penalised. Replacing natural power series by rational ones (Padé
approximates) improves the global continuation efficiency as it enables to
get step lengths roughly twice as long as in the classical power series rep-
resentation [11, 5, 16|, but even in that case the step length may be far
from its optimal value. The computation of bifurcation points and emanat-
ing branches are other particularly important issues. They have been tackled
in the ANM framework by computing along the continuation either the zeros
of Padé approximates or a scalar bifurcation indicator obtained from an ad-
ditional perturbed problem solution [24, 28, 6, 7, 17]. Not only these methods
have an extra cost which could be up to twice as the original ANM problem,
but also they could be sometimes lacking some robustness.

An alternate promising direction was pioneered in the mid seventies by
Van Dyke who initiated the computation of high order perturbation series
and their analysis in order to reveal their analytical structure [25]. He pro-
posed several series improvements and completion either to compute them
much more efficiently or to extend their range of utility, in an ultimate goal
to reveal their underlying mathematical or physical meaning [26, 27]. He
made it clear that power series undoubtedly contain numerous relevant in-
formation and ways can be found to extract them. But surprisingly, none of
Van Dyke’s power series analysis has benefited to the ANM yet.

So, in the present work we have analysed the power series that arise at
every step of the ANM algorithm and it turns out that in the neighborhood of
simple bifurcation points a geometric power series always emerges. Moreover



this behavior is generic as it does not depend on the problem to be solved.
Therefore we propose to use this hallmark as a reliable bifurcation indicator
to accurately and cheaply compute any simple bifurcation point. Finally,
as soon as it is detected, a new power series that recovers an optimal step
length is build in the vicinity of bifurcation points, where the original one is
critically penalised in the classical ANM.

The present paper is organized as follows. In Section 2, the theoretical
background related to bifurcation analysis is first recalled. Formal deriva-
tions of AMN power series are carried out in the framework of perturbed
bifurcation analysis. The bagic features of ANM power series are then high-
lighted and discussed. Section 3 is devoted to the way we have implemented
geometrical power series extraction from the original power series. The com-
putation of bifurcation points and emanating bifurcation branches are then
emphasized. The reliability, robustness and efficiency of this approach is pre-
sented in Section 4 throughout two application examples : the buckling of an
inextensible elastic beam and the incompressible fluid flow in a symmetric
sudden expansion. Finally, conclusions and future work directions are given
in Section 5.

2 Formal derivations of AMN power series in the
vicinity of bifurcation points

In this section we first introduce the minimal needed theoretical back-
ground for analysing ANM power series computed near simple bifurcation
point. Let R(u,A) = 0 be an algebraic system of n nonlinear smooth equa-
tions where u € R™ is a vector of state variables and A € R a single control
z € R*"! is
introduced for compactness since it includes the parameter \ as its last state
variable, so the equilibrium system reads :

or bifurcation parameter. The extended state vector U =

R(U) =0 (1)

without distinguishing between state variables and parameter. Generic solu-
tions of (1) are branches of solutions, ie, one dimensional continua of solution
points. In the continuation algorithm based on the ANM, these branches
are represented at the current step by the following power series expan-
sion 13, 9, 10, 12] :

Ula) =Up+alUy +a* Uz + -+ +a" U, (2)

with a the path parameter defined in the parameterization equation. In the
following, we analyse the case where the starting point Uy is a simple bifur-
cation point, then, a regular point closed to a simple bifurcation.



2.1 Branches of solution at a simple bifurcation point

Let U. be a simple bifurcation point where two branches of solutions
cross transversally, ie, with two distinct tangents Uy, and Uy,. The kernel of
the jacobian matrix RY; evaluated at U, is two dimensional,

N(R%) = Span {Uy,,Us,}, N(RG") = Span {¢}. (3)

while the kernel of the transposed jacobian matrix is one dimensional [15].
The two (normalized) tangent vectors Uy, (i = 1,2) satisfy the first order
approximation of (1) and the so-called "algebraic bifurcation equation" [18§],
which is the second order approximation of (1) projected on left null-vector
1 of RY;.
C —
R’TU Uy, =0 (@)
V' RypU Uy, =0

We also define the (normalized) vector Ui as being inside A/ (R%) and or-

thogonal to Uy, (same for Uz). The branch of solutions emanating from U,
along the tangent U;, can be computed in the following way :

U(a):Uc+aUt1—|—a2U§+a3U§+... (5)

where a = (U(a) — U.)TU,, is the classical pseudo arc-length parameter.
Using a Lyapunov-Schmidt decomposition, the vector Up,, p < 2, reads :

U; = bp Utf + Y (6)
N—— ~——

EN(R%)  eNT(RY)

where Vp is solution of an augmented invertible linear system (see appendix
for detailled expression for the scalar 5, and the vector V). We refer to [3]
and [17] for computation of branches of solutions at a bifurcation point in
solid or fluid mechanics problems.

2.2 Perturbed bifurcation analysis at simple bifurcation point :
low order approximation

Small imperfections are always present in experiments, but also in com-
putations owing to finite precision of computers and their numerical solution.
Thus, we now pay attention to the following perturbed problem :

Ry(U, ) = R(U) + pP =0 (@)

where P is a normalized perturbation vector and p a free perturbation am-
plitude. In the general case 9T P # 0, ie, the perturbation vector P is non-
degenerate or bifurcation destroying, as opposed to bifurcation preserving



for the exceptional case where 97 P = 0 [22]. Hence, without any loss of
generally one can set :

P =1+ Pt with TP+ =0 (8)

With the additionnal free parameter p solutions of (7) are no more
branches but two dimensional continua of solution points. At the bifurcation
point U,, the 2D manifold can be found under the form of a two-parameter
expansion :

U=U.+b1 Uy +byUs, +V(b1,b2)
—_— —
EN(R?,) ENT(RS,) 9)
= pu(b1,b2)
where by, by are the amplitudes of U — U, on the base vectors Uy, and U,
of N(R%;). According to bifurcation theory expansion of V' and p should
begin at order two in b1, by and the second order of p should solve for the
"algebraic bifurcation equation" :

pu(b1,ba) = by by " Ry Uy, Uy, (10)
—_—

p

2.2.1 Perturbed branches

When the perturbation amplitude is fixed to a given value pg, generic so-
lutions of (7) get back to one dimensional continua called perturbed branches.
They look like the two hyperbolae shown in figure(1) and they are given at
low order by the parametric representation :

U(bl,bz) =U.+ blUt1 + bQUtQ with b1by = % (11)

F1GURE 1 — Pertubed bifurcation diagram at lowest order approximation.



2.3 Perturbed branch expression from a regular point lo-
cated close to a simple bifurcation point

Let d be a given distance, one sets b = d and by = ﬁ into (11) to define
a regular point :
Ho
pad
at a distance d along Uy, from the bifurcation point. We now define the new
path parameter a = d — by and rewrite (11) as :

Up=U,+d U, + 2 U, (12)

Ho
pd (1

Qe

U(a) =Up+ a (—U) +

Uy, (13)

)

This last equation gives a parametric expression of the perturbated branch
from the regular solution point Uy (a = 0) toward the bifurcation point U,
(a > 0). The rational fraction that appears in Uy,’s amplitude has a pole for
a = d, which makes the perturbed branch turn in the direction of Uy, near
the bifurcation point. Notice that when pg is very small the amplitude for
Uy, is also very small except when a is very close to d.

This simple reasoning that leads to (13) already shows the key point of the
present analysis : for any non zero imperfection the (vector) function U(a)
has a singularity for a = d, ie, for a positive real value of the parameter a
and the nature of the singularity is of the kind (1— %)_1, The Taylor series of
such a rational fraction is : %+ (%)% +(%)>+---. It represents a geometrical
progression whose common ratio is é and radius of convergence d. These
results are globally in line with the properties of the ANM series when the
expansion point is close to a bifurcation point. However, the picture is not
complete because (13) is only a first order approximation.

2.4 Extention to higher order approximation

To extend the previous results at high orders we begin with the derivation
of a two parameter expansion of the 2D manifold under the form :

U(al, CLQ) = Uc + CLlUtl + agUtﬁ +G%V20 + a1a2V11 + a%‘/oQ
+aiVao + atazVor + a1a3Vis + a3Vis

(14)
plar, a) = a%/@o + ajazp11 + a%uoz
+a3pso + ataspor + aradig + adpos (15)

where a; and a9 are defined as the amplitude of U — U, on the base vector
Ui, and Ui of N(R%). In the perspective to analyse ANM power series,
the choice of (aq, a27) parameters is better than (b1, by), which were the
best one for a first order analysis. All the vectors V;;’s are orthogonal to Uy,



and Utﬁ, their expression have been reported in appendix for brevity in the
presentation.

The next step is to rewrite the 2D manifold by taking a; and p as pa-
rameters instead of a; and as. For this we follow the procedure proposed by
Damil and Potier-Ferry in [13] to get :

Ular,p) = Uetar Uy +at U +aiUs + -
il (Ui + Uoa +aiUng + afls +)

M11
2 (1771 1 1

+ll;7%1 ;?Utl + EU72,2 ++a71U71’2+ ) (]_6)
/L2 1 1

o (g )

The first line of (16) exactly corresponds to (5), the case with no imperfec-

tion. Notice also that singular terms of the kind aip appear in subsequent
1

lines of this expression.

2.4.1 First order truncation in p

In our ANM continuation process imperfections appear because the so-
lution points where the series are computed do not exactly satisfy (1) but
only up to a required user-defined precision ep, ie, Uy is a solution point if
[|R(Up)|| < er. The ANM series evaluated at Uy are indeed the exact formal
solution of the perturbed problem R(U) — R(Uy) = 0. In applications, er
is generally set to a very small value, hence, the imperfection amplitude pg
considered herafter will also be very small. As a consequence, we begin this
analysis in limiting to a first order truncature in p.

2.4.2 Perturbed branch expression form a regular point Uy

As above we set the imperfection amplitude p to a fixed value pg to
define perturbed branches. Then, we deport the expansion point from U, to
Uy by taking a =d — a;j to get :

Ula)= Up+aU +a*US+a®U +---

0
0 (Ui +alfy + a?U8, + )

(17)

The new vector U? and UZ-?J- (at Up) can be easily deduced from the Uf and
Ui; (at Ue) of (16) and d.

Let r be the radius of convergence of the first line of (17), ie, the series
for the perfect branch. Let us scale the path parameter a by r, so that the
radius of convergence of the perfect branch becomes unity and the norm of
the series coefficient become of order of unity. Denoting a = :, we get the



final expression for the perturbed branches :

U(a)= Uy —I—EL(rUtOl) +a? (r2u9) +ad (B3 uU) + -
(18)

]

U +a(rU9,) + a2 Ug)) +- - )

QIR

o (__ag
T (d -al)

The ANM method does not give access to (18) but only to its powers
series. Expanding the rational fraction of (18) one can get the following ex-
pression for the series coefficient UI(,) at order p of the rescaled ANM expansion
evaluated near a simple bifurcation point :

— r
09 = U0 + %7‘” U, + ﬁ (L) Ui (19)
The first term r? UI? corresponds to the perfect case situation pg = 0. Because
of the rescalling, its norm is of order of unity. The second term %r” U;?,1 is
a the first order correction of the previous one due to the imperfection and
its norm is also of order of unity. The third term ﬁ (5)P Uzt is associated
with the singularity brought by the perturbed bifurcation. Its amplitude is
a product of the small imperfection pp with the p power of 7, which can be
very large when d << r.

It follows the important results : when the distance d between Uy and U,
is smaller than r, ie, the bifurcation point is inside the radius of convergence
of the "perfect” series, the last term of (19) dominates the series at high order
whatever the imperfection magnitude pg. Moreover, at high order the series
behaves like a geometrical progression with a common ratio % (or é for the
non scaled series), and the series term Ug (or Uz()) for the nonscaled series)
becomes colinear to the vector Utf.

In other words, when d < r and pg # 0, the pole of the rational fraction
in (18) (or (17)) becomes the nearest singularity of U(a) and set the radius of
convergence to d, instead of r for the perfect case po = 0. This is perfectely
in line with the observation made on ANM series at expansion point close
to a simple bifurcation point, as it will be shown on examples below.

2.4.3 Return to high order terms in g

Let us now come back to the high order p term in (16) that have been
suppressed above, claiming that g is very small in our applications. One
question still remains : what is the influence of more singular terms such as

2

L, . . . .
L0 L as compared to the less singular term £%-L retained in the previous
H11 91 M11 a1

analysis 7. To answer it, let us analyse the Taylor series of the following toy
model :

1 _3 1
f(x)_l—x+10 =27
—— N ,

fi(z) f2(x)

(20)



According to Van Dyke [25] the radius of convergence, sign pattern in the
Taylor series coefficients and values of coefficients at high order are both
governed by the nearest singularity of the function. When two singularities
are at the same distance, as in this example, the most singular ones will
impose itself (here f2), rather than the one with the largest amplitude (here
f1). However, the prominence of fy only occurs at very high order as it is
reported in table 1, because of its small amplitude 1073.

order 1 2 3 | ... 43 4 | ..o 99 100
fi 1 1 1 [...] 1 1 e 1 1
f2 1 0.003 | 0.006 | 0.01 | ... [0.99|1.035|...]5.050 | 5.151
TABLE 1 — Taylor coefficients for the function f; = ﬁ and fy = 1073 (ljr)g.

In (16), the most singular terms have a much smaller amplitude than the
less singular ones when f is very small. Practically, with g = 1078 and a
truncature around order 20, these more singular terms do not show up in
our analysis.

3 Implementation of power series analysis in the
Asymptotic Numerical Method

It has been previously pointed out that power series analysis is twofold
in the framework of the Asymptotic Numerical Method : (i) it provides an
accurate and computationally efficient way to detect and compute bifurcation
points (solution at bifurcation points); (ii) it enables us to construct an
enhanced power series that recovers an optimal step length in the vicinity of
bifurcation points where the classical ANM is otherwise drastically penalised.
So the way we have implemented these key points are now presented.

3.1 Detection of geometric progression in the ANM

Any geometric progression can be characterized by two quantities : its
common ratio and its scale factor, which is here a field vector. So, the pro-
posed ANM algorithm includes at every continuation step an analysis of the
last vector sequence to check if they make up a geometric progression or not.
Let U,_3, Up_2, U,_1, Uy, be the last four field vector sequence in the ANM
power series (2) computed up to an order of troncature n. Then, the detec-
tion of a geometric progression checks for collinearity and proportionality of



this vector sequence. This test reads as follows :

forn—-3<p<n—-1:ap,= U, -U,)/(Uy-Upy) andUpL:Up—apUn

n—2 9 n—1
it Y (0" —an-i)fant) < egpand S TR/ < 2gn

p:n—3 p:n—3
then a geometric progression is detected, so one computes :

3 o001 1
1ts common ratio : S = o

— its scale factor : U,a™
(21)
According to section 2, « is the distance to the closest bifurcation point and
the normalised scale factor (HZ—ZH) is the vector U;- previously defined.
In our calculations setting the two numerical threshold values to g4, ~
1073 and g4y, ~ 1075 gave us reliable and robust bifurcation detection test.

3.2 Enhanced power series to recover optimal step length

Let us now suppose a geometric progression has been just detected at
the highest orders of the perturbation method with the proposed test (21).
Then, the original power series (2) can be splitted in two parts : a geometric
power series and the remaining part from the orignal one, as follows :

U(a):U0+aﬁ1+G2U2+'--+a”_lﬁn71+

22)
8t (G (2] U (
2+ 4+ T+ (5)| Una
where ﬁp = U, —a"? U, for 0 < p < n— 1. Introducing the formal
calculation of the geometrical power series together with a completion at
infinity, and using % = Utf, one finally gets :

a

U(a) = Uy +aly+a?Uy+ - 4+ad" 10U, + 1_E |Unlla™ Utf (23)

a

(03

The power series analysis introduced in section 2 enables us to understand the
underlying issues related to these two parts. The first part of (23) is the power
series that actually describes the perfect branch, whereas the second part,
i.e., the geometric power series accounts for the interaction and amplification
of any imperfection with the other branch that crosses the present one at
the next bifurcation point. Then, the key point to recover an optimal step
length over this continuation step is to only consider the former power series
to accurately represent the current branch. So the enhanced power series
representation reads :

U(a):Uo—l—af]1+a2f]2+-~—|—a”_1f]n,1 (24)

which results from an additive singularity extraction of (2) in the same way
as formerly proposed in [25].

10



3.3 Computation of the solution vector at bifurcation points

Once equipped with the enhanced power series (24), one can accurately
locate the nearest singularity, i.e., simple bifurcation point and compute
both the solution vector and its two tangent vectors at the bifurcation point.
Recalling that it corresponds to the radius of convergence of the power series,
which in the present case is the inverse of the common ratio of the geometric
progression, the solution vector at bifurcation point is therefore computed
by inserting a = « in (24) :

UC:U(a:a):U0+a(A]1+a2(A]2+~--—|—a”_1Un,1 (25)

Furthermore, the tangent vector to the current branch is computed at the
bifurcation point as follows :

_ou
~ Oa
Finally, the tangent vector to the other branch Uy, is easily and cheaply com-

puted as a linear combination of the known vectors Uy, and Utf, meanwhile
satisfying the algebraic bifurcation equation (4-b).

Up, = U, +~Up;
YT R U Uy, = 0

U (a=0a)=U4+2aUs+ -+ (n—1)a" 20U, (26)

(27)

As far as the bifurcation point and the two tangent vectors associated to
the crossing branches are completely determined, branch switching can be
performed at wish in the course of continuation.

4 Application examples

For illustrating the performance of the proposed algorithm, we first con-
sider the buckling problem of an inextensible elastic beam. It is a small size
discrete problem coming from solid mechanics, which presents an elaborate
bifurcation diagram with many interconnected branches of solutions. On the
other hand the proposed algorithm has also been implemented in a high per-
formance framework [21] to deal with large size discrete problems such those
that arise in many fluid mechanics or coupled fluid flow and heat transfer
problems. We have performed several validation tests and present below the
algorithm accuracy and efficiency for an incompressible fluid flow problem
in a symmetric sudden expansion.

4.1 Buckling analysis of an elastica beam

We consider the axial compression of an inextensible elastic beam, often
referred to as the Euler beam or Elastica, for which we adopt clamped-
clamped boundary conditions. Let s € [0, 1] be the nondimensional curvi-
linear coordinate, (z(s),y(s)) the position of the beam centerline, 6(s) the

11



rotation of the cross-section and m(s) the bending moment (all nondimen-
tional). The equilibrium positions of the beam are given by the following
ODE system :

x’ = cos(6)
y' = sin(6)
=i (28)

m' = —472(Psin(0) + T cos(0))

with the boundary conditions z(0) = 0, y(0) = 0, 8(0) = 0, m(0) = 2=xC
(at left) and y(1) = 0, #(1) = 0 (at right). The axial applied force P is
here the control parameter, T' and C are the lateral and torque reactions at
the boundary. This ODE system is transformed into a discrete problem (276
d.o.f) by applying an orthogonal collocation method with cubic polynomial
interpolation [14]. The bifurcation diagram is made of a trivial compressive
solution (x = s, y = 0, 8 = 0, m = 0) from which bifurcated branches
emanate at bifurcation points P = {1; 2.04; 4; ...}. Additional branches of
solutions interconnect these bifurcated branches at "secondary" bifurcation
points.

4.1.1 Detailled analysis of continuation and bifurcation detection

Starting from a known point Uy on the first bifurcated branch, we per-
form 4 steps of ANM continuation with a troncature order of 20 and a
user-required precision er = 1077. Two geometrical series are detected by
the test (21) and the associated bifurcation points are marked with circles on
the bifurcation diagram reported in figure 2. The bifurcation (I) detected at
the first continuation step corresponds to the intersection of the first bukling
branch with the trivial compressive solution. The imperfection amplitude pg
is here very small (po = 2.1423 1071°) because the start point Uy is very
accurate (R(Us) = 1.4615 107! and p1; = —0.0698). Even though, since
the ratio 7 is large (about 17 in that case) the geometrical series end up im-
posing itself at orders higher than 13. The end point of the first step Uy is
computed by considering (24) to recover an optimal step length. The original
series (2) would have deliver a much shorter step length as it is reported in
figure 2. We note in passing that this exemple is similar to the one in [20]
where the author says that a judicious re-ordering of the series terms leads
to suprising improvements.

For the second continuation step, ie, with the series issued from Uy, no
geometrical serie was detected by the algorithm, even though the bifurcation
point (II) is located inside the radius of convergence. The reason in the
present case is that the ratio 7 is not large enough so that the term (%)P
compensates a so tiny po value. In other words the singularity brought by
the bifurcation (II) is actually the nearest one but as its amplitude is small
and the other singularities are not so far the geometrical series does not
succeed to impose itself. Hence, a standard ANM step is performed from

12



ifurcation point (I1)
018 . :

s3

U51 End point of the first step with (25) \
U

s4
nd point of the first step with (21)

Starting point Usc

of © «——————Bjfurcation point (1)

I I I I I I I I I
[ 1 2 3

4 5 6
Applied axial force P

FIGURE 2 — Buckling analysis of an elastica beam. Bifurcation diagram after
4 continuation steps (top); deformed beam shapes at points Ug; (0 < ¢ < 4,
bottom).

Us1 to Use. This could be somehow disappointing because the bifurcation is
not detected, but as Uy is close to the bifurcation the detection will happen
at the next step. Indeed, at the third step of continuation (with the series
computed from Uss) one gets : R(Usx) = 1.678 1077, pg = 9.5174 1074,
pin = —3.8277 1074, 7 = 15.873 is large enough so a geometrical series
correponding to (II) is easily detected.

In summary the scenario described in this example bring to the fore
two important algorithm features : (i) the closer the bifurcation point from
the starting one, the easier it is detected ; (ii) end of step points computed
by standard ANM continuation algorithm are generally close to bifurcation
points [4].

4.1.2 Performance of the proposed algorithm on intricate bifur-
cation diagrams

The bifurcation diagrams presented in figures (2) and (3) have been ob-
tained with the MANLAB interactive package [19], which supports the pro-
posed ANM continuation algorithm for bifurcation detection and branch
switching. Along the 65 ANM continuation steps the proposed criterion (21)
has detected 12 geometrical series, from which one can get accurate bifur-
cation locations and bifurcating tangents with no additional cost. Only 65
jacobian matrix factorizations have been performed to get the bifurcation

13



diagram plotted in figure (3), a performance that could not be achieved nei-
ther with classical predictor-corrector continuation algorithms nor previous
ANM continuation ones.

FIGURE 3 - Bifurcation diagram for the first two buckling branches (left).
The close loop that connects these two branches at four bifurcation points
has been presented separately for clarity of the figure (right).

4.2 Two-dimensional incompressible fluid flow in a symmet-
ric sudden expansion

We consider the computation of steady state incompressible fluid flows in
a two-dimensional channel with a symmetric sudden expansion, see figure 4.
The computational domain has an entrance channel length of 2h (AB =
GH), a symmetric expansion aspect ratio of 2 (DE = 2AH) and a develop-
ing channel that extends on 50h (CD = EF'). The flow enters the computa-
tional domain with a Poiseuille velocity profile (u(—2h,z) = U(1 — 422 /h?)
and w(—2h,z) =0; —h/2 < z < h/2). The boundary condition at the outlet
(DE) is set to homogeneous Neumann condition (stress free), and no slip
boundary condition is imposed at all solid walls. This flow configuration has

F E
. |
3 h h
A B
c D
2h 50h

Figure 4 — Sketch of the two-dimensional symmetric sudden expansion
channel flow.

been undertaken in the literature with both experimental and numerical ap-
proaches and a large amount of critical Reynolds number at which symmetry

14



breaking occurs have been published. Several of them have been gathered in
[17] for comparison purpose, so the Reynolds number is here again defined
as Re = Uh/v (v is the fluid kinematic viscosity).

The present continuation algorithm has been run on this problem with
four successively refined meshes, uniformly spaced in both directions, as in-
dicated in table 2. Indeed, the standard Galerkin finite element formulation
used to discretize the incompressible Navier-Stokes equation [21] can achieve
accurate fluid flow computations provided the local Reynolds number does
not exceed a critical value (Re; < 2Coef,, Re; = /(uAz)? + (wAz)2/v
and Coef, is a coefficient which depends on the approximation degree and
the problem under consideration). Therefore, the finer the mesh, the higher
the computational accuracy up to a stability Reynolds number limit defined
as Remaz = 2Coef,h/\/(Ax)? + (Az)2. Table 2 presents for each mesh
the number of degree of freedom (Ngof), the corresponding spatial resolu-
tion (Az, Az) and finally the theoretical Reynolds number limit (Renqz)
beyond which spurious oscillation could appear without any stabilization
(Coef, = 16). The continuation has been performed from Re = 0 up to
Repqy for the four meshes considered, taking an order of troncature of the
power series up to 30 and numerical parameters 6 = 1077, Egpl = 1073 and
Egp2 = 10~ Furthermore, a Newton-Raphson correction has been performed
subsequently to any ANM predictor step whose residual Lo norm exceeded
ep =1075.

Mesh # M1 M2 M3 M4
Npoy | 106242 | 421378 | 1678338 | 6699010
Az, Az | h/8, h/16 | h/16, h/32 | h/32, h/64 | h/64, h/128

Remaz 458 916 1832 3664

TABLE 2 — Meshes considered in the computations of the 2D fluid flow in a
symmetric sudden expansion.

Meanwhile the symmetry breaking occurs throughout a pitchfork bifur-
cation, if one keeps going on the fundamental symmetric branch beyond the
first bifurcation, one can encounter subsequent steady state bifurcations. We
have reported their values in table 3 for each mesh, together with the number
of continuation step at which they have been computed. Finally, we have also
reported in table 3 the bifurcation values obtained in [17], whenever there
were obtained on a much coarser mesh (Ngor = 5542) than those considered
in the present work. A very satisfactory agreement is obtained for the first
and second bifurcation values, but a larger difference appears for the third
one. The reason of this discrepancy at large Reynolds numbers is likely due
to the coarse mesh used in [17], which should have been operated beyond its
accuracy limit at these relatively large flow magnitudes.

Up to our best knowledge, only the first three bifurcations have ever
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Bif# 1 2 3 4 5 6
M1 | 215.01 (6) | 538.49 (9) - - - -
M2 | 215.47 (6) | 537.57 (9) | 966.06 (11) - - -
M3 | 215.73 (6) | 536.81 (9) | 967.19 (11) | 1447.16 (13) | 1988.71 (16) -
M4 | 216.67 (6) | 536.06 (9) | 967.96 (11) | 1442.13 (13) | 1983.92 (16) | 2420.33 (26)
| [17] [ 21563 | 53740 | 94647 | - \ - \ - \

TABLE 3 — Computed bifurcation points for the 2D fluid flow in a symmetric
sudden expansion for the four meshes considered.

been reported in the literature [17|. However we have computed six steady
state bifurcations on the fundamental branch for a computational domain
that extends on 50h downstream the sudden expansion. In order to charac-
terize them, the streamlines and the right null eigenvector related to each
bifurcation point have been plotted in figures 5-8. One can observe that
as the Reynolds number increases, the two symmetric recirculation zones
stretch further and further in the streamwise direction and the locus of the
maximun w-component eigenvector is accordingly repealed more and more
downstream in the channel. Therefore, based on the present computations it
clearly appears that the number of subsequent bifurcations is closely related
to the channel length. Moreover, at the sixth bifurcation point the most
unstable mode associated to the right null eigenvector spreads beyond the
computation domain outlet (located at L = 50h). Therefore, the presently
computed Reynolds number value at this bifurcation point could not be taken
for granted unless a longer computational domain has been considered.

5 Conclusion

This paper presents both formal analysis and numerical evidence that a
geometric power series proportional to the residual error always emerges in
ANM power series close to simple bifurcation points. The discover of this re-
marquable feature enabled us to introduce in the ANM framework an entirely
new and original algorithm to detect and compute simple bifurcation points.
Indeed, as soon as a geometrical series is detected in the classical ANM power
series, it can be advantageously substracted from it to accurately locate and
compute the neighboring simple bifurcation point and its associated tangent
vectors with no extra cost. Moreover, the resulting enhanced power series re-
covers an optimal step length, which represents a significant computational
efficiency improvement with respect to the classical ANM algorithm that
is otherwise severely penalised in the vicinity of bifurcation points. Branch
switching has now become entirely reliable and efficient so the overall ANM
continuation algorithm has definitely become highly competitive in matrix
factorization counts as it has been experienced throughout a wide range of
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(c) v-component of the right null eigenvector.

FIGURE 5 — Streamlines and right null eigenvector at first bifurcation point.

T 1
-2 0 2 4 6 8 10 12 14 16 18 20 x/h 22

x/h 22

x/h 22

(¢) v-component of the right null eigenvector.

FI1GURE 6 — Streamlines and right null eigenvector at second bifurcation
point.
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(b) u-component of the right null eigenvector.
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(c) v-component of the right null eigenvector.

FIGURE 7 — Streamlines and right null eigenvector at third bifurcation point.

(a) u-v components of the right null eigenvector at forth bifuraction point.
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(b) u-v components of the right null eigenvector at fifth bifuraction point.
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(¢) u-v components of the right null eigenvector at sixth bifuraction point.

FI1GURE 8 — Right null eigenvector at fourth (a), fifth (b) and sixth (c)
bifurcation points.
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application examples.

In conclusion this work provides an additional evidence that high order
perturbation series contain valuable information that it can be worth to
extracted to reveal their underlying mathematical or physical meaning, as
it was claimed long time ago by Van Dyke [25]. Whatever we were already
able to use the radius of convergence or at least the range of utility of the
power series to get an optimal continuation step length [12], we are now able
to detect the nearby presence of a simple bifurcation. Undoubtedly many
relevant information could be extracted from ANM series and we believe it
is worth to keep a sustaining research effort in that direction. The analysis of
bifurcation points with higher multiplicity is the next step to be considered
as a natural prolongation of the present work.

6 Appendix

More details are given in this appendix on the formal derivations intro-
duced in section 2 that lead to the final important expression (16). For sim-
plicity, one assumes that the vector equation (1) is polynomial and quadratic
in U, so it reads :

R(U) = L0+ L(U) + Q(U,U) = 0. (29)

where L0 is a constant vector, L(.) a linear operator and Q(.,*) a bilinear
operator. This assumption is not mandatory but very convenient since it
enables an easy derivation of the Taylor series which are at the heart of the
analysis. Most scientific problems are not polynomial and quadratic at first,
but they can be written under the form (29) provided that additional state
variables and equations are added, see for instance [12].

Branches of solution at a simple bifurcation point : introducing
(5) into (29) and collecting terms with the same power of a, one gets :

Uy =0
’CUUQ + Q(U17 Ul) = 0
RGUs + Q(Ur,Uz) + Q(U2,U1) =0 (30)

R,CUUP + Zf;% (Ur, Upfr) =0

with the notation U; = Uy, . According to the definition of a, we have
UpT Ug, = 0 for p > 2. The following Lyapunov-Schmidt decomposition is
done for each unknown vector U, with p > 2,

Up = Ut + ﬁpUtﬁ + Vp (31)

EN(R%) eN T(R’CU):R(R?UT)
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where Utf € ./\/'(RfU) and is orthogonal to Uy, . Finally, oy, = 0, V), is the

R,CU (4 V. _Z]ﬁ;i Q(UT’7UP—7’)
unique solution of UtT1 0 [ P } = 0 and
UL o) U 0
By = — T {QUey V2)+Q(Va,Usy )}
YT{Q(Uty U)+Q(Us; Uty )}
By = _¥H{QU ,V3)+Q(V2,V2)+Q(Vs, Uty )}

¢T{Q(Ut1 7Utji)+Q(UtJi 7Ut1 )}

(32)

B, = _ $T{QWUy Vo) + 875 QU Upt1-r)+Q(Vo, Uty )}
P wT{Q(UtlezJi)+Q(UtJivUt1}

Perturbed bifurcation analysis at a simple bifurcation point :
inserting (14) and (15) into (7) and collecting terms with the same power in
a1 and ag, one gets :

order a?
order ajas
order a3
order a3}
order aZasy

iJ
order afjay

R4, Vg
RV
Ry Vi

R4, Vg
Ry Vo

C V..
Vs

+p20 P
+p1 P
+po2 P

+uzoP
+po1 P

+hi P

+Q(Ut17 Utl) =0
+Q(Ut1v Ut%) + Q(Ut#v Ut1) =0
+Q(Utjfa UtJ{) =0

+Q(Uty, Vao) + Q(Vag, Uy, ) = 0
+Q(Ut17 ‘/11) + Q(‘/l17 Utl)
+Q(UtJ1_7 VQO) + Q(‘/Z(]v UtJ1_> =0

(33)

+E =0

Vi;j and p;; are the unique solution of the (non singular) linear system

with

H20 =
11 =
Ho2 =

Ry P
Ut o
Uzt o

nl

WK ®

_T;Z)T{Q(Utlv Ut&) + Q(Utjfv Ut1)}
—"{QUy;, Uy))

(35)

3o = —T{Q(Ut,, Vao) + Q(Vao, Uy, ) }
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The V), B, of (31) are connected to the Vi;, u;; of (14) and (15) by

H11

Vo = Vo Bo = -2
_ _ pao+B2p21+B2 1oz
V3 = V3o + B2V11 Py =———p
Vi = Vio + B2Var + BsVa1 + B%VO2 By = _ pso+Bap21+B2p31 428283 02483 12

(36)

Parametrisation of the 2D manifold with a; and u. Hereafer, (15)

is reverted to express ag as function of a; and pu. We follow the procedure

proposed by Damil and Potier-Ferry in [13], ie, we rescale a1, ag and u as
follows :

a1 =n4 az = n*As po=n (37)

and assume the following expansion of As in Ay and 7 :

As(A1,n) = fo(A1) +n fi(Ar) +0° f2(A1) + 17 f3(Ar) + ... (38)

where fo, f1, fo, ... are function of A; only, to be determined. Inserting (38)
into (15), collecting term with the same power of 7 and solving the equations
yields :

fo(Ar) = B2 43 + Ap
fi(A1) = B3 A3 + Co,lﬁ + C—3,2m (39)

Ay) = BaAf + 118 f e gt + e 535
fo(A1) = BaA] + c1a s} 2277 A7 5,373 AT

where the ¢; ; are

_ 21+282402
.1 = —£ H11 8
— 02
C-32 = L1
ey = _ #31+co,1p21+(B2+¢0,183) Ho2+2B2 112 (40)

’ H11

Coming back to the original parameters a1, as, i, expression for as is :

ax(ar,p) = Paaf+Psal+Bral+...
+-L é+60,1+c1,1a1+...>

pi
2
il 1 1
+u%1 €-3,2 43 +t 22 Py +.. ) (41)
3
1
+L-(c53 =5 ...
uty 5,3 af

Reporting (41) into (14) and accounting for (36) and (31), one finally ends
up with the expression (16).
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