
HAL Id: hal-00707461
https://hal.science/hal-00707461v1

Submitted on 12 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Defects in Product Line Models and how to Identify
them

Camille Salinesi, Raul Mazo

To cite this version:
Camille Salinesi, Raul Mazo. Defects in Product Line Models and how to Identify them. Abdelrahman
Elfaki. Software Product Line - Advanced Topic, InTech editions, pp.50, 2012, 978-953-51-0436-0.
�hal-00707461�

https://hal.science/hal-00707461v1
https://hal.archives-ouvertes.fr

Chapter Number 1

Defects in Product Line Models 2

and How to Identify Them 3

Camille Salinesi and Raúl Mazo 4

CRI, Panthéon Sorbonne University 5

France 6

1. Introduction 7

The history of software and system development shows that abstraction plays a major role 8

in making complexity manageable (Bosch 2000). Thus, abstracting the common and variable 9

artefacts of an undefined collection of products and organising them into a model may be a 10

good option to manage the complexity of a product line. Product line models improve 11

decision-making processes. In addition, the representation of PLMs in different views 12

improves communication of the actors participating in the product line management 13

(Finkelstein et al. 1992). Nuseibeh et al. (1994) describe views as partial representations of a 14

system and its domain. 15

Several approaches have been found in literature to represent commonality and variability 16

of a product line. Most of the approaches use features (Kang et al. 1990) as the central 17

concept of product line models. However, other modelling approaches exist like Orthogonal 18

Variability Models (OVM, cf. Pohl et al. 2005), Dopler variability models (Dhungana et al. 19

2010), Textual Variability Language (TVL, cf. Boucher et al. 2010 and Classen et al. 2010), 20

and constraint-based product line language (Djebbi et al. 2007, Mazo et al. 2011e; Salinesi et 21

al. 2010b; 2011). 22

Quality assurance of PLMs has recently been a prominent topic for researchers and 23

practitioners in the context of product lines. Identification and correction of PLMs defects, is 24

vital for efficient management and exploitation of the product line. Defects that are not 25

identified or not corrected will inevitably spread to the products created from the product 26

line, which can drastically diminish the benefits of the product line approach (Von der 27

Maßen and Lichter 2004, Benavides 2007). Besides, product line modeling is an error-prone 28

activity. Indeed, a product line specification represents not one, but an undefined collection 29

of products that may even fulfil contradictory requirements (Lauenroth et al. 2010). The 30

aforementioned problems enforce the urgent need of early identification and correction of 31

defects in the context of product lines. 32

Product line models quality has been an intensive research topic over the last ten years (Von 33

der Maßen & Lichter 2004; Zhang et al. 2004; Batory 2005; Czarnecki & Pietroszek 2006; 34

Benavides 2007; Janota & Kiniry 2007; Lauenroth & Pohl 2007; Trinidad et al. 2008; Van den 35

Broek & Galvão 2009; Elfaki et al. 2009; Kim et al. 2011; Liu et al. 2011). Usually, to guaranty a 36

certain level of quality of a model, this one must be verified against a collection of criteria 37

Software Product Lines – The Automated Analysis

2

and then, these defects must be corrected. Verifying PLMs entails finding undesirable 1

properties, such as redundancies, anomalies or inconsistencies (Von der Maßen et al. 2004). 2

It is widely accepted that manual verification is already tedious and error-prone (Benavides 3

et al. 2005). This is even worst when several (often millions) of products are represented 4

altogether in a single specification. Several approaches to automate verification of PLMs 5

have been proposed in order to overcome this limitation. However, despite the relative 6

success of these approaches, there is still a number of pending issues that have motivated 7

the proposal developed in this chapter: 8

1. Quality assurance techniques from the development of single systems cannot be 9

directly applied to product line specifications because these specifications contain 10

variability. As shows the example presented by Lauenroth et al. (2010), a product line 11

may contain requirements R and ¬R at the same time. When a traditional technique is 12

used for verifying this specification, even though those requirements are not included 13

for the same product, a contradiction would be identified since the requirements R and 14

¬R cannot be fulfilled together. Therefore, it is necessary to take into account the 15

variability of the product line to check whether contradictory requirements can really 16

be part of the same product. 17

2. The current state of the art on verification is mainly focused on feature models (Kang et 18

al. 1990). Only properties that can be evaluated over feature models represented as 19

boolean expressions are considered in these works. This brushes aside the non-boolean 20

elements of the more sophisticated product line specification formalisms (e.g., integer 21

cardinalities, attributes and complex constraints; cf. Mazo et al. 2011d, Salinesi et al. 22

2010b, 2011). Current approaches restrict the verification operations to those that can be 23

solved by boolean solvers. The verification is guided by the pre-selected technology and 24

not by the verification requirements themselves. As a result, verification techniques are 25

designed for a limited number of formalisms. These verification techniques are 26

inadequate for many of the existing formalisms, included some used in an industrial 27

context (Djebbi et al. 2007; Dhungana et al. 2010). 28

3. Inadequate support for multi-model specification. The size and complexity of industrial 29

product line models motivates the development of this one by heterogeneous teams 30

(Dhungana et al. 2006; Segura 2008). Nevertheless, existing tools provide only little 31

support for integrating the models developed by different teams and the subsequent 32

verification of the global model and configurations of products from that model. For 33

instance, a global model that integrates two models must itself have no defects resulting 34

from the integration. 35

Also in the context of PLs specified with several models, we have identified in our literature 36

review a weak support for verifying the global view of the product line. A product line 37

model has to change over time and in multi-model PLs a change on one of the models can 38

make the global view inconsistent. To the best of our knowledge, existing tools do not 39

provide automated mechanisms for detecting errors on the global PLM as a result of the 40

changes in the different models of the PLM. 41

This chapter addresses the fourth problem situations aforementioned. To tackle these 42

situations, we present in Section 2 the most relevant concepts used in this chapter, a 43

literature review of related works and the running example to be used in the rest of the 44

chapter. Section 3 presents our typology of verification criteria, which is developed in 45

Defects in Product Line Models and How to Identify Them

3

Section 4 for the case of single-view product line models, and Section 5 for the case of multi-1

view product line models. Section 6 presents the evaluation of the approach presented in 2

this chapter. 3

2. Background and running example 4

This section presents a literature review on verification of product line models and the 5

corresponding analysis regarding the gaps and challenges identified in each approach. This 6

section also presents a UNIX product line and the corresponding model of the whole or a 7

part of the PL in three different PL modeling languages. The UNIX PL will be used in the 8

rest of this chapter as our running example. 9

2.1 Verification of product line models 10

Verifying PLMs entails several aspects. On the one hand, a product line model, 11

independently of the language used to express it, must respect certain properties associated 12

with the domain of product lines. On the other hand, certain properties are associated with 13

the concepts used in the language in which it is expressed. Therefore, some properties of 14

PLMs are independent of the language while other ones are particular to each language. 15

Thus, product line models can be verified from two different points of view. This chapter 16

proposes an approach for PLM verification (Von der Maßen & Lichter 2004; Lauenroth & 17

Pohl 2007; Mendonça et al. 2009) in with the engineer selects the verification operations that 18

he/she want to use according to the language in which the model(s) to be verified are 19

specified. In this approach, verification consists in “finding undesirable properties, such as 20

redundant or contradictory information” (Trinidad et al. 2008). For instance, PLMs should 21

not be void (i.e., they should allow to configure more than one product) and for the 22

languages with the concept of optionality, elements modeled as optional must be really 23

optional (i.e., they should not appear in all the products configured from the PLM). 24

2.2 Related work 25

Von der Maßen & Lichter (2004) present an approach to identify redundancies, anomalies 26

and inconsistencies. According to the authors, a feature model contains redundancy, “if at 27

least one semantic information is modeled in a multiple way”; anomalies, “if potential 28

configurations are being lost, though these configurations should be possible”; and 29

inconsistencies, “if the model includes contradictory information”. Several cases of 30

redundancies, anomalies and inconsistencies on FMs are identified. In order to validate the 31

approach, the authors use RequiLine, a tool that allows detecting inconsistencies on the 32

domain and on the product configuration level (Von der Maßen & Lichter 2003). The 33

approach was evaluated in “a small local software company” and “in a global player of the 34

automotive industry”. However no information about the automating detection of 35

redundancies and anomalies, no details about the sizes of the models or about the 36

technology used to automate the approach or about the results obtained were provided. 37

Whereas Batory (2005) used grammar and propositional formulas to represent basic FMs 38

and enable truth maintenance systems and SAT solvers to identify contradictory (or 39

inconsistency) predicates to verify that a given combination of features effectively defines a 40

product. In the same line as Batory, Hemakumar (2008) proposed a dynamic solution to find 41

Software Product Lines – The Automated Analysis

4

contradictions, “where errors can be detected during usage and silently reported to model 1

designers”. The author proposes an incremental consistency algorithm that incrementally 2

verifies some contradiction properties. The approach consists in verify that a model is 3

contradiction-free if it is k-contradiction free for all k where 0<k≤n (A feature model is k-4

contradiction free if every selection of k features does not expose a contradiction, for 5

example: “unconditionally” dead features are exposed when k=1). When k=n, where n is the 6

number of user selectable features, the model has been proven to be contradiction free. 7

However, the incremental consistency algorithm has important practical limits because it is 8

limited to “verify contradiction freedom of models with about 20 or fewer features”. 9

In (Benavides et al. 2005a; 2005b; 2006; 2007; Trinidad et al. 2008), authors transform FODA 10

models with and without attributes into Boolean expressions. These expressions are 11

executed on Constraint Satisfaction Problem (CSP), Satisfiability (SAT) and Binary Decision 12

Diagrams (BDD) solvers in order to execute analysis and verification operations over feature 13

models. In (Benavides et al. 2006) the relationships of the FM are represented as ifThenElse 14

constrains on CPS. Despite the originality of this proposal, the constraint representing a 15

feature cardinality (m,n) between the father feature A and its child B (according to their 16

notation: ifThenElse(A=0;B=0;B in {n,m})) does not consider that the feature A can itself have 17

a feature cardinality, and in this case the semantic of feature cardinalities is not well 18

represented in the constraint. Authors performed a comparative test between two off–the–19

shelf CSP Java solvers (JaCoP and Choco). The experiment was executed on five FMs with 20

up to 52 features and in both solvers. The time to get one solution seemed to be linear and 21

the time to get all solutions seemed to be exponential. 22

Janota & Kiniry (2007) have formalized in higher-order logic (HOL) a “feature model meta-23

model” that integrates properties of several feature modeling approaches such as attributes 24

and cardinalities. Once the model represented in HOL, author have formulated HOL 25

expressions for root selectivity, existence of a path of selected features from the root to a 26

feature that has been selected, and cardinality satisfaction of a selected feature that each 27

feature model must respect. The approach has been implemented in Mobius program 28

verification environment, an Eclipse-based platform for designing, testing, performing various 29

kinds of verification of Java programs and bytecode. Nevertheless, the paper does not 30

provide evidence about the evaluation of the approach, its scalability and its applicability to 31

real cases. 32

Trinidad et al. (2008) mapped FMs into CSP in order to find and diagnose three types of 33

errors: (i) “dead features” are non-selectable features (features that do not appear in any 34

product); (ii) “false optional features”, which are features that in spite of being modeled as 35

optional, are always chosen whenever their parents are chosen; and (iii) “void models”;a 36

feature model is said to be void if no product can be defined from it. The goal of Trinidad et 37

al. is to detect the above three errors and provide explanations for the cause of these errors. 38

In order to achieve the first goal, authors transform the FM into a CSP expression and then, 39

to query the Choco solver (by means of the FaMa tool) to find the errors. The approach has 40

been evaluated on five FMs up to 86 features. Unfortunately, no details about the scalability 41

and the efficiency of the approach and tool are provided. 42

Van der Storm (2007) transformed feature diagrams into BDDs in order to check 43

configurations, obtain valid configurations and check consistency of the feature diagram. 44

Defects in Product Line Models and How to Identify Them

5

Checking the consistency of the feature diagram consists in checking the satisfiability for the 1

BDD logical formulas. Unfortunately, neither details about implementation nor performance 2

nor scalability of the approach are provided in the paper. 3

Yan et al. (2009) proposed an approach that consists in eliminating verification-irrelevant 4

features and constraints from FMs in order to reduce the problem size of verification, and 5

alleviate the state-space explosion problem. The authors carried out an experiment in which 6

they generated FMs with up to 1900 features. The authors verified the consistency of models 7

and showed that verification is faster when the redundant features had been eliminated. The 8

problem with this approach is that it only considers as redundant, the constraints that 9

contain redundant features, whereas it does not consider typical redundancies such as 10

domain overlapping or cyclic relationships (Salinesi et al. 2010; Mazo et al. 2011). Besides, (i) 11

the validation of the approach was done with in-house and random build features models, 12

which does not guaranty that the approach works with real world feature models; and (ii) 13

the details about the formalisation and implementation of the approach are not revealed. 14

Van den Broek & Galvão (2009) analyze FODA product line models using generalized 15

feature trees. In their approach they translate FMs into feature trees plus additional 16

constraints. Once FMs represented in the functional programming language Miranda, they 17

detect the existence of products (void models), dead features and minimal set of conflicting 18

constraints. In FMs with cross-tree constraints, the function to find the number of products 19

belongs to O(N*2M), where N is the number of features and M is the number of cross-tree 20

constraints. Unfortunatelly, no evaluation of the theoretical calculations of efficiency is 21

reported in the paper. The approach was validated with a feature tree of 13 features and two 22

cross-tree constraints, which is not enough to evaluate the scalability and the usability of the 23

approach on industrial models. 24

Elfaki et al. (2009) propose to use FOL to detect dead features and inconsistencies due to 25

contradictions between include-type and exclude-type relationships in FMs. The innovative 26

point of their work is the suggestion of expressions dealing with both individuals and sets of 27

features. 28

SPLOT (Mendonca et al. 2009b) is a Web-based reasoning and configuration system for 29

feature models supporting group-cardinalities instead of alternative and or-relations. The 30

system maps feature models into propositional logic formulas and uses boolean-based 31

techniques such as BDD and SAT solvers to verify the validity of models (not void) and find 32

dead features. 33

2.3 Running example 34

The example taken in this chapter is that of the UNIX operating system, initially presented 35

in (Mazo et al. 2011d). UNIX was first developed in the 1960s, and has been under constant 36

development ever since. As other operating systems, it is a suite of programs that makes 37

computers work. In particular, UNIX is a stable, multi-user and multi-tasking system for 38

many different types of computing devices such as servers, desktops, laptops, down to 39

embedded calculators, routers, or even mobile phones. There are many different versions of 40

UNIX, although they share common similarities. The most popular varieties of UNIX are 41

Sun Solaris, Berkeley (BSD), GNU/Linux, and MacOS X. 42

Software Product Lines – The Automated Analysis

6

The UNIX operating system is made up of three parts: the kernel, the shell and the 1

programs; and two constituent elements: files and processes. Thus, these three parts consist 2

in a collection of files and processes allowing interaction among the parts. The kernel of 3

UNIX is the hub of the operating system: it allocates time and memory to programs and 4

handles the file-store and communications in response to system calls. The shell acts as an 5

interface between the user and the kernel, interprets the commands (programs) typed in by 6

users and arranges for them to be carried out. As an illustration of the way the shell, the 7

programs and the kernel work together, suppose a user types rm myfile (which has the effect 8

of removing the file myfile). The shell searches the file-store for the file containing the 9

program rm, and then requests the kernel, through system calls, to execute the program rm 10

on myfile. The process rm removes myfile using a specific system-call. When the process rm 11

myfile has finished running, the shell gives the user the possibility to execute further 12

commands. 13

As for any product line, our example emphasizes the common and variable elements of the 14

UNIX family and the constraints among these elements. This example is built from our 15

experience with UNIX operating systems and it does not pretend to be exhaustive, neither 16

on the constituent elements nor on the constraints among these elements. The idea with this 17

PL is, for instance, to look at what utility programs or what kinds of interfaces are available 18

for a particular user. This PL is composed of the following six constraints: 19

Constraint 1. UNIX can be installed or not and the installation can be from a CDROM, a 20

USB device or from the NET. 21

Constraint 2. UNIX provides several hundred UTILITY PROGRAMS for each user. The 22

collection of UTILITY PROGRAMS varies even when the UNIX product is full-23

configured. 24

Constraint 3. The SHELL is a kind of UTILITY PROGRAM. Different USERS may use 25

different SHELLS. Initially, each USER has a default shell, which can be overridden or 26

changed by users. Some common SHELLS are: 27

 Bourne shell (SH) 28

 TC Shell (TCSH) 29

 Bourne Again Shell (BASH) 30

For the sake of simplicity will consider only two users in this running example: 31

ROOT_USER and GUEST_USER. 32

Constraint 4. Some functions accomplished by the UTILITY PROGRAMS are: 33

 EDITING (mandatory and requires USER INTERFACE) 34

 FILE MAINTENANCE (mandatory and requires USER INTERFACE) 35

 PROGRAMMING SUPPORT (optional and requires USER INTERFACE) 36

 ONLINE INFO (optional and requires USER INTERFACE) 37

Constraint 5. The USER INTERFACE can be GRAPHICAL and/or TEXTUAL. 38

Constraint 6. The GRAPHICAL interface is characterized by a WIDTH RESOLUTION 39

and a HEIGHT RESOLUTION that can have the following couples of values [800,600], 40

[1024,768] and [1366,768]. 41

Defects in Product Line Models and How to Identify Them

7

2.3.1 Representation of the UNIX product line as a feature model 1

Feature Models (FMs) were first introduced in 1990 as a part of the Feature-Oriented Domain 2

Analysis (FODA) method (Kang et al. 2002) as a means to represent the commonalities and 3

variabilities of PLs. Since then, feature modeling has become a de facto standard adopted by 4

the software product line community and several extensions have been proposed to 5

improve and enrich their expressiveness. A FM defines the valid combinations of features in 6

a PL, and is depicted as a graph-like structure in which nodes represent features, and edges 7

the relationships between them (Kang et al. 2002). Two of these extensions are cardinalities 8

(Riebisch et al. 2002; Czarnecki et al. 2005) and attributes (Streitferdt et al. 2003; White et al. 9

2009). Although there is no consensus on a notation to define attributes, most proposals 10

agree that an attribute is a variable with a name, a domain and a value. Attributes are 11

integers, enumerations, and boolean values representing important properties of a feature; 12

as for instance the price, the cost, the width, the height or the time spent to build the 13

corresponding feature. In this chapter we use the group cardinalities grouping bundles of 14

features (cf. Cdrom, Usb and Net in Figure 1). We use the semantic of feature models 15

proposed by (Schobbens et al. 2007). 16

The elements of the FM notation used in this chapter are presented and exemplified as 17

follows: 18

 Feature: A feature is a prominent or distinctive user-visible aspect, quality, or 19

characteristic of a software system (Kang et al. 1990). For the sake of simplicity FMs 20

usually comport only the name of the feature; for instance Editing in Figure 1. Every 21

FM must have one root, which is called root feature and identifies the product line; for 22

example UNIX in Figure 1. 23

 Attribute: Although there is no consensus on a notation to define attributes, most 24

proposals agree that an attribute is a variable with a name (Name), a domain (Domain), 25

and a value (consistent with the domain) at a given configuration time. From a technical 26

point of view an attribute must to be differentiated from the other ones by an identifier 27

(IdAttribute). For instance in Figure 1, WidthResolution and HeightResolution are two 28

attributes with a domain determined by the constraint at the bottom of the model. 29

 Mandatory: Given two features F1 and F2, F1 father of F2, a mandatory relationship 30

between F1 and F2 means that if the F1 is selected, then F2 must be selected too and vice 31

versa. For instance in Figure 1, features UtilityProgram and Editing are related by a 32

mandatory relationship. 33

 Optional: Given two features F1 and F2, F1 father of F2, an optional relationship 34

between F1 and F2 means that if F1 is selected then F2 can be selected or not. However, 35

if F2 is selected, then F1 must also be selected. For instance in Figure 1, features UNIX 36

and UtilityProgram are related by an optional relationship. 37

 Requires: Given two features F1 and F2, F1 requires F2 means that if F1 is selected in 38

product, then F2 has to be selected too. Additionally, it means that F2 can be selected 39

even when F1 is not. For instance, Editing requires UserInterface (cf. Figure 1). 40

 Exclusion: Given two features F1 and F2, F1 excludes F2 means that if F1 is selected then 41

F2 cannot to be selected in the same product. This relationship is bi-directional: if F2 is 42

selected, then F1 cannot to be selected in the same product. 43

 Group cardinality: A group cardinality is an interval denoted <n..m>, with n as lower 44

bound and m as upper bound limiting the number of child features that can be part of a 45

Software Product Lines – The Automated Analysis

8

product when its parent feature is selected. If one of the child features is selected, then 1

the father feature must be selected too. For instance in Figure 1, Cdrom, Usb and Net are 2

related in a <1..1> group cardinality. 3

Cdrom

UserInterface
Editing

UNIX

Shell

SH

Usb Net UtilityProgram

<1..1>

BASH
TCSH

File

Maintenance
Programming

Support

OnlineInfo

<1..3>

<1..2>

Graphical

Graphical→ relation([WidthResolution, HeightResolution], {[800, 600], [1024,768], [1366,768]})

WidthResolution

HeightResolution

 4

Fig. 1. User model of the UNIX operating system family of our running example 5

Figure 1 corresponds to the feature representation of the user model of our running 6

example. In this model, a user has the possibility to install a UNIX system using one of the 7

following options: a CD ROM, an USB devise or a network. In addition, users have the 8

possibility to install or not utility programs for file maintenance, edition, online access, and 9

user interface. The user interface may be graphical or command-line (Shell) based; there are 10

three options of command-line interface: SH, TCSH and BASH. The utility programs for 11

user interface, online information and programming support are optional features. 12

2.3.2 Representation of the UNIX product line as a dopler variability model 13

The Decision-oriented (Dopler) variability modeling language focuses on product derivation 14

and aims at supporting users configuring products. In Dopler variability models (Dhungana 15

et al. 2010a; 2010b), the product line’s problem space is defined using decision models whereas 16

the solution space is specified using asset models. An example of Dopler model is presented 17

in Figure 2. This figure depicts the installation of a UNIX operating system (decision model) 18

and the associated packages (asset model) that can be selected if the UNIX system is 19

installed with a graphical interface. The decision model is composed of four decisions. The 20

first one proposes one of three ways to install a UNIX operating system (with a CD ROM, 21

with a USB or with the Net). The solution of this decision implies the solution of a second 22

decision in which the user must select the utility programs to be installed in the particular 23

UNIX system; in that regard, five utility programs are proposed: one tool for editing, one for 24

file maintenance, one for programming, one for online information access and one shell. If 25

the choice contains the utility program for online information, the user must decide what 26

kind of graphical resolution will be configured and several choices are proposed: 800x600, 27

Defects in Product Line Models and How to Identify Them

9

1024x768, 1366x768. Depending of each selection, the values of the variables corresponding 1

to the width and height resolution will be assigned automatically by means of several 2

decision effects; for instance in Figure 2: if(GraphicalResolution==800x600) then Width=800. To 3

finish, the assignation of the width and height resolution must respect a certain number of 4

validity conditions like for instance: Width ≥ 800 and Width ≤ 1366. The asset model is 5

composed of seven graphical user interfaces and libraries that can be used in a UNIX 6

graphical interface. The Tab Window Manager asset is available for all UNIX implementations 7

with a graphical interface and requires the asset Motif; the others assets are optional. The 8

IRIS 4d window manager is based on Mwm and Motif and therefore requires all of them in 9

order to work in the same way as the KDE asset requires the Qt widget toolkit to work. 10

 11

Fig. 2. Example of Dopler Model: Installation of a UNIX System 12

A decision model consists of a set of decisions (e.g., Which utility programs? with two 13

attributes: name and expected values) and dependencies among them (i.e., the Visibility 14

condition isTaken(Means of installation) forcing the answer of the decision Utility program if 15

the decision Means of installation is taken). Assets allow defining an abstract view of the 16

solution space to the degree of details needed for subsequent product derivation. In a 17

domain-specific metamodel attributes and dependencies can be defined for the different 18

types of assets. Decisions and assets are linked with inclusion conditions defining 19

traceability from the solution space to the problem space (e.g., the asset Tab Window Manager 20

must be included in the solution space if the option OnlineInfo of the decision Utility program 21

is selected in a particular configuration). In our integration approach, these inclusion 22

conditions are constraints that will be added to the collection of constraints representing the 23

decision and asset model. Once these constraints are added, both viewpoints of the PL are 24

integrated, and the model is ready to be verified against the typology of verification criteria 25

presented in this chapter. 26

Software Product Lines – The Automated Analysis

10

2.3.3 Representation of the UNIX product line as a constraint program 1

Constraint Programming (CP) emerged in the 1990’s as a successful paradigm to tackle 2

complex combinatorial problems in a declarative manner (Van Hentenryck 1989). CP 3

extends programming languages with the ability to deal with logical variables of different 4

domains (e.g. integers, reals or booleans) and specific declarative relations between these 5

variables called constraints. These constraints are solved by specialized algorithms, adapted 6

to their specific domains and therefore much more efficient than generic logic-based 7

engines. A constraint is a logical relationship among several variables, each one taking a 8

value in a given domain of possible values. A constraint thus restricts the possible values 9

that variables can take. 10

In modern Constraint Programming languages (Diaz & Codognet 2001; Schulte & Stuckey 11

2008), many different types of constraints exist and are used to represent real-life problems: 12

arithmetic constraints such as X + Y < Z, symbolic constraints like atmost(N,[X1,X2,X3],V) 13

which means that at most N variables among [X1,X2,X3] can take the value V, global 14

constraints like alldifferent(X1,X2,…,Xn)meaning that all variables should have different 15

values, and reified constraints that allow the user to reason about the truth-value of a 16

constraint. Solving constraints consists in first reducing the variable domains by 17

propagation techniques that will eliminate inconsistent value within domains and then 18

finding values for each constrained variable in a labeling phase, that is, iteratively 19

grounding variables (fixing a value for a variable) and propagating its effect onto other 20

variable domains (by applying again the same propagation-based techniques). The labeling 21

phase can be improved by using heuristics concerning the order in which variables are 22

considered as well as the order in which values are tried in the variable domains. Consult 23

(Schulte & Stuckey 2008) for more details. Mazo et al. (2011e) present a constraint system to 24

represent product line models by means of abstract constraints where the domain is an 25

argument of the system. 26

Our running example can also be represented as a constraint program according to the 27

method proposed by Salinesi et al. (2010; 2011) and Mazo et al. (2011d). The resulting model 28

is presented in the following table, where the first column corresponds to each constraint of 29

our example and the second column its representation as a constraint program. 30

 31
Constraint CP Representation

C. 1 UNIX ≤ Cdrom + Usb + Net ≤ UNIX

C. 2 UtilityProgram ≤ UNIX

C. 3 Shell = UtilityProgram ˄

Shell ((1 * ROOT_USER ≤ ROOT_USERSH + ROOT_USERTCSH +
ROOT_USERBASH ≤ 3 * ROOT_USER) ˄ (1 * GUEST_USER ≤
GUEST_USERSH + GUEST_USERTCSH + GUEST_USERBASH ≤ 3 *
GUEST_USER))

C. 4 Editing = UtilityProgram ˄

Editing UserInterface ˄
FileMaintenance = UtilityProgram ˄

FileMaintenance UserInterface ˄
ProgrammingSupport ≤ UtilityProgram ˄

ProgrammingSupport UserInterface ˄

Defects in Product Line Models and How to Identify Them

11

Constraint CP Representation

OnlineInfo ≤ UtilityProgram ˄

OnlineInfo UserInterface ˄
UserInterface ≤ UtilityProgram

C. 5 1 * UserInterface ≤ Graphical + Textual ≤ 2 * UserInterface

C. 6 Graphical = 1 (WidthResolution = W1 ˄ HeightResolution = H1) ˄

Graphical = 0 (WidthResolution = 0 ˄ HeightResolution = 0) ˄
relation([W1, H1], [[800, 600], [1024, 768], [1366, 768]])

Table 1. UNIX PL represented as a constraint program 1

3. Typology of verification criteria 2

Verifying PLMs entails several aspects. On the one hand, a product line model, 3

independently of the language used to express it, must respect certain properties associated 4

with the domain of product lines. On the other hand, certain properties are associated with 5

the fact that each PLM respects the syntactic rules of the language in which it is expressed. 6

Therefore, some properties of PLMs are independent of the language while other ones are 7

particular to each language. In light of this observation, this chapter proposes a typology of 8

PLM verification criteria adapted from the initial version presented in (Salinesi et al. 2010a). 9

The typology presented in Figure 1 is structure in two levels; the top level represents the 10

three categories of verification criteria and the bottom level represents the corresponding 11

operations of the two criteria with more than one operation. This figure indicates that not all 12

PLM verification criteria are equivalent: some are a result of the specification of the PL with 13

a metamodel, whereas others can be used to verify PL specifications independent of the 14

formalism used when they were specified. Besides, some criteria help verifying the ability of 15

PLM to generate all the desired products and only them, whereas others are interested in the 16

quality of PLMs, independently of their semantics (i.e., the collection of all possible products 17

that can be generated from it). This is for example the case with the respect of certain rules 18

providing formality (i.e., absence of ambiguity) at the PLM. 19

 20

Fig. 3. Typology of verification criteria on PLMs 21

The outcomes of the typology are multiple: 22

2. Error-free criteria

Verification criteria

1. Expressiveness
criteria

3. Redundancy-free criteria

Non-void Non-false

Non-attainable
domains

Dead reusable
elements

False optional

reusable elements

Software Product Lines – The Automated Analysis

12

a. the typology classify the criteria semantic, allowing the identification of similarities and 1

differences among the criteria; 2

b. the typology makes easier to identify some defects for which no verification criterion is 3

available in the literature. Redundancy of relationships among reusable elements is an 4

example of defect for which no verification criterion has been defined in the literature 5

(at least to our knowledge). 6

c. the classification behind the typology makes it easier the proposition of a standard and 7

reusable approach to verify the domain-specific criteria of PLMs; and 8

d. the typology can be used to select the criteria that one wants to use to verify a PLM 9

according to the impact that these criteria have or the expected level of quality of a 10

particular PLM. 11

The following sections use the typology of verification criteria presented in Figure 3 to 12

develop the verification approach proposed in this chapter. 13

4. Single-model verification 14

In order to verify models against the verification criteria identified and calcified in the 15

former section, it is necessary to represent PLMs in a way that is (a) expressiveness-enough 16

to represent the semantics (i.e. the collection of products that can be configured from the 17

PLM) of PLMs, (b) consistent with the formalization of the criteria, and (c) easy to parse 18

with analysis tools. Experience shows that the semantic of every PLM can be represented as 19

a collection of variables over different domains and constrains among these variables. While 20

the variables specify what can vary from a configuration to another one, constraints express 21

under the form of restrictions what combinations of values are allowed in the products. 22

This section will show how to represent the semantic of PLMs with a constraint based 23

approach, and to verify each and every criterion shown in the typology of the former section 24

on a PLM. The approach will be applied to our feature model example to show how to 25

navigate between the generic specifications of the criteria. The genericity of the approach 26

will be shown by providing examples with other formalisms (cf. Section 5). 27

Verifying PLMs is about looking for undesirable properties such as redundant or 28

contradictory information. This chapter proposes three domain-specific verification criteria: 29

expressiveness, error-free and redundancy-free. Each domain-specific verification criterion 30

is defined, formalized and exemplified with our running example (cf. Figure 1 and Table 1) 31

as follows. 32

2.1. Expressiveness: every PLM must allow configuring more than one product, i.e., the 33

model must be not void and the model must be expressive enough to allow configure 34

more than one product (Benavides et al. 2005). In case the PLM allows configuring only 35

one product, the PLM, even if it is not considered as a void model, is not expressive 36

enough to be a PLM. Indeed, the purpose of PLMs is to represent at least two products 37

–or there is not reuse. Two verification operations can be used to implement this 38

criterion: 39

a. Non-void PLMs. This operation takes a PLM as input and returns “Void PLM” if the 40

PLM does not define any products. Two alternative techniques have been proposed so 41

far to implement this operation: calculate the number of products (Van den Broek & 42

Defects in Product Line Models and How to Identify Them

13

Galvão 2009) or ask for a product configuration that meets the constraints of a FM 1

(Benavides et al. 2005; Trinidad et al. 2008). Our proposal follows along the lines of the 2

latter alternative and is formalized in the following algorithm. It consists in determining 3

if there is at least one product that can be generated by means of a query to an off-the-4

shelf solver. If the PLM is not void, the solver will return one valid product or false 5

otherwise. 6

Non-void _PLM(PLM M, Solver S) { 7

 S.charge(M); 8

 Answer = S.getOneSolution(); 9

 If (Answer ≠ “false”) { 10

 Write (Answer); 11

 } 12

 Else { 13

 Write (“Void PLM”); 14

 } 15

} 16

The execution of this algorithm over the running example gives as result that our UNIX 17

PL is non-void. 18

b. Non-false PLMs. This operation takes a PLM as input and returns “False PLM” if at 19

most one valid product can be configured with it. Although this operation could also 20

help detect when PLMs are void (our precedent operation), the converse is not true. The 21

two operations have then a separate implementation. Our approach consists in asking 22

the solver to generate two products in order to decide if the PLM is false. The algorithm 23

proposed to automate this operation is as follows: 24

Non-false_PLM(PLM M, Solver S) { 25

 S.charge(M); 26

 Answer1 = S.getOneSolution(); 27

 If (Answer1 ≠ “false”) { 28

 Answer2 = S.getNextSolution(); 29

 If (Answer2 ≠ “false”) { 30

 Write (Answer1, Answer2); 31

 } 32

 Else { 33

 Write (“False PLM”); 34

 } 35

 } 36

 Else { 37

 Write (“False PLM”); 38

 } 39

} 40

The execution of this algorithm over the running example gives as result that our UNIX 41

PL is a non-false PLM. 42

2.2. Error-free. The Dictionary of Computing defines an error as “A discrepancy between 43

a computed, observed, or measured value or condition, and the true, specified, or 44

theoretically correct value or condition” (Howe 2010). In PLMs, an error represents a 45

Software Product Lines – The Automated Analysis

14

discrepancy between what the engineer want to represent and the result obtained 1

from the model. For instance, this is the case when the engineer includes a new 2

reusable element (in a given domain) in a PLM, but this element never appears in a 3

product. The error-free criterion can be verified by means of three operations: the first 4

one allows identifying the non-attainable domain values of PLM’s reusable elements; 5

the second one allows identifying the dead elements, i.e. elements of the PL that are 6

never used in a product; the third one allows identifying the reusable elements 7

modeled as optional but that appear in all the products of the PL. These operations 8

are presented as follows: 9

c. Non-attainable domains: This operation takes a PLM and a collection of reusable 10

elements as input (all of them by default) and returns the reusable elements that cannot 11

attain one of the values of their domain. Reusable elements can have domains 12

represented as particular values (e.g., 800), intervals of values (e.g., [0..5]), or collections 13

of values (e.g., {0, 800, 1024, 1280}). A non-attainable value of a domain is the value of 14

an element that never appears in any product of the product line. For example, if a 15

reusable element R has the domain [0..1], value 1 is non-attainable if R can never be 16

integrated in a product line it never take the value of 1. Non-attainable values are 17

clearly undesired since they give the user a wrong idea about domain of reusable 18

elements. The approach presented in this chapter can assess the attainability of any 19

reusable elements for all (or parts of) their domain values. This operation was also 20

implemented by Trinidad et al. (2008), but only for boolean domains on FMs. Our 21

proposal goes a step further by offering an algorithm for any domain as e.g. needed 22

when using attributes or features whit individual cardinality. 23

Our algorithm to automate this operation evaluates the domain of each variables of the 24

PLM. For each vale of the domain, the algorithm requests the solver at hand for a 25

solution. If the solver gives a solution for all the values of the variable’s domain, the 26

variable is erased from the list of reusable elements with non-attainable domains. 27

Otherwise, the variable, representing a reusable element, is affected with the non-28

attainable value(s) and kept in the list of reusable elements with non-attainable 29

domains. In each product obtained from the solver, all the variables of the PLM are 30

affected with a particular value of the corresponding domain. Thus, this algorithm takes 31

advantage of that fact and records the answers given by the solver in order to avoid 32

achieving useless requests testing the attainability of domain values that have already 33

been obtained in precedent tests. The corresponding algorithm is as follows: 34

NonAttainableDomains(PLM M, Solver S) { 35

 S.charge(M); 36

 For (each variable V ∈ M) { 37

 For(each Di ∈ domain of V AND not in {PrecedentProducts}){ 38

 Product = S.getOneSolution(“V = Di”); 39

 If (Product = “false”) { 40

 Write (“The domain ” + Di + “ of ” + V + “ is non-41

attainable”); 42

 } 43

 Else { 44

 PrecedentProducts += Product; 45

 } 46

Defects in Product Line Models and How to Identify Them

15

 } 1

 } 2

} 3

For instance in our running example, if when asking for a product with 4

WidthResolution=800 we get a product 5

P1 = [UNIX=1, Cdrom=1, Usb=0, Net=0, UtilityProgram=1, FileMaintenance=1, Editing=1, 6

UserInterface=1, Graphical=1, WidthResolution=800, HeightResolution=600, Shell=1, SH=1, 7

TCSH=1, BASH=0, OnlineInfor=0, ProgrammingSupport=0]. 8

This means both that WidthResolution can attain the value of 800, and that the rest of 9

variables can attain the values assigned by the solver. Thus, for instance, it is not 10

necessary to ask if the variable UNIX can attain the value of 1 or if HeightResolution can 11

attain the value of 600. 12

d. Dead-free reusable elements: A reusable element is dead if it cannot appear in any 13

product of the product line. This operation takes as input a PLM and a collection of 14

reusable elements, and it returns the set of dead reusable elements, or false if there is 15

none in the input list. Reusable elements can be dead because: (i) they are excluded by 16

an element that appears in all products (also known as full-mandatory or core reusable 17

elements, c.f. Von der Maßen & Lichter 2004; Benavides et al. 2005; Trinidad et al. 2008; 18

Van den Broek & Galvão 2009); and (ii) they are wrongly constrained (e.g., an attribute 19

of the feature is > 5 and < 3 at the same time, or a group cardinality is wrong defined). 20

Elfaki et al. (2009) detect dead features by searching only for predefined cases, i.e. 21

defined dead features in the domain-engineering process. Trinidad et al. (2006, 2008) 22

detect dead features by finding all products and then searching for unused features. 23

Van den Broek and Galvão (2009) detect dead features by transforming the FM into a 24

generalized feature tree, and then searching the feature occurrences that cannot be true. 25

To the better of our knowledge there is not details in literature about the way in which 26

the other references have implemented this operation. Our approach evaluates each 27

non-zero value of each reusable element’s domain, and reuses each solution obtained 28

from the solver in order to avoid useless computations. If a reusable element cannot 29

attain any of its non-zero values, then the reusable element is dead. The reuse of the 30

solutions previously obtained makes our dead artefacts detection technique scalable as 31

showed below, by contrasts to the state of the art. The corresponding algorithm is 32

presented as follows: 33

DeadReusableElements(PLM M, Solver S) { 34

 S.charge(M); 35

 DeadElementsList = all variables of M; 36

 For (each variable V ∈ DeadElementsList) { 37

 Product = S.getOneSolution(“V > 0”); 38

 If (Product = “false”) { 39

 Write (“The variable ” + V + “ is dead”); 40

 } 41

 Else { 42

 Erase V and all the other non-zero variables obtained in Product from 43

DeadElementsList; 44

 } 45

 } 46

} 47

Software Product Lines – The Automated Analysis

16

Our algorithm first creates a list of the reusable elements whose dead or non-dead 1

condition is yet to be assessed. For example: 2

deadElements=[UNIX, Cdrom, Usb, Net, UtilityProgram, FileMaintenance, Editing, 3

UserInterface, Graphical, WidthResolution, HeightResolution, Shell, SH, TCSH, BASH, 4

OnlineInfor, ProgrammingSupport]. 5

Then, our algorithm queries for a configuration based on reusable elements for which 6

we still ignore if they are dead or not, and sieves the selected (and thus alive) elements 7

from this list. For example, to know if UtilityProgram is dead or not, it is sufficient to 8

query the solver for a product with UtilityProgram=1, which provides a product 9

P1 = [UNIX=1, Cdrom=1, Usb=0, Net=0, UtilityProgram=1, FileMaintenance=1, Editing=1, 10

UserInterface=1, Graphical=1, WidthResolution=800, HeightResolution=600, Shell=1, SH=1, 11

TCSH=1, BASH=0, OnlineInfor=0, ProgrammingSupport=0]. 12

This means not only that the reusable element UtilityProgram is not dead, but also that 13

the other elements with values different from 0 are not dead. Therefore these elements 14

can be sieved from the list of dead elements. The test can be repeated until all elements 15

are sieved. For example querying for products with Usb =1, the solver provides another 16

product which means that this reusable element is not dead either. According to our 17

algorithm, the variable Usb, and all the other non-zero variables, must be erased from 18

the list of dead elements. At this point the list of dead elements is empty, which means 19

that there are no dead elements in the product line model. 20

The purpose of the aforementioned list is to reduce the number of queries. For instance 21

in this example, only two queries were necessary to evaluate all reusable elements. In 22

contrast, 17 queries would have been required in the current state of the art algorithm. 23

However, it is not possible to calculate in advance how many queries would be needed, 24

or even, to guaranty that the minimal number of queries will be executed, as this 25

depends on the configuration generated by the solver. 26

e. False optional reusable elements: a reusable element is false optional if it is included in 27

all the products of the product line despite being declared optional (Von der Maßen & 28

Lichter 2004; Benavides et al. 2005; Trinidad et al. 2008). This operation takes a PLM and 29

a collection of reusable elements modeled as optional as input, and returns the set of 30

false optional reusable elements, or false if no one exists. Trinidad et al. (2006, 2009) 31

detect false optional features based on finding all products and then searching for 32

common features among those which are not assigned as common. To verify if an 33

optional reusable element is false optional, we query for a product that does not contain 34

the reusable element at hand (setting the feature’s value to 0). If there is no such 35

product, then the reusable element we are evaluating is indeed false optional. 36

FalseOptionalReusableElements(PLM M, Solver S) { 37

 S.charge(M); 38

 FalseOptionalElementsList = all optional elements of M; 39

 For (each variable V ∈ FalseOptionalElementsList) { 40

 Product = S.getOneSolution(“V = 0”); 41

 If (Product = “false”) { 42

 Write (V + “ is false optional”); 43

 } 44

 Else { 45

 Erase V and all the other variables with a Zero affectation into 46

Product, from DeadElementsList; 47

Defects in Product Line Models and How to Identify Them

17

 } 1

 } 2

} 3

For example if we want to know whether the optional reusable component Usb is false 4

optional of not, it is sufficient to request for a product without this component 5

(Support_usb=0). The solver, in this case, returns the product P1 = [UNIX=1, Cdrom=1, 6

Usb=0, Net=0, UtilityProgram=1, FileMaintenance=1, Editing=1, UserInterface=1, 7

Graphical=1, WidthResolution=800, HeightResolution=600, Shell=1, SH=1, TCSH=1, 8

BASH=0, OnlineInfor=0, ProgrammingSupport=0], which means that this optional 9

reusable element can take the value of 0, it is, be effectively optional. 10

2.3. Redundancy-free: according to the Oxford dictionary something redundant is 11

something “able to be omitted without loss of meaning or function” (Oxford University 12

2008). Therefore, redundancy in a PLM is about the presence of reusable elements and 13

variability constraints among them that can be omitted from the PLM without loss of 14

semantic on the PLM. Redundant constraints in FMs are undesired because, although 15

they do not alter the space of solutions, they may consume extra computational effort in 16

derivation and analysis operations (Yan et al. 2009), and they are likely to generate 17

inconsistencies when the PL evolves. For the sake of evolution, it is certainly better 18

detect and correct these redundancies. In order to detect them in a PLM this chapter 19

proposes an operation that takes a PLM and a constraint as input and returns true if 20

removing the constraint does not change the space of solutions. 21

Three alternatives can be implemented to check if a relationship is redundant or not. 22

The naïve algorithm consists in calculating all the products of the PLM with the 23

constraint to check; then, remove the constraint; and calculate all the solutions of the 24

new model. If both results are equal (i.e. exact the same products can be configured 25

with and without the constraint), then the constraint is redundant. This approach is 26

computationally very expensive as it requires (a) to compute all configurations twice 27

and (b) to perform an intersection operation between two potentially very large sets 28

(e.g. 1021 configurations for the Renault PLM according to Dauron & Astesana (2010)). 29

Not only this algorithm is not scalable, it is typically unfeasible. The second algorithm, 30

proposed by Yan et al. (2009) defines a redundant constraint of a PLM as a constraint in 31

which a redundant reusable element takes part. This approach consists in calculating 32

the redundant reusable elements on feature models — features disconnected from the 33

FM — and then the redundant constraint in this approach are those in which the 34

redundant features take part. Though it yields a solution, this algorithm is not 35

sufficiently general: indeed, only these trivial cases of redundancy are considered. The 36

approach proposed in this chapter is based on the fact that if a system is consistent, then 37

the system plus a redundant constraint is consistent too. Therefore, negating the 38

allegedly redundant relation implies contradicting the consistency of the system and 39

thus rendering it inconsistent (Mazo et al. 2011a). This approach is more efficient, and 40

thus more scalable, when applied on large models. Our algorithm is in two steps: first, 41

it tries to obtain a solution with the set of constraints. Then, if a solution exists, we 42

negate the constraint we want to check. In the case where no solution is found, the 43

inspected constraint turns out to be redundant. This alternative to find redundant 44

constraints can be formalized as follows: 45

Software Product Lines – The Automated Analysis

18

If (at least 1 product can be configured from PLM M under a collection of constraints C 1

= {C1,...,Ci}) { 2

 Write (C |= M); 3

 Let take Cr ∈ C a constraint to be evaluated; 4

 If (C without Cr |= M AND C ∪ ¬Cr |≠ M) { 5

 Write (Cr is redundant); 6

 } 7

 Else{ 8

 Write (Cr is not redundant); 9

 } 10

} 11

For example, to check if the constraint UNIX ≥ UtilityProgram (cf. Table 1) is redundant 12

or not, it is sufficient to query the solver for a product. Then, if a product is found, the 13

algorithm proceeds to replace the constraint by its negation (UNIX < UtilityProgram) 14

and ask again for a product. If the solver does not give a solution (as is the case for our 15

running example), one can infer that the constraint (UNIX ≥ UtilityProgram) is not 16

redundant. 17

5. Multi-model verification 18

Multi-model modeling allows tackling various models and aspects of a system, in particular 19

in the presence of stakeholders with multiple viewpoints (executives, developers, 20

distributors, marketing, architects, testers, etc.; cf. Nuseibeh et al. 1994). For example, a 21

UNIX product line can be composed of several models, each one developed by a different 22

team or developing a particular view of the PL. Thus, while the team responsible of the 23

kernel develops a model, the team responsible of the user interface develops another model. 24

Motivated by the fact that (a) this practice is current in industry (Dhungana et al. 2010); (b) 25

even if each individual model is consistent, once the models are integrated, they can easily 26

be inconsistent; and (c) the lacks in current state of the art in multi-model PL verification, 27

this chapter proposes a method to verify multi-model PLs. This method is composed of 28

fourth steps: (i) the base models’ semantic should be transformed into constraint programs; 29

(ii) once these base models transformed into CP, they may be integrate using the integration 30

strategies and rules appropriates for each language (cf. Mazo et al. 2011a for further details 31

about integration of Dopler models, and Mazo et al. 2011d for further details about 32

integration of constraint-based PLMs; and (iii) once the base models integrated, the 33

collection of verification criteria, proposed in Section 4 for single models, can be applied on 34

the integrated model in the same manner as for single models. 35

The application of these verification criteria over the Dopler model depicted in Figure 2 and 36

the explanation regarding the minor variants are presented as follows: 37

1. Non-void model. This model is not a void because it allows configure at least one 38

product; for instance C1 = {USB, Editing, ProgrammingSupport, Shell} 39

2. Non-false model. This model is not a false because it allows configure more than two 40

products; for instance: C2 = {Cdrom, Editing, OnlineInfo, Shell, Twm, KDE, Qt, 41

GraphicalResolution = “800x600”, Width = 800} and C3 = {USB, Editing}. 42

3. Non-attainable validity conditions’ and domains’ values. This operation either (i) 43

takes a collection of decisions as input and returns the decisions that cannot attain 44

Defects in Product Line Models and How to Identify Them

19

one or more values of its validity condition; or (ii) takes a collection of assets as input 1

and returns the assets that cannot attain one of the values of its domain. A non-2

attainable value of a validity condition or a domain is a value that can never be taken 3

by a decision or an asset in a valid product. Non-attainable values are undesired 4

because they give the user a wrong idea of the values that decisions and assets 5

modeled in the product line model can take. In our example of Figure 2, the validity 6

condition Width ≥ 800 && Width ≤ 1366 determines a very large range of values that 7

can take the variable Width, however this variable can really take three values: 800, 8

1024 and 1366 which means that values like 801, 802,..., 1023, 1025, ..., 1365 are not 9

attainable values. 10

4. Dead reusable elements. In Dopler language, the reusable elements are Decisions and 11

Assets. This operation takes a collection of decisions and assets as input and returns the 12

set of dead decisions and assets (if some exist) or false otherwise. A decision is dead if it 13

never becomes available for answering it. An asset is dead if it cannot appear in any of 14

the products of the product line. The presence of dead decisions and assets in product 15

line models indicates modeling errors and intended but unreachable options. A 16

decision can become dead (i) if its visibility condition can never evaluate to true (e.g., if 17

contradicting decisions are referenced in a condition); (ii) a decision value violates its 18

own visibility condition (e.g., when setting the decision to true will in turn make the 19

decision invisible); or (iii) its visibility condition is constrained in a wrong way (e.g., a 20

decision value is > 5 && < 3 at the same time). An asset can become dead (i) if its 21

inclusion depends on dead decisions, or (ii) if its inclusion condition is false and it is not 22

included by other assets (due to requires dependencies to it). Dead variables in CP are 23

variables than can never take a valid value (defined by the domain of the variable) in 24

the solution space. Thus, our approach consists in evaluating each non-zero value of 25

each variable’s domain. If a variable cannot attain any of its non-zero values, the 26

variable is considered dead. For instance, in the Dopler model of Figure 2, there are not 27

dead decisions or assets. 28

5. Redundancy-free. In the asset model (cf. the right side of Figure 2) the asset 4dwn 29

requires MwM, which at the same time requires the asset Motif, therefore the 30

dependency 4dwm requires Motif is redundant according to the redundancy-free 31

algorithm presented in Section 4. 32

It is worth noting that the domain-specific operation “false optional-free reusable elements” 33

is not applicable in Dopler models due to the fact that this language does not have explicitly 34

the concept of optional. Decisions and assets are optional in Dopler models according to the 35

evaluation of the visibility conditions (in the case of decisions) and inter-assets 36

dependencies in the case of assets 37

6. Validation 38

We performed a series of experiments to evaluate the verification approach proposed in this 39

chapter. The goal was to measure the effectiveness or precision of the defect’s detection, the 40

computational scalability and the usability of the approach to verify different kinds of 41

product line models. These measurements are presented in the next sections, grouped by the 42

kind of product line models used to evaluate our approach. 43

Software Product Lines – The Automated Analysis

20

6.1 Single-view models 1

We assessed the feasibility, precision and scalability of our approach with 46 models, out of 2

which 44 were taken from the SPLOT repository (Mendonca et al. 2009b) and the other two 3

models are the Vehicle movement control system (Salinesi et al. 2010b) and the Stago model 4

(Salinesi et al. 2011). The sizes of the models are distributed as follows: 32 models of sizes 5

from 9 to 49 features, 4 from 50 to 99, 5 from 100 to 999 and 6 from 1000 to 2000 features. The 6

six largest feature models that we have were not considered in this experiment due to the 7

fact that the solver used does not accept more that 5000 variables. Note that SPLOT models 8

do not have attributes, on the contrary to our two industrial models. Therefore artificial 9

attributes were introduced in a random way, in order to have models with 30%, 60% or 10

100% of their features with attributes. In order to do that, we created a simple tool1 that 11

translates models from SPLOT format to constraint programs, and we integrate next the 12

artificial attributes. In order to test that the transformation respects the semantic of each 13

feature model, we compared the results of our models without attributes with the results 14

obtained with the tools SPLOT (Mendonca et al. 2009b) and FaMa (Trinidad et al. 2008b). In 15

both comparisons we obtained the same results in all the shared functions: detection of void 16

models, dead features, and false optional features. These results show that our 17

transformation algorithm respects the semantic of initial models. 18

6.1.2 Precision of the detection 19

Not only must the transformation of FMs into CPs be correct but also the detection of 20

defects. As aforementioned, we compared the results obtained with our tool VariaMos 21

against these obtained with two other tools: SPLOT and FaMa. These comparisons were 22

made over models without attributes due to the fact that original models taken from SPLOT, 23

and also available for FaMa, do not have attributes. In these comparisons we find the same 24

results, for the common verification functions on the three tools, but due to the fact that our 25

own models contain attributes and group cardinalities <m..n>, for any m and n bellowing to 26

non negative integer numbers, a manual inspection were necessary. A manual inspection on 27

two samples of 28 and 56 features showed that our approach identify the 100% of the 28

anomalies with 0% false positive. 29

6.1.3 Computational scalability 30

The execution time of the verification operations in our tool shows that the performance 31

obtained with our approach is acceptable in realistic situations; because in the worst case, 32

users can execute any verification operation less than 19 seconds for models up to 2000 33

features. Figure 4 shows the execution time of each one of the six verification operations in 34

the 50 models. In Figure 4 each plot corresponds to a verification operation: Figure 4(1) 35

corresponds to operation 1, Figure 4(2) corresponds to operation 2 and so on. Times in the Y 36

axis are expressed in milliseconds (ms) and X axis corresponds to the number of features. It 37

is worth noting that most of the results overlap the other ones; we avoid the use of a 38

logarithmic scale in the X axis, to keep the real behaviour of the results. 39

1 parserSPLOTmodelsToCP.rar available at: https://sites.google.com/site/raulmazo/

Defects in Product Line Models and How to Identify Them

21

0

5

10

15

20

0 500 1000 1500 2000

Not Void FMs - VariaMos
N° Features

(1)

ms

0

0,2

0,4

0,6

0,8

1

0 500 1000 1500 2000

False FMs - VariaMos N° Features

(2)

ms

0

5000

10000

15000

20000

25000

0 500 1000 1500 2000

Non Attainable Domains - VariaMos

(3)

N° Features

ms

0

2000

4000

6000

8000

10000

0 500 1000 1500 2000

Dead Features - VariaMos N° Features

(4)

ms
0

10

20

30

40

0 500 1000 1500 2000

Redundant Relationships - VariaMos
N° Features

(5)

ms

0

2000

4000

6000

8000

10000

0 500 1000 1500 2000

False Optional Features - VariaMos N° Features

(6)

ms

 1

Fig. 4. Execution time of the six verification operations, per number of features 2

Let us now present the results in more detail. For the models with sizes between 9 and 100 3

features our approach verified all operations in less than 1 second on average. For the 4

models with sizes between 101 and 500 features verified dead features and false optional 5

features in 0,4 seconds, 1 second to calculate the non attainable domains and 0 milliseconds 6

in the rest of verification operations. It is worth noting ant our solver does not provide time 7

measures of microseconds (10-6 seconds); thus, 0 milliseconds (10-3 seconds) must be 8

interpreted as less than 1 millisecond. In general, over the 46 FMs, the execution time to 9

detect dead features, false optional features and non attainable domains is inferior than 8,68, 10

8,82 and 19,09 seconds respectively. For the rest of verification operations, the execution 11

time is inferior to 0,02 seconds even for the largest models. Following the projection of our 12

results, our approach is able to be used in larger FMs with a quadratic increase, in the worst 13

of cases, of the time to execute any verification operation proposed in this paper. To finish, 14

the verification operations like redundant relationships, false feature models and void 15

feature models are executed in less than 0,03 seconds. According to the results of our 16

experiment, we can conclude that our verification approach presented in this chapter is 17

scalable to large FMs. 18

3.6 The case multi-view models 19

We also tested our verification approach with two Dopler variability models (Mazo et al. 20

2011a). In both models, we seeded 33 defects in the DOPLER model and 22 defects in the 21

camera model. The defects cover different types of problems to show the feasibility of the 22

verification approach. For instance, the decision Wizard_height cannot take the values 1200, 23

1050, 1024 and 768 and the asset VAI_Configuration_DOPLER cannot take the value 1 (is 24

never included for any product), even if these values take part in the corresponding 25

variables’ domain. Furthermore, we measured the execution time of applying the approach 26

for both models for the different verification operations as presented below. 27

Applying our verification approach to the DOPLER model has shown that the model is not 28

void and can generate 23016416 products. However, we discovered 18 defects related with 29

non-attainable domain values and 15 dead decisions and assets (these together are the 33 30

defects we have seeded before). By applying our verification approach on the digital camera 31

Software Product Lines – The Automated Analysis

22

model we obtained that the model is not void and can generate 442368 products. In this 1

model, we discovered 11 defects related with non-attainable domain values as well as 11 2

dead decisions and assets (these together are the 22 defects we have seeded before). It is 3

noteworthy that the same number of defects was identified in a manual verification of both 4

models. The automated verification found all of the seeded defects in the DOPLER model 5

and all of the seeded defects in the camera model. 6

Table 2 shows the number of defects found and the execution time (in milliseconds) 7

corresponding to the verification operations on the models. No defects were found 8

regarding the “Void model”, “False model” and “Redundant relationships” operations and 9

the execution time was less than 1 millisecond for each one of these operations in each 10

model. The model transformations from Dopler models to constraint programs took about 1 11

second for each model. 12

 13

V
o

id
 m

o
d

el

F
al

se
 m

o
d

el

N
o

n
-a

tt
ai

n
ab

le

d
o

m
ai

n
s

D
ea

d
 D

ec
is

io
n

s

an
d

 A
ss

et
s

R
ed

u
n

d
an

t

re
la

ti
o

n
sh

ip
s

DOPLER
81 Variables

Defects No No 18 15 No

Time 0 0 125 47 0

Camera
39 Variables

Defects No No 11 11 No

Time 0 0 16 15 0

Table 2. Results of model verifications: Execution time (in milliseconds) and number of 14

defects found with each verification operation. 15

In the same way as for the single-view models, the results obtained on multi-view models 16

allow concluding that the verification approach presented in this chapter is scalable to 17

medium Dopler models and give promising expectations on large Dopler models. 18

5. References 19

Batory D. (2005). Feature Models, Grammars, and Propositional Formulas. In Proceedings of 20

the International Software Product Line Conference (SPLC), pages 7-20. Rennes, France. 21

Benavides D. On the Automated Analysis of Software Product Lines Using Feature Models. 22

A Framework for Developing Automated Tool Support. (2007). University of 23

Seville, Spain, PhD Thesis. 24

Benavides, D., Segura, S., Trinidad, P., and Ruiz-Cortés, A. (2006). Using Java CSP solvers in 25

the automated analyses of feature models. In Post-Proceedings of The Summer 26

School on Generative and Transformational Techniques in Software Engineering 27

(GTTSE). LNCS 4143. 28

Benavides, D., Segura, S., Ruiz-Cortés, A. (2010). Automated Analysis of Feature Models 20 29

Years Later: A Literature Review. Information Systems journal, Volume 35 , Issue 6, 30

Elsevier, PP. 615-636 31

Defects in Product Line Models and How to Identify Them

23

Benavides, D.; Trinidad, P. & Ruiz-Cortés, A. (2005). Automated Reasoning on Feature 1

Models. In Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–2

503. Springer, Heidelberg. 3

Benavides, D.; Ruiz-Cortés, A.; Trinidad, P. (2005). Using constraint programming to reason 4

on feature models. In The Seventeenth International Conference on Software 5

Engineering and Knowledge Engineering, SEKE 2005, pages 677–682. 6

Bosch, J. (2000). Design and Use of Software Architectures. Adopting and evolving a product-line 7

approach. Addison-Wesley. 8

Cabot, J. & Teniente, E. (2006). Incremental evaluation of ocl constraints. In Dubois, E., Pohl, 9

K. (eds.) CAiSE’06. LNCS, vol. 4001, pp. 81–95. Springer, Heidelberg. 10

Clements, P. & Northrop, L. (2001). Software Product Lines: Practices and Patterns. Addison 11

Wesley, Reading, MA, USA. 12

Czarnecki, K.; Pietroszek, K. (2006). Verifying Feature-Based Model Templates Against 13

Well-Formedness OCL Constraints, 5th Int. Conference on Generative 14

Programming and Component Engineering. 15

Czarnecki, K.; Helsen, S. & Eisenecker, U. W. (2005). Formalizing cardinality-based feature 16

models and their specialization. Software Process: Improvement and Practice, 10(1), pp. 17

7-29. 18

Dauron, A. & Astesana, J-M. (2010). Spécification et configuration de la ligne de produits 19

véhicule de Renault. Journée Lignes de Produits. Université Pantéon Sorbonne, 20

France. 21

Dhungana, D.; Grünbacher, P. & Rabiser R. (2010). The DOPLER Meta-Tool for Decision-22

Oriented Variability Modeling: A Multiple Case Study. Automated Software 23

Engineering (in press; doi: 10.1007/s10515-010-0076-6). 24

Dhungana, D.; Heymans, P. & Rabiser, R. (2010). A Formal Semantics for Decision-oriented 25

Variability Modeling with DOPLER. Proc. of the 4th International Workshop on 26

Variability Modelling of Software-intensive Systems (VaMoS), Linz, Austria, ICB-27

Research Report No. 37, University of Duisburg Essen, 2010, pp. 29-35. 28

Dhungana, D., Rabiser, R. & Grünbacher, P. (2006). Coordinating Multi-Team Variability 29

Modeling in Product Line Engineering. In 2nd International Workshop on Supporting 30

Knowledge Collaboration in Software Development (KCSD), Tokyo, Japan. 31

Diaz, D. & Codognet, P. (2001). Design and Implementation of the GNU Prolog System. 32

Journal of Functional and Logic Programming (JFLP), Vol. 2001, No. 6. 33

Djebbi, O.; Salinesi, C. & Fanmuy, G. (2007). Industry Survey of Product Lines Management 34

Tools: Requirements, Qualities and Open Issues. Proc. of the International Conference 35

on Requirement Engineering (RE), IEEE Computer Society, New Delhi, India. 36

Djebbi, O. & Salinesi C. (2007). RED-PL, a Method for Deriving Product Requirements from 37

a Product Line Requirements Model. Proc. of the International Conference CAISE’07. 38

Norway. 39

Egyed, A. (2006). Instant consistency checking for UML. In: International Conf. Software 40

Engineering (ICSE’06), pp. 381–390. ACM Press, New York. 41

Elfaki, A.; Phon-Amnuaisuk, S. & Kuan Ho C. (2009). Using First Order Logic to Validate 42

Feature Model. Third International Workshop on Variability Modelling of Software-43

intensive Systems VaMoS. ICB-Research Report No. 29, Universität Duisburg‐Essen, 44

pp. 169-172. Spain. 45

Software Product Lines – The Automated Analysis

24

Finkelstein, A.C.W.; Gabbay, D.; Hunter, A.; Kramer, J. & Nuseibeh, B. (1994) Inconsistency 1

handling in multiperspective specifications. IEEE Transactions on Software 2

Engineering, pages 569–578. 3

Finkelstein, A.; Kramer, J.; Nuseibeh, B.; Finkelstein, L.; Goedicke, M. (1992). Viewpoints: A 4

framework for integrating multiple perspectives in system development. 5

International Journal of Software Engineering and Knowledge Engineering 2(1). 6

Griss, M.; Favaro, J. & d’Alessandro, M. (1998). Integrating feature modeling with the RSEB. 7

In Proceedings of the Fifth International Conference on Software Reuse. Vancouver, BC, 8

Canada. 9

Hemakumar, A. (2008). Finding Contradictions in Feature Models. Workshop on the 10

Analysis of Software Product Lines (ASPL). 11

Howe, D. (2010). The Free On-line Dictionary of Computing, 01.06.2011, Available from 12

http://foldoc.org 13

Janota, M.; Kiniry, J. (2007). Reasoning about Feature Models in Higher-Order Logic, in 11th 14

Int. Software Product Line Conference (SPLC07). 15

Kang, K.; Cohen, S.; Hess, J.; Novak, W. & Peterson, S. (1990). Feature-Oriented Domain 16

Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software 17

Engineering Institute, Carnegie Mellon University, USA. 18

Kang, K.; Lee, J.; Donohoe, P. (2002). Feature-oriented product line engineering. Software, 19

IEEE, 19(4). 20

Kim, C.H.P.; Batory, D.; Khurshid, S. (2011). Reducing Combinatorics in Testing Product 21

Lines. Aspect Oriented Software Development (AOSD). 22

Lauenroth, K.; Metzger, A.; Pohl, K. (2010). Quality Assurance in the Presence of Variability. 23

S. Nurcan et al. (eds.), Intentional Perspectives on Information Systems 24

Engineering, Springer-Verlag, Berlin Heidelberg. 25

Lauenroth, K. & Pohl, K. (2007). Towards automated consistency checks of product line 26

requirements specifications. Proceedings of the twenty-second IEEE/ACM international 27

conference on Automated software engineering ASE'07, USA. 28

Liu, J.; Basu, S.; Lutz, R. R. (2011). Compositional model checking of software product lines 29

using variation point obligations. Journal Automated Software Engineering, 30

Volume 18 Issue 1. 31

Matthias, R.; Kai, B.; Detlef, S. & Ilka, P. (2002). Extending feature diagrams with UML 32

multiplicities. Proceedings of the Sixth Conference on Integrated Design and Process 33

Technology. Pasadena, CA. 34

Mazo, R.; Grünbacher, P.; Heider, W.; Rabiser, R.; Salinesi, C. & Diaz, D (2011). Using 35

Constraint Programming to Verify DOPLER Variability Models. In 5th International 36

Workshop on Variability Modelling of Software-intensive Systems (VaMos'11), pp.97-103, 37

ACM Press. Belgium. 38

Mazo, R.; Salinesi, C.; Diaz, D. & Lora-Michiels, A. (2011). Transforming Attribute and 39

Clone-Enabled Feature Models into Constraint Programs Over Finite Domains. 6th 40

International Conference on Evaluation of Novel Approaches to Software Engineering 41

(ENASE), Springer Press, China. 42

Mazo, R.; Lopez-Herrejon, R.; Salinesi, C.; Diaz, D. & Egyed, A. (2011). A Constraint 43

Programming Approach for Checking Conformance in Feature Models. In 35th 44

IEEE Annual International Computer Software and Applications Conference 45

(COMPSAC'11), IEEE series, Germany. 46

Defects in Product Line Models and How to Identify Them

25

Mazo, R.; Salinesi, C.; Djebbi, O.; Diaz, D. & Lora-Michiels, A. (2011). Constraints: the Heard 1

of Domain and Application Engineering in the Product Lines Engineering Strategy. 2

International Journal of Information System Modeling and Design IJISMD (accepted), to 3

appear in November 2011. 4

Mazo, R.; Salinesi, C.; Diaz, D. (2011). Abstract Constraints: A General Framework for 5

Solver-Independent Reasoning on Product Line Models. Accepted on INSIGHT - 6

Journal of International Council on Systems Engineering (INCOSE), to be released 7

the 15 October 2011. 8

Mendonça, M.; Wasowski, A. & Czarnecki, K. (2009). SAT–based analysis of feature models 9

is easy. In D. Muthig and J. D. McGregor, editors, SPLC, volume 446 of ACM 10

International Conference Proceeding Series, pp. 231-240. ACM. 11

Nuseibeh, B.; Kramer, J. & Finkelstein A. (1994)A framework for expressing the 12

relationships between multiple views in requirements specification. IEEE Trans. 13

Software Eng. 20(10) pp. 760–773. 14

Oxford University. 2008). Concise Oxford English Dictionary. Oxford University Press, UK. 15

Pohl, K.; Böckle, G.; van der Linden, F. (2005). Software Product Line Engineering – 16

Foundations, Principles, and Techniques. Springer, Heidelberg. 17

Riebisch, M.; Bollert, K.; Streitferdt, D.; Philippow, I. (2002). Extending feature diagrams 18

with UML multiplicities, in: Proceedings of the Sixth Conference on Integrated 19

Design and Process Technology (IDPT2002), Pasadena, CA. 20

Salinesi, C.; Mazo, R. & Diaz, D. (2010). Criteria for the verification of feature models. In 21

Proceedings of the 28th INFORSID Conference, pp. 293-308. France. 22

Salinesi, C.; Mazo, R.; Diaz, D. & Djebbi, O. (2010) Solving Integer Constraint in Reuse Based 23

Requirements Engineering. In 18th IEEE Int. Conference on Requirements Engineering 24

(RE'10) IEEE Computer Society pp. 243-251. Australia. 25

Salinesi, C. ; Mazo, R. ; Djebbi, O. ; Diaz, D. ; Lora-Michiels, A. (2011). Constraints: the Core 26

of Product Line Engineering. Fifth IEEE International Conference on Research 27

Challenges in Information Science (RCIS), IEEE Press, Guadeloupe-French West 28

Indies, France. 29

Schobbens, P.Y.; Heymans, P.; Trigaux, J.C.; Bontemps Y. Generic semantics of feature 30

diagrams, Journal of Computer Networks, Vol 51, Number 2 (2007). 31

Schulte, Ch.; Stuckey, P. J. (2008). Efficient constraint propagation engines. ACM Trans. 32

Program. Lang. Syst., 31(1). 33

Segura, S. (2008). Automated Analysis of Feature Models using Atomic Sets. First Workshop 34

on Analyses of Software Product Lines (ASPL'08), SPLC'08. Limerick, Ireland. 35

Stahl, T.; Völter, M. & Czarnecki, K. (2006). Model-Driven Software Development: Technology, 36

Engineering, Management. Wiley editors, San Francisco. 37

Streitferdt, D.; Riebisch, M.; Philippow, I. (2003). Details of formalized relations in feature 38

models using OCL. In Proceedings of 10th IEEE International Conference on 39

Engineering of Computer–Based Systems (ECBS 2003), Huntsville, USA. IEEE 40

Computer Society, pages 45–54. 41

Trinidad, P.; Benavides, D.; Durán, A.; Ruiz-Cortés, A. & Toro, M. (2008). Automated error 42

analysis for the agilization of feature modeling. Journal of Systems & Software, 81(6) 43

pp. 883-896, Elsevier. 44

Trinidad, P., Benavides, D., Ruiz-Cortés, A. (2006), A first step detecting inconsistencies in 45

feature models. In CAiSE Short Paper Proceedings, Advanced Information Systems 46

Software Product Lines – The Automated Analysis

26

Engineering, 18th International Conference, CAiSE 2006, Luxembourg, 1

Luxembourg. 2

Van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming. The MIT Press. 3

Van den Broek, P. & Galvão, I. (2009). Analysis of Feature Models using Generalised Feature 4

Trees. Third International Workshop on Variability Modelling of Software-intensive 5

Systems VaMoS. ICB-Research Report No. 29, Universität Duisburg‐Essen, pp. 169-6

172. Spain. 7

Van der Storm, T. (2007). Generic Feature-Based Composition. In: M. Lumpe and W. 8

Vandeperren, editors, Proceedings of the Workshop on Software Composition 9

(SC'07), volume 4829 of LNCS, pp. 66-80, Springer. 10

Von der Maßen, T. ; Lichter, H. (2003). RequiLine: A requirements engineering tool for 11

software product lines, Proceedings of International Workshop on Product Family 12

Engineering PFE-5, Springer LNCS 3014, Siena, Italy. 13

Von der Maßen, T. & Lichter, H. (2004). Deficiencies in feature models. In Tomi Mannisto and 14

Jan Bosch, editors, Workshop on Software Variability Management for Product Derivation 15

- Towards Tool Support. 16

White, J.; Doughtery, B.; Schmidt, D. (2009). Selecting highly optimal architectural feature 17

sets with filtered cartesian flattening. Journal of Systems and Software, 82(8):1268–18

1284. 19

Yan, H.; Zhang, W.; Zhao, H. & Mei, H. (2009). An optimization strategy to feature models’ 20

verification by eliminating verification-irrelevant features and constraints. In the 21

proceedings of the International Conference on Software Reuse (ICSR), pp. 65–75. 22

Zhang, W.; Zhao, H.; Mei, H. (2004) A Propositional Logic-Based Method for Verification of 23

Feature Models. In: Proceedings of 6th International Conference on Formal 24

Engineering Methods, pp. 115–130. 25

