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ABSTRACT: Most production scheduling problems, including High-Variety, Low-Volume (HVLV) scheduling
problems assume that machines are continuously available. However, in most actual situations, machines
become unavailable during certain periods when preventive maintenance (PM) is scheduled. In this paper, a
HVLV scheduling problem is proposed while considering machines availability constraints. Each machine is
subject to PM while maintaining flexibility in the start time of maintenance activities during the planning
period. In this paper, two situations are investigated. First, the maintenance tasks are periodically scheduled:
maintenance is required after a periodic time (all periods are equals on each machine). Second, time intervals
between two consecutive maintenance activities are not equals (flexible periodic maintenance). However, time
intervals are known in advance. Consequently, the maintenance operations are controllable. The jobs and the
maintenance activities are scheduled simultaneously. Also, the maintenance tasks are scheduled between them,
such that a regular criterion is optimized. In order to illustrate the performance of the proposed methodology, a
simulation example is given.

KEYWORDS: HVLV manufacturing systems, max-plus scheduling and control model, decision vari-
ables, non-linear optimization, preventive maintenance, makespan and total tardiness, JIT production.

1 INTRODUCTION

Due to their importance both in the fields of manufac-
turing industries and operations research, production
scheduling and maintenance planning have been re-
ceived considerable attention both in academia and in
industry. Indeed, production plans and maintenance
activities are two major issues in manufacturing in-
dustries. Production scheduling deals with finding
the appropriate assignment of jobs on machines in
order to obtain especial objectives by considering the
existing constrains.

Numerous prior studies are dedicated to solve these
problems in different workshops (single machine, par-
allel machines, flow-shop, job-shop and HVLV sys-
tems). Our study deals with High-Variety, Low-
Volume (HVLV) manufacturing systems which are a
class of dynamic systems where the behaviour can
be assimilated to Discrete Event Dynamic Systems
(DEDS). They are characterized by a wide variety of
products using shared machines, a weak and person-

alized demand, relatively long processing times and
frequent change over and set-up times. Consequently,
a continuous approximation of the production flow
by continuous flow systems (Tamani et al., 2009),
(Tamani et al., 2011) and (Tamani et al., 2011a) is not
appropriate for HVLV systems. In this framework, it
seems very interesting to handle this kind of systems
as Job-Shop systems (Huang and Irani, 2003) due to
the wide variety of processed products.

Most of the production scheduling problems are NP-
hard (Garey and Johnson, 1979), especially HVLV
systems scheduling problems. In the production
scheduling point of view, a significant part of lit-
erature assumes that machines are always available
during the planning time horizon. However, in ac-
tual manufacturing systems, this assumption is un-
reasonable because, some unavailability periods, like
maintenance activities, cause the machines to be not
available for processing (Schmidt, 2000). For tack-
ling this problem, several researchers have included
recently unavailability periods like maintenance ac-
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tivities in their studies (Zribi et al., 2008) and (Sbihi
and Vernier, 2008).

In this framework, to deal with sequencing decisions,
control variables have been introduced in the schedul-
ing model (Nasri et al., 2011). A dioid algebraic
model has been developed to generate all feasible
schedules by choosing different values for decision
variables. This model is non-linear in the sense of
(max, +) algebra. Moreover, in the case of syn-
chronized systems, the proposed (max, +) models in
(Nasri et al., 2011a) and (Nasri et al., 2011b) are lin-
ear.

Our contribution is to propose an analytical formu-
lation of a dynamic scheduling for HVLV systems
while Preventive Maintenance (PM) is considered us-
ing the (max, +) algebra. In this context, PM is
integrated into the proposed model using (max, +)
algebra mathematical relations. Compared to (Sbihi
and Varnier, 2008) where the authors consider equal
durations of maintenance tasks in the case of single
machine scheduling, in this paper the allocated times
to maintenance operations can be not equals on each
machine. Indeed, the (max, +) model is a simple rep-
resentation where only sequencing type decisions are
needed to solve the conflicts between concurrent oper-
ations. The operations sequencing and maintenance
activities are determined by incorporating decision
variables in the model. In addition, different kinds
of maintenance operations are scheduled via control
variables, so that a regular criterion is optimized. In
this context, the makespan is firstly minimized and
then the total tardiness subject to a Just-In-Time
(JIT) production is optimized . Two kinds of mainte-
nance tasks are incorporated to the proposed model:
repetitive periodic maintenance operations with equal
periods on each machine and flexible periodic mainte-
nance activities with different time intervals between
two consecutive maintenance tasks.

The remainder of this paper is organized as follows:
Section 2 gives a short review for the state-space
HVLV systems scheduling modeling (Nasri et al.,
2011). In Section 3, PM is considered. Next, an il-
lustrative example of a (6x6) Job-Shop HVLV system
with PM according to a non-linear optimization pro-
cedure is presented. Concluding remarks and future
research directions are presented in Section 5.

2 HVLV SYSTEMS SCHEDULING MOD-
ELING WITHOUT PREVENTIVE
MAINTENANCE

The focus of this section concerns a review for the
HVLV systems scheduling using (max, +) algebra.
For more details, readers are invited to read (Nasri et
al., 2011).

2.1 Approach Principle

(Max, +) algebra is applied as a modeling tool in or-
der to represent the scheduling problem of HVLV sys-
tems where relationships between the starting times
of the operations require the maximum and addition
operators. In order to generate feasible schedules on
machines, the control variables used in the proposed
model in the case of minimization of the makespan
are the decision variables.

A dioid is considered as a set D with two operators,
⊕ and ⊗. The operation ⊕ called addition, produces
in D a structure of a commutative monoid and has a
neutral element ϵ called zero. The other operation,
⊗, called multiplication, produces in D a structure of
a monoid and has a neutral element e, called unity.
(Max, +) is a dioid, which consists of the real num-
bers R extended to include −∞. (Max, +) algebra
is used in development of algebraic models of DEDS
(Baccelli et al., 1992). For all a, b ∈ R∪−∞ the max-
plus operators are defined according to the following
equations:

a⊕ b = max(a, b) (1)

a⊗ b = a+ b (2)

2.2 Max-Plus Scheduling Model For HVLV
Systems

Let us now firstly present the construction principle
of the (max, +) algebraic model for the static (with-
out maintenance) scheduling problem for the HVLV
systems. The knowledge of the following informations
are needed to establish our model:

• The individual operations and route for each job.

• The machines on which each operation should be
executed.

• The predecessors of each operation (the process
plan for each job).

• External starting conditions of each operation
(the times at which raw materials are fed to the
system and the starting date of a new scheduling
in a new planning horizon).

The incorporation of the decision variables into the
model is satisfied by the fact that the sequencing of
operations for different products on the same machine
requires a decision on the order in which the opera-
tions are processed such that the conflicts are resolved
and precedence constraints are not violated. More-
over, to get feasible schedules, constraints are added
in order to bound decision variables.
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It was shown in (Nasri et al., 2011) that the developed
event-timing-equations describing the dynamic of the
system can be grouped into the following (max, +)
matrix form:

X = T ⊕ U ⊕ C ⊗X (3)

where:

• X is a (Nx1) (max, +) state vector (N is the
total number of operations) which collects the
starting times of operations.

• T is a (Nx1) (max, +) vector which is composed
of the beginning dates of the scheduling over the
new planning horizon.

• U is a (Nx1) vector which contains the different
dates at which the raw material of each product
is fed to the system.

• C is a (NxN) appropriate (max, +) matrix de-
scribing the relationships among different state
variables of the system. It contains the different
decision variables.

3 STATEMENT OF HVLV SYSTEMS
SCHEDULING PROBLEM WITH
MAINTENANCE USING (MAX, +)
ALGEBRA

The HVLV system scheduling problem with mainte-
nance activities that we addressed here can be de-
scribed as follows:

A set of n jobs J={J1, J2,...,Jn} is to be processed on
a set ofmmachines denoted byM={M1,M2,...,Mm}.
Each job i consists of a sequence of nj operations
(routing). Each operation Oijk(1 6 i 6 n, 1 6 j 6

nj , 1 6 k 6 m) has to be performed to complete one
job. We consider h(h = 1, ..., x) periodic maintenance
activities to be processed on each machine Mk during
the planning horizon based on a predefined mainte-
nance policy. Two PM cases are investigated:

• Repetitive periodic maintenance: the time inter-
vals between two consecutive maintenance tasks
are equals. Maintenance periods are periodically
fixed: maintenance is required after a periodic
time interval (e.g., periodical maintenance with
m equal periods Tk(k = 1, ...,m) on each ma-
chine Mk (Figure 1). Moreover, the durations
allocated to the maintenance activities can be
not equals. Note that in (Sbihi and Varnier,
2008) the durations of maintenance operations
are equals on a single machine.

• Flexible periodic maintenance: the time intervals
between two consecutive flexible periodic mainte-
nance activities PMik and PMjk , noted △ik,jk

(i, j = 1...x, i ̸= j) are not equals but fixed in

advance. In addition, the durations allocated to
maintenance activities can be not equals. Also,
the starting date of the first flexible maintenance
is considered known in advance (Figure 2).

The maintenance activities can be considered as op-
erations of particular jobs. Consequently, they can be
incorporated in the equation 28. Indeed, in both sit-

Figure 1: A schedule on a single machine with pe-
riodic maintenance: J[i] is the number of job in ith
position and PMhk is the hth operation of mainte-
nance (h = 1, ..., x) on machine Mk.

Figure 2: A schedule on a single machine with flexible
periodic maintenance: J[i] is the number of job in ith
position and PMhk is the hth operation of mainte-
nance (h = 1, ..., x) on machine Mk.

uations, the maintenance tasks are controllable. Jobs
and maintenance operations are scheduled simultane-
ously, so that a regular criterion is optimized.

△ik,jk (i, j = 1...x, i ̸= j) represents the time inter-
val between two consecutive flexible periodic mainte-
nance operations: PMik and PMjk on machine Mk.
The time intervals are different but fixed in advance.
Moreover, the starting date of the first flexible main-
tenance is considered known in advance.

Each Preventive Maintenance PMhk has a determin-
istic duration denoted by tphk where k is the index of
machine. Let xphk is the starting time of the main-
tenance PMhk on machine Mk. Then the proposed
dynamic (max, +) scheduling model has the starting
times of operations and the starting times of mainte-
nance activities as events of the system (Figure 3).

The proposed (max, +) model objective is to handle
simultaneously scheduling production jobs and main-
tenance activities. Two kinds of maintenance are con-
sidered: repetitive periodic maintenance and flexible
periodic maintenance. The scheduling of production
jobs can be described by the same event-timing equa-
tions shown in (Nasri et al., 2011). Moreover, a new
part is introduced into the model to represent the dy-
namic scheduling between maintenance activities and
the scheduling between operations and maintenance
activities. Two regular criteria are optimized:
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Figure 3: HVLV systems scheduling modeling princi-
ple integrating maintenance.

• The makespan is firstly minimized using a non-
linear optimization with constraints in (max,
+) algebra. In this case, decision variables are
considered as the variables of optimization (the
control variables of the system). They are de-
termined, such that the proposed model gener-
ates all feasible schedules between operations and
maintenance activities processed on the same
machines.

• The total tardiness is then minimized using
a non-linear optimization with constraints in
(max, +) algebra. In this case, control variables
are the decision variables that generate feasible
schedules and the times at which raw materials of
products are fed as late as possible to the system
subject to a JIT production.

3.1 Max-Plus Scheduling Modeling Of HVLV
Systems With Repetitive Periodic Main-
tenance Tasks

In this section, only repetitive periodic maintenance
activities with equal periods on machines are consid-
ered. Consequently, maintenance periods are periodi-
cally fixed: maintenance is required, on each machine
Mk, after a periodic time interval Tk(k = 1, ...m).
Within this context, a (max, +) HVLV model with
periodic maintenance is proposed. In this model,
both the starting time of operations and maintenance
tasks are considered as the events (states) of the sys-
tem. Then ∀ 1 6 i 6 n, 1 6 j 6 nj , 1 6 k 6 m and
1 6 h 6 x, two situations can be distinguished:

If operation j ∈ P is the first (i.e., unprecedented)
operation on the job, then its processing start time
xijk is determined by the maximum of either:

• The starting date t of the new scheduling over
the new planning horizon.

• The date ui at which the raw material of its cor-
responding product i is fed to the system.

• The completion of other operations (j′ ̸= j, and
j′ ∈ P ), for other products i′ that require pro-
cessing on machine k. This is determined by the
decision variables Vijk,i′j′k that determine which
operation must be processed earlier on machine
k.

• The completion of periodic maintenance activ-
ities PMhk that require processing on machine
Mk. This is determined by the decision variables
Vijk,hk that generate the schedule between oper-
ation Oijk and the periodic maintenance PMhk.

This situation is formulated as follow:

xijk = max( t;ui; pi′j′k + xi′j′k + Vijk,i′j′k;
tphk + xphk + Vijk,hk)

(4)

Using dioid notation, the above expression may be
rewritten as:

xijk = t⊕ ui ⊕ pi′j′k ⊗ xi′j′k ⊗ Vijk,i′j′k

⊕tphk ⊗ xphk ⊗ Vijk,hk
(5)

If operation j ∈ P is not the starting operation (i.e.,
has predecessors) on the job, then its processing start
time xijk is determined by the maximum of either:

• The completion time of its direct predecessor, say
n ∈ P , being processed on its correspondent ma-
chine, say l ∈ M .

• The completion of other operations (j′ ̸= j, and
j′ ∈ P ), for other products i′ that require pro-
cessing on machine k. This is determined by the
decision variables Vijk,i′j′k that determine which
operation must be processed earlier on machine
k.

• The completion of periodic maintenance activ-
ities PMhk that require processing on machine
Mk. This is determined by the decision variables
Vijk,hk that generate the schedule between oper-
ation Oijk and the periodic maintenance PMhk.

This situation is formulated as follow:

xijk = max( pinl + xinl; pi′j′k + xi′j′k + Vijk,i′j′k;
tphk + xphk + Vijk,hk)

(6)

Using dioid notation, the above expression may be
rewritten as:

xijk = pinl ⊗ xinl ⊕ pi′j′k ⊗ xi′j′k ⊗ Vijk,i′j′k

⊕tphk ⊗ xphk ⊗ Vijk,hk
(7)



MOSIM’12 - June 06-08, 2012 - Bordeaux - France

In order to schedule the periodic maintenance activ-
ities and operations and maintenance tasks between
each other that need processing on the same machine
Mk, the following event-timing equation is added to
the model:

xphk = max( pijk + xijk + Vhk,ijk;
tpzk + xpzk + Tk + Vhk,zk)

(8)

• In the last equation, the term ”pijk + xijk +
Vhk,ijk” represents the sequencing between oper-
ation Oijk and periodic maintenance PMhk via
the decision variable Vhk,ijk.

• The term ”tpzk+xpzk+Tk+Vhk,zk”represents the
scheduling of maintenance operations that need
processing on machine Mk between each other
using the decision variable Vhk,zk, so that the
time interval between two consecutive mainte-
nance tasks is equal to the period Tk.

Using (max, +) algebra notation, equation 8 becomes:

xphk = pijk ⊗ xijk ⊗ Vhk,ijk

⊕tpzk ⊗ xpzk ⊗ Tk ⊗ Vhk,zk
(9)

To get feasible schedules, the different control vari-
ables in the model must be bounded and satisfy the
following conditions:

Vijk,i′j′k + Vi′j′k,ijk = B (10)

where B is chosen small enough (e.g., B is a very small
negative real).

max(Vijk,i′j′k;Vi′j′k,ijk) = 0 (11)

Vijk,hk + Vhk,ijk = B (12)

max(Vijk,hk;Vhk,ijk) = 0 (13)

Vhk,zk + Vzk,hk = B (14)

max(Vhk,zk;Vzk,hk) = 0 (15)

The above equations mean that one of the decision
variable is zero and the other is small enough (a very
small negative real).

Using (max, +) notation, the above equations be-
come:

Vijk,i′j′k ⊗ Vi′j′k,ijk = B (16)

Vijk,i′j′k ⊕ Vi′j′k,ijk = 0 (17)

Vijk,hk ⊗ Vhk,ijk = B (18)

Vijk,hk ⊕ Vhk,ijk = 0 (19)

Vhk,zk ⊗ Vzk,hk = B (20)

Vhk,zk ⊕ Vzk,hk = 0 (21)

where B is chosen small enough.

The period Tk is incorporated in the model, such that
the duration between two consecutive periodic main-
tenance activities is equal to Tk. In addition, the first
maintenance activity must start at date Tk. Conse-
quently, the following (max, +) relations are intro-
duced to the model:

max(−xp1k,−xp2k, ...,−xpxk) = −Tk (22)

The above equation means that the first repetitive
periodic maintenance activity starts at date Tk.

max( xp1k + tp1k;xp2k + tp2k; ...;
xpxk + tpxk) =

∑x

h=1 tphk + Tk ∗ x
(23)

The above equation means that the last repeti-
tive periodic maintenance activity finishes at date
∑x

h=1 tphk + Tk ∗ x.

Using (max, +) algebra notation, we have:

x⊕

h=1

−xphk = −Tk (24)

⊕x

h=1(xphk ⊗ tphk) =⊗x

h=1 tphk ⊗Tk ⊗ Tk ⊗ ..⊗ Tk
︸ ︷︷ ︸

x times

(25)

where 1 6 k 6 m and x is the number of repetitive
periodic maintenance activities on machine Mk.

3.2 Max-Plus Scheduling Modeling Of HVLV
Systems With Flexible Periodic Mainte-
nance

This section deals with the flexible periodic mainte-
nance case. In this situation, time intervals between
two consecutive maintenance activities are not equals
but they are known in advance. Indeed, the mainte-
nance tasks are controllable.The jobs and the main-
tenance tasks are scheduled simultaneously, so that a
regular criterion is optimized (Figure 2).

In this case, a (max, +) HVLV model with flexible
periodic maintenance is proposed. Then ∀ 1 6 i 6

n, 1 6 j 6 nj , 1 6 k 6 m and 1 6 h 6 x, two
situations can be distinguished:

First, if operation j ∈ P is the first (i.e., unprece-
dented) operation on the job, then its processing start
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time xijk is determined by the equation 4 and equa-
tion 5. Second, if operation j ∈ P is not the starting
operation (i.e., has predecessors) of the job, then its
processing start time xijk is determined by the equa-
tion 6 and equation 7.

Now, in order to schedule the flexible periodic main-
tenance activities and operations and maintenance
operations between each other, equation 8 is modi-
fied. In this equation, flexible periods (time intervals
between two consecutive maintenance tasks) are not
equals. Consequently, ∀h and z = 1...x, h ̸= z, the
equation 8 becomes:

xphk = max( pijk + xijk + Vhk,ijk;
tpzk + xpzk +△hk,zk + Vhk,zk)

(26)

Using (max, +) algebra notation, equation 26 be-
comes:

xphk = pijk ⊗ xijk ⊗ Vhk,ijk

⊕tpzk ⊗ xpzk ⊗△hk,zk ⊗ Vhk,zk
(27)

The maintenance activities can be considered as op-
erations of particular jobs which will be processed on
machines. Consequently, the developed event-timing-
equations describing the dynamic of the system can
be grouped into the following (max, +) matrix form:

X = T ⊕ U ⊕ C ⊗X (28)

where:

• X is a (Nx1) (max, +) state vector (N is the to-
tal number of operations and maintenance tasks)
which collects the starting times of operations
and maintenance activities.

• T is a (Nx1) (max, +) vector which is composed
of the beginning dates of the scheduling over the
new planning horizon.

• U is a (Nx1) vector which contains the different
dates at which the raw material of each product
is fed to the system.

• C is a (NxN) appropriate (max, +) matrix de-
scribing the relationships among different state
variables of the system. It contains the different
decision variables.

Equation 26 shows that maintenance tasks are con-
trollable. The jobs and the maintenance activities
are scheduled simultaneously. Also maintenance op-
erations are scheduled between them using decision
variables. In order to incorporate the starting time
δk of the first maintenance activity on each machine
Mk in the model, we introduce the following equation:

max(−xp1k,−xp2k, ...,−xpxk) = −δk (29)

Where δk is a constant.

As shown in Figure 2, time intervals between two con-
secutive flexible periodic maintenance tasks can be
not equals. Indeed, we need to add the following con-
straint to the model in order to satisfy the duration
between two consecutive maintenance operations:

∑x

h=1 tphk + δk −max(−
∑x

h,z=1;h ̸=z △hk,zk)

6 max(xp1k + tp1k;xp2k + tp2k; ...;xpxk + tpxk)
6

∑x

h=1 tphk + δk +max(
∑x

h,z=1;h ̸=z △hk,zk)

(30)

Note that the term
∑x

h,z=1;h ̸=z △hk,zk in the inequal-
ity 30, is a (x − 1) by (x − 1) addition of the time
intervals △hk,zk (x is the number of flexible periodic
maintenance on machine Mk). Also, all above con-
straints can be written using (max, +) algebra nota-
tion.

The above equation means that the completion time
of the last flexible periodic maintenance activity is
between

∑x

h=1 tphk+δk−max(−
∑x

h,z=1;h ̸=z △hk,zk)

and
∑x

h=1 tphk + δk +max(
∑x

h,z=1;h ̸=z △hk,zk)

4 ILLUSTRATIVE EXAMPLE

4.1 System Representation

For the sake of simplicity and without loss of general-
ity, the application of the (max, +) model proposed
in the Section 3 is explored below with an example of
(6x6) Job-Shop system (6 products and 6 machines)
(Figure 4).

Figure 4: Job-shop HVLV system.

This example is taken from an actual factory environ-
ment (Wang and Tang, 2011). It describes a HVLV
system due to the wide variety of products (six kinds
of products) and the processing times which are rela-
tively long. Data about routing and processing times
for the 6 products are presented in Table 1.
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Table 1: Production data.

job Sequence (machine number, processing time)
J1 1(3,1) 2(1,3) 3(2,6) 4(4,7) 5(6,3) 6(5,6)
J2 1(2,8) 2(3,5) 3(5,10) 4(6,10) 5(1,10) 6(4,4)
J3 1(3,5) 2(4,4) 3(6,8) 4(1,9) 5(2,1) 6(5,7)
J4 1(2,5) 2(1,5) 3(3,5) 4(4,3) 5(5,8) 6(6,6)
J5 1(3,9) 2(2,3) 3(5,5) 4(6,4) 5(1,3) 6(4,1)
J6 1(2,3) 2(4,3) 3(6,9) 4(1,10) 5(5,4) 6(3,1)

In this example, the operations of six jobs are sched-
uled on six machines (Table 1) and we have 36 state
variables xijk (i = 1 : 6, j = 1 : 36 and k = 1 : 6).
In this section, PM is considered. Then, a non-linear
optimization problem with constraints is applied to
minimize the makespan.

Table 2: Repetitive periodic maintenance.

Machine maintenance tasks
M1 PM11 and PM21

M2 PM12, PM22 and PM32

M5 PM15, PM25 and PM35

M6 PM16, PM26 and PM36

We consider in the simulation example two peri-
odic maintenance activities on M1 and three periodic
maintenance operations on M2, M5 and M6 (Table
2).

Table 3: Flexible periodic maintenance.

Machine maintenance tasks
M3 PM13, PM23 and PM33

M4 PM14, PM24 and PM34

Three flexible maintenance tasks are considered on
M3 and M4 (Table 3).

Note that the allocated times to maintenance opera-
tions can be not equals on each machine (Table 4).

Table 5 shows the different values of periods on ma-
chines in the repetitive periodic maintenance case.

Table 6 shows the different values of time intervals be-
tween two consecutive maintenance tasks in the case
of flexible periodic maintenance. These intervals are
different on machines M3 and M4. We have for ex-
ample, △13,23 ̸= △13,33 ̸= △23,33.

4.2 Non-Linear Optimization Methodology

In this section, the proposed model is used to re-
solve the scheduling of the HVLV system with PM.
Then, a non-linear optimization problem with con-
straints is applied. It deals with the minimization of
the makespan and the total tardiness subject to JIT
production.

Table 4: Duration of maintenance tasks.

Maintenance durations Values
tp11, tp23, tp33, tp36 4

tp21, tp14, tp34, tp16, tp26 3
tp12, tp15, tp25 2

tp22 5
tp32 7
tp13 1

tp24, tp35 6

Table 5: Periods of repetitive periodic maintenance.

Periods Values
T1 30
T2 25
T5 17
T6 20

4.2.1 Makespan Minimization

Let firstly define the makespan criterion of the HVLV
system as follow:

Cmax = max(Ci) = max(xiwk + piwk) (31)

where Ci is the completion time of product i and w

is the last operation of product i.

Using the (max, +) notation, we have :

Cmax =
n⊕

i=1

Ci =
n⊕

i=1

(xiwk ⊗ piwk) (32)

where xiwk is the starting time of the last operation
w of product i on machine k and piwk is its corre-
sponding processing time. Then, the non-linear op-
timization scheduling problem into (max, +) algebra
is defined as:

C∗
max = minCmax = min(max(xiwk +piwk)) (33)

Subject to the non-linear constraints (equations): (4),
(6), (8), (10)-(15), (22), (23), (26), (29) and (30). B

is chosen small enough.

Applying the non-linear optimization problem to the
example of (6x6) Job-Shop HVLV system shown in
Section 4.1 with t = ui = 0 for i = 1 : 6 and using the
software LINGO as a tool for solving the optimization
problem. Then, the obtained optimal value of the
makespan C∗

max = max(x165+p165;x264+p264;x365+
p365;x466 + p466;x564 + p564;x663 + p663) = 67 time
units. The corresponding schedules on the different
machines based on the proposed (max, +) model are
shown in Figure 5 that shows the order of each job
Ji on each machine Mk.

The completion times Ci of the different products i =
1 : 6 are presented in Table 7.
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Table 6: Periods of flexible periodic maintenance.

Periods Values
δ3 15
δ4 20

△13,23 7
△13,33 5
△23,33 6
△14,24 8
△14,34 9
△24,34 15

Figure 5: Operations scheduling on the machines.

The proposed model associated to a non-linear op-
timization algorithm in (max,+) algebra leads to an
optimal value of the makespan C∗

max = 67 time units.
A comparison between this result and the value of
the optimal makespan in the static case (without
PM) (Nasri et al., 2011), shows that while consid-
ering PM in the model increases the minimal value of
the makespan (Figure 6). Moreover, The completion
date of the maintenance activity PM22 is equal to 89.
So, the starting date t of a new scheduling over a new
planning horizon is equal to 89.

Figure 6: Operations scheduling on the machines

Figure 5 shows that the proposed (max, +) model is
efficient and valid. The diagram of gantt shows that
the periods between maintenance tasks are respected
on each machine. Indeed, if we take the machine M2

for example, it is clear that the time intervals be-
tween two consecutive maintenance tasks are equals
to T2 = 25. However, if we consider the machine

Table 7: Completion times of jobs.

Jobs J1 J2 J3 J4 J5 J6
Ci 67 59 36 67 63 60

M3, time intervals are not equals, but the period be-
tween two consecutive maintenance operations is re-
spected. So, the maintenance activity PM33 begins
at δ3 = 15 and its completion date is equal to 19.
The starting time of PM13 is equal to 24. So, the
time interval between these two maintenance tasks
is equal to △13,33 = 5. Also, The completion date of
the maintenance activity PM13 is equal to 25 and the
starting time of PM23 is equal to 32. So, the time in-
terval between these two maintenance tasks is equal
to △13,23 = 7. Moreover, the jobs and the main-
tenance operations are scheduled simultaneously and
the maintenance tasks are scheduled between them,
so that the makespan is minimal.

4.2.2 Total Tardiness Minimization: JIT

Production

The objective of this section is to minimize the total
tardiness criterion for a non-linear optimization using
the (max, +) algebra and subject to JIT production
(Figure 7)

Figure 7: Full scheme of dynamic total tardiness op-
timization with maintenance.

As far as we know, there are few researches about
scheduling problems in the literature that deal with
the total tardiness minimization. Moreover, all these
researches don’t handle the JIT production criterion
in the scheduling problems. In this section, the total
tardiness is minimized, so that the JIT production is
satisfied.

Let now define the following criterion:

T = Td + Te (34)

Using the (max, +) notation, equation 34 becomes:

T = Td ⊗ Te (35)

where Td =
∑n

i=1 Ti, and Te = −
∑n

i=1 ui.

Using the (max, +) notation, we have:

Td =
⊗n

i=1 Ti and Te = −
⊗n

i=1 ui
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Let define the total tardiness criterion Ti =
max(xiwk+piwk−Di; 0), for i = 1 : n, and k = 1 : m
(n is the number of products).

where w is the last operation of product i and xiwk is
the starting time of the last operation w of product i
on machine k and piwk is its corresponding processing
time. Di is the due date of the product i.

• Td reflects the due date tracking error.

• Te reflects the control effort (JIT criterion). The
minimization of Te would lead to maximization
of the dates ui at which the raw material of each
product is fed to the system as late as possible.
Consequently, the starting time of the first op-
eration xi1k of each product i will be equal to
ui.

Then, the non-linear optimization scheduling problem
into (max, +) algebra is defined as follow:

T ∗ = minT = min(Td + Te) (36)

Subject to the non-linear constraints (equations): (4),
(6), (8), (10)-(15), (22), (23), (26), (29) and (30). B

is chosen small enough. We have also the following
inequalities:

Ci = xiwk + piwk 6 Di (37)

xi1k > ui (38)

Where Ci is the completion time of product i and w

is the last operation of product i.

The above non-linear optimization problem is ap-
plied to the example of (6x6) Job-Shop HVLV system
shown in Section 4.1 with t = 0 and for the different
chosen due dates Di (Table 8). The software LINGO
is used as a tool for solving the optimization prob-
lem. Then, the obtained optimal value T ∗ = −110
time units. This optimal criterion corresponds to the
following completion times of products (Table 8):

Table 8: Due dates and completion times of jobs.

Jobs J1 J2 J3 J4 J5 J6
Di 73 67 70 69 74 76
Ci 73 67 40 60 71 66

The corresponding scheduling on the different ma-
chines based on the proposed (max, +) model is rep-
resented by the following diagram of Gantt (Figure 8):

Table 8 shows that the due dates Di (i = 1 : 6) of the
different products are met. Then for all i = 1 : 6,
Ci 6 Di. Moreover, Table 9 shows that the JIT
production criterion is satisfied. Indeed, the starting

Figure 8: Operations scheduling on the machines.

times of each first operation of the product i, xi1k, is
equal to the date at which the raw material of each
product i, ui, is fed to the system. Then, the pro-
posed criterion Te allows the maximization of the in-
put time ui, so that the raw material of products is fed
to the system as late as possible. As a consequence,
the internal buffer levels are kept as low as possible.
Moreover, The completion date of the maintenance
activity PM12 is equal to 88. So, the starting date
t of a new scheduling over a new planning horizon is
equal to 88.

Table 9: Controlled dates of the first operation of the
products.

Jobs J1 J2 J3 J4 J5 J6
ui 46 1 3 9 37 14
xi1k 46 1 3 9 37 14

5 CONCLUSION

The objective of this work is to build a (max, +) alge-
braic model for scheduling, optimization, and control
of HVLV systems while periodic preventive mainte-
nance is considered. Two situations concerning main-
tenance are investigated simultaneously in this paper.
In the first one, maintenance tasks are periodically
fixed: maintenance is required after a periodic time
interval (all periods are equals on each machine). In
the second one, time intervals between two consec-
utive maintenance activities are not equals (flexible
periodic maintenance). The jobs and both situations
of maintenance operations are scheduled simultane-
ously. Moreover, the maintenance tasks are scheduled
between them, so that a regular criterion is optimized.
A non-linear optimization problem with constraints
is then solved into (max, +) algebra to minimize two
criteria. The total tardiness criterion is extended to
solve a JIT production problem. The simulation re-
sults show that the proposed model can be a good
tool for the control and optimization of HVLV sys-
tems with maintenance.

In real-world applications for HVLV systems, various
uncertainty aspects of the system will perturb its be-
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havior (processing times, set-up times, etc). In this
context, next research work will be done to improve
the proposed model to make it robust in presence
of perturbations, such that it can deal with change-
over in HVLV systems. Also, analytical techniques for
differentiation and optimization in (max, +) algebra
should be developed to effectively use dioid algebraic
models in solving scheduling problems.
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