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In this note, the statistical mechanics of SOS (solid-on-solid) 1-dimensional models under the global constraint of having a specified area between the interface and the horizontal axis, is studied. We prove the existence of the thermodynamic limits and the equivalence of the corresponding statistical mechanics. This gives a simple alternative microscopic proof of the validity of the Wulff construction for such models, first established in Ref. 5.

We consider the SOS model defined as follows: To each site i of the lattice Z Z an integer variable h i is assigned which represents the height of the interface at this site. The energy H N ({h}) of a configuration {h} = {h 0 , h 1 , ..., h N }, in the box 0 ≤ i ≤ N, of length N, is equal to the length of the corresponding interface

H N ({h}) = N i=1 (1 + |h i -h i-1 |) (1) 
Its weight, at the inverse temperature β, is proportional to the Boltzmann factor exp [-βH({h})]. We introduce the Gibbs ensemble which consits of all configurations, in the box of length N, with specified boundary conditions h 0 = 0 and h N = Y . The associated partition function is given by

Z 1 (N, Y ) = {h} e -βH({h}) δ(h 0 )δ(h N -Y ) (2) 
where the sum runs over all configurations in the box and δ(t) is the dicrete Dirac delta (δ(t) = 1 if t = 0 and δ(t) = 0 otherwise). We define the corresponding free energy per site as the limit

τ p (y) = lim N →∞ - 1 βN ln Z 1 (N, yN) (3) 
where y = -tan θ, the slope of the interface, is a real number. This free energy is called the projected surface tension. The surface tension, which represents the interfacial free energy per unit length of the mean interface, is

τ (θ) = cos θ τ p (-tan θ) (4) 
We introduce also a second Gibbs ensemble, which is conjugate to the previous ensemble, and whose partition function, in the box of length N, is given by

Z 2 (N, x) = {h} e -βH({h}) e βxh N δ(h 0 ) (5) 
where x ∈ IR replaces as a thermodynamic parameter the slope y and h 0 = 0. We define the associated free energy as

ϕ(x) = lim N →∞ - 1 βN ln Z 2 (N, x) (6) 
Theorem 1. Limits (3) and ( 6), which define the above free energies, exist. The first, τ p , is a positive bounded even convex function of y. The second, ϕ, is a bounded above even concave function of x. Moreover, τ p and -ϕ are conjugate convex functions, i.e., they are related by the Legendre transformations

-ϕ(x) = sup y [xy -τ p (y)] τ p (y) = sup x [xy + ϕ(x)] (7) 
Proof: The validity of the above statements is well known. See for instance Refs. 2, 3 for a proof of these results in a more general setting.

The convexity of τ p is equivalent to the fact that the surface tension τ satisfies a stability condition called the triangular inequality (see Refs. 2, 3). Relations (7) between the free energies express the thermodynamic equivalence of the two ensembles (2) and ( 4). These relations imply that the curve z = ϕ(x) gives, according to the Wulff construction, or its modern equivalent the Andreev construction, the equilibrium shape of the crystal associated to our system.

The function ϕ(x) defined by ( 6) is easily computed by summing a geometrical series. One introduces the difference variables

n i = h i-1 -h i (8) 
for i = 1, ..., N, so that the partition function factorizes and one obtains

ϕ(x) = 1 -β -1 ln n∈ Z Z e -β|n|+βxn (9) 
The explicit form of this function is

ϕ(x) = 1 -β -1 ln sinh β cosh β -cosh βx (10) if -1 < x < 1 and ϕ(x) = -∞ otherwise.
We next define two new Gibbs ensembles for the system under consideration. In the first of these ensembles we consider the configurations such that h N = 0, which have a specified height at the origin h 0 = M and which have a specified volume V between the interface and the horizontal axis, this volume being counted negatively for negative heights:

V = V ({h}) = N i=0 h i (11)
The corresponding partition function is

Z 3 (N, V, M) = {h} e -βH({h}) δ(h N )δ(V ({h}) -V )δ(h 0 -M) (12) 
The second of these ensembles is the conjugate ensemble of the first one. Its partition function is given by

Z 4 (N, u, µ) = {h} e -βH({h}) e βu(V ({h})/N )+βµh 0 δ(h N ) (13) 
where u ∈ IR and µ ∈ IR are the conjugate variables. Our next step will be to prove the existence of the thermodynamic limit for these ensembles and their equivalence in this limit.

Theorem 2. The following limits exist

ψ 3 (v, m) = lim N →∞ - 1 βN ln Z 3 (N, vN 2 , mN) (14) 
ψ 4 (u, µ) = lim N →∞ - 1 βN ln Z 4 (N, u, µ) (15) 
They define the free energies per site associated to the considered ensembles as, respectively, convex and concave functions of the v and u variables. Moreover, ψ 3 and -ψ 4 are conjugate convex functions:

-ψ 4 (u, µ) = sup v,m [uv + µm -ψ 3 (v, m)] ψ 3 (v, m) = sup u,µ [uv + µm + ψ 4 (u, µ)] (16) 
Proof: The crucial observation is the subadditivity property given in Lemma 1 below. Then we addapt known arguments in the theory of the thermodynamic limit (see Refs. [START_REF] Ruelle | Statistical Mechanics, Rigorous Results[END_REF][START_REF] Galgani | Asymptotic equivalence of equilibrium ensembles of classical statistical mechanics[END_REF]. A more detailed discussion is given in the Appendix.

Lemma 1. The partition function Z 3 satisfy the subadditivity property

Z 3 (2N, 2(V ′ + V ′′ ), M ′ + M ′′ ) ≥ Z 3 (N, V ′ , M ′ ) Z 3 (N, V ′′ , M ′′ ) e -2β|M ′′ |/(2N -1) (17) 
Proof: In order to prove this property we associate a configuration {h} of the first system in the box of length 2N, to a pair of configurations {h} ′ and {h} ′′ of the system in a box of length N, as follows

h 2i = h ′ i + h ′′ i , i = 0, . . . , N h 2i-1 = h ′ i-1 + h ′′ i , i = 1, . . . , N (18) 
Then

h 2N = h ′ N + h ′′ N = 0, h 0 = h ′ 0 + h ′′ 0 = M ′ + M ′′ and V ({h}) = 2 N i=1 h ′ i + N i=0 h ′′ i + N i=1 h ′′ i = 2 [V ({h} ′ ) + V ({h} ′′ )] -M ′′ .
This shows that the configuration {h} belongs to

Z 3 (2N, 2(V ′ + V ′′ ) + M ′′ , M ′ + M ′′ ). Since H 2N ({h}) = H N ({h} ′ ) + H N ({h} ′′ ), because n 2i = n ′ i and n 2i-1 = n ′′
i for i = 1, ..., N -1, as follows from (18), we get

Z 3 (N, V ′ , M ′ ) Z 3 (N, V ′′ , M ′′ ) ≤ Z 3 (2N, 2(V ′ + V ′′ ) + M ′′ , M ′ + M ′′ ).
Then we use the change of variables hi = h i -[M ′′ /(2N -1)] for i = 1, . . . , 2N -1, h0 = h 0 , h2N = h 2N = 0 which gives

Z 3 (2N, V + M ′′ , M) ≤ e 2β|M ′′ |/(2N -1) Z 3 (2N, V, M)
to conclude the proof.

Theorem 3. The functions ψ 3 and ψ 4 can be expressed in terms of the functions ϕ and τ p as follows

ψ 4 (u, µ) = 1 u u 0 ϕ(x + µ)dx (19) 
ψ 3 (v, m) = 1 u 0 µ 0 +u 0 µ 0 τ p (ϕ ′ (x))dx (20) ✻ ✲ ϕ(x) x µ 0 µ 0 +u 0 O A C B Figure 1. Graphical interpretation of Theorem 3.
The right hand side of (23) represents twice the area of the sector OBC in Fig. 1 divided by u 0 . But, it is a known property in the Wulff construction, that twice this area is equal to the integral in (20). Indeed, by using the relation (7) in the form

ϕ(x) = xϕ ′ (x) + τ p (ϕ ′ (x))
in (20) and integrating by parts xϕ ′ (x), we get

2ψ 4 (u 0 , µ 0 ) = 1 u 0 µ 0 +u 0 µ 0 τ p (ϕ ′ (x))dx + 1 u 0 [(µ 0 + u 0 )ϕ(µ 0 + u 0 ) -µ 0 ϕ(µ 0 )]
which together with (23) implies the expression (19) in the Theorem.

To interpret these relations, let us observe that the right hand side of (21) represents the area ABC, in Fig. 1, divided by AC 2 . Therefore, the values u 0 and µ 0 , which solve (21) and ( 22), are obtained hen this area is equal to v, with the condition, coming from (22), that the slope AB/AC is equal to m. Then, according to (19), the free energy ψ 3 (v, m) is equal to the integral of the surface tension along the arc BC, of the curve z = φ(x), divided by the same scaling factor AC = u 0 . We conclude that, for large N, the configurations of the SOS model, with a prescribed area vN 2 , follow a well defined mean profile, the macroscopic profile given by the Wulff construction, with very small fluctuations. This follows from the fact that the probability of the configurations which deviate macroscopically from the mean profile is zero in the thermodynamic limit. The free energy associated to the configurations which satisfy the above conditions, and moreover, are constrained to pass through a given point not belonging to the mean profile, can be computed with the help of Theorem 3. The corresponding probabilities decay exponentially as N → ∞, as a consequence of the usual large deviations theory in statistical mechanics (see Ref. [START_REF] Ruelle | Hazard et Chaos[END_REF]).
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where u 0 and µ 0 satisfy

Proof: We consider again the difference variables (8) and observe that

and therefore

Taking expression (9) into account it follows

and

which implies (19) in the Theorem. The function ψ 3 is determined by the Legendre transform (16). The supremum over u, µ is obtained for the value u 0 , µ 0 for which the partial derivatives of the right hand side are zero: v + (∂/∂u)ψ 4 (u 0 , µ 0 ) = 0, v + (∂/∂µ)ψ 4 (u 0 , µ 0 ) = 0. That is, for u 0 , µ 0 which satisfy (21).

Then, from ( 16), ( 19) and (21), we get

Appendix

We give here a more detailed discussion of the proof of Theorem 2. We define:

For v and m of the form 2 -q p, the subadditivity property with

. Since this sequence is bounded from below its limit exits when n tends to infinity. Indeed

The R.H.S. of the above expression is easily computed by inroducing the differnce variables (8) and we get that f n is bounded from below by (1/β) ln(1e -β ). Let us notice that one can obtain a lower bound to Z 3 (N, vN 2 , mN) by restricting the summation over the configuration such that (N -1)h i = vN 2 -(1/2)mN for i = 1, . . . , N -1. This gives that f n is bounded from above by |v -m| + |v|.

The existence of the limit for general N follows from standard argument in the theory of the thermodynamic limit (cf. 4) and we have:

To prove that ψ 3 is convex, we notice that the subadditivity inequality (17

which applied iteratively implies:

for α of the form 2 -q p and 0 ≤ α ≤ 1. For such α we obtain analogously

by applying the subadditivity inequality (17

Since ψ 3 is bounded, it follows that for all m, ψ 3 can be extended to a convex Lipshitz continuous function of the real variable v.

To prove the the existence of the limit (15) and relations ( 16), we introduce

and proceed, as in the Appendix of Ref. 5, to study the thermodynamic limit for this quantity. Let

According to (A.1), we have

for all V ∈ Z Z, so that

On the other hand for any δ > 0 and sufficiently large N one can find, V = vN 2 and M = mN such that

and therefore We shall now prove that the thermodynamic limit (15) exits and gives the same quantity following the argument of Theorem 2 in Ref. [START_REF] Galgani | Asymptotic equivalence of equilibrium ensembles of classical statistical mechanics[END_REF]. First, we notice that

Moreover, the inequality

used with ū = u ′ and ū = u ′′ , μ = µ ′ and μ = µ ′′ gives for any u ′′ < u < u ′ and any µ ′′ < µ < µ ′ :

V ≤0 e β(u ′′ -u)(V /N ) M ≤0 e β(µ ′′ -µ)M ≤ 4Z * (1-e -β(∆u/N) )(1-e -β(∆µ) ) (A.6) where Z * = sup [Z + 4 (N, u ′ , µ ′ ), Z + 4 (N, u ′ , µ ′′ ), Z + 4 (N, u ′′ , µ ′ ), Z + 4 (N, u ′′ , µ ′′ )] 0 < ∆u = min[u ′ -u, u -u ′′ ] 0 < ∆u = min[µ ′ -µ, µ -µ ′′ ] By referring to (A.4), and to the continuity of ψ * 4 , the inequalities (A.5) and (A.6) imply ( 15) and ( 16).