
HAL Id: hal-00707418
https://hal.science/hal-00707418

Submitted on 1 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstract Constraints: A General Framework for
Solver-Independent Reasoning on Product Line Models

Raul Mazo, Camille Salinesi, Daniel Diaz

To cite this version:
Raul Mazo, Camille Salinesi, Daniel Diaz. Abstract Constraints: A General Framework for Solver-
Independent Reasoning on Product Line Models. INSIGHT - International Council on Systems Engi-
neering (INCOSE), 2011, 14 (4), pp.22. �hal-00707418�

https://hal.science/hal-00707418
https://hal.archives-ouvertes.fr

Abstract Constraints: A General Framework for Solver-Independent Reasoning

on Product Line Models

Raul Mazo1,2, Camille Salinesi1, Daniel Diaz1.

1 CRI, Panthéon Sorbonne University, 90, rue de Tolbiac, 75013 Paris, France
2 Departamento de Ingeniería de Sistemas, Universidad de Antioquia, Medellín, Colombia

raulmazo@gmail.com, {camille.salinesi, daniel.diaz}@univ-paris1.fr

Product Line Engineering (PLE) is a paradigm for reuse-based complex systems development

that is well installed in the industry. Among the proven benefits are reduced time to market,

better asset reuse, and improved software quality [1]. To be successful, PLE must efficiently

manage the variability — the capacity of product line’s artifacts to vary — present in the

products that form a Product Line (PL). Several modeling approaches have been proposed to

represent the artifacts of a PL, their properties and relationships. All these notations can be

used to describe in a single Product Line Model (PLM) all the legal combinations of features

(qualities, artifacts, etc) [2]. In this context, being able to reason about the PLM is an

important success factor in the PLE strategy. Reasoning on PLMs is achieved by querying the

models in order to verify, analyze or configure them [3]. For instance, PLMs can be verified

to guarantee that they do not have undesirable properties affecting the correctness of the

products they help develop. Several approaches are available in the literature to support

automatic reasoning on PLMs. Several approaches consist in transforming the PLMs into a

constraint program that can be executed by a solver. For example, Satisfiability (SAT)

solvers are used to analyze PLMs specified as Boolean constraints. Others use SAT or

constraint over finite domains solvers to find the number of solutions that can be configured

on a PLM. Interestingly, it is actually well know that for this task Binary Decision Diagram

(BDD) solvers are more efficient. Thus, authors seem to undermine the efficiency of certain

reasoning operations to prioritize others. One reason might be that the transformation is

guided by the solver to be used and not by nature of the PLMs or the efficiency/limitations of

using one solver or another one.

Meta-model of abstract constraints

...

Other

processes

Instantiation

process

Compilation

process

Meta-model

of language 2

Meta-model of

language 1

Meta-model

of language N

Abstract constraints of the structure and semantic

of each model

Variability

model 1

Abstraction

Concrete

constraints 1

Concrete

constraints 2

Concrete

constraints 3

Concrete

constraints M

Solver1 Solver4 Solver7 Solver9

Application of particular reasoning operations

Variability

model 4

Variability

model 7

OptimizationNormalization

BDD

family

CP(FD)

family

Other

families

...

SAT

family

Figure 1: Constraint based configuration overview

To overcome these limitations, we propose to represent the semantics of PLMs as abstract

constraints with a unique notation that encompass other constraint languages (e.g., over

Booleans, Integers, Reals, trees, lists, etc.). As Figure 1 sows it, once a PLM is specified as

abstract constraints, it can be compiled with the platform in any constraint language

depending on the analysis to achieve and on solver to use for the analysis.

In order to do that, our first concern is to define a notation that consists in a constraints

system allowing represent product lines. According to Saraswat [4], a constraint system can

be defined as a tuple where D is a set of first-order formulas closed under conjunction

and existential quantification, is an entailment relation between a finite set of formulas

(taken from D) and a single formula and must be generic (that is: S[t/X] d[t/X] whenever

S d, for any term t). A constraints system for representing product lines over

a parameterizable domain X (e.g., X=Finite Domain, X=Reals, X=Booleans), is a tuple of the

minimal set of first-order formulas allowing to represent product lines. For us, the minimal

collection of complete variability constraints to represent a product line is {mandatory,

optional, requires, excludes}, but others can be added, and an entailment relation between

these constraints can be defined. The entailment relation is given by rules. We can therefore

define a kind of operational semantic of entailment between constraints adapted to the

domain of the solver on which the constraints system will be executed. So, these rules can be

reduced to conjunction operators between complete variability constrains on PL domain. It is

simply because any product to be configured from the product line representation must

satisfy all the constraints of the PL which implies entail the complete variability constraints

(we are talking about the mandatory, optional, requires, excludes and other complete

constraints and not about the atomic constrains in them) by means of conjunctions.

The first-order formulas representing the variability constraints of a product line are:

mandatory:
optional:
requires:
excludes:

Where Variable(x) means that x is a variable in a non-specified domain. Now, our next

issue is to identify a proper form for the components that allows transforming constraints

specified with the generic notation into some kind of constraints in a particular domain, and

the other way round. In order to achieve this, we are developing a series of transducers. The

difficulty in developping these is that they must be monotonic and continuous in the

orderinginformation . Because of the first-order structure of the constraints, we require that

the transducers be generic in all the variables. To be generic in a variable V, means that if the

transducer can produce the information d on input c, then it can also produce the information

d[t/V] for input c[t/V] for any t.

In the context of PLMs, the design of these transducers depends of the target back-end

solvers than shall be used to achieve the PLM analyses The details are not provided in this

paper for the sake of space, but examples are given in [3,5].

References
[1] P. Clements and L. M. Northrop. Software Product Lines - Practices and Patterns. Addison-Wesley, 2001.

[2] Salinesi, C., Mazo, R., Diaz, D., Djebbi, O. Solving Integer Constraint in Reuse Based Requirements

Engineering. 18th IEEE International Conference on Requirements Engineering (RE'10). Australia, 2010.

[3] Salinesi C., Mazo R., Djebbi O., Diaz D., Lora-Michiels A. Constraints: the Core of Product Line

Engineering. 5th IEEE International Conference on Research Challenges in Information Science. France, 2011.

[4] V. Saraswat. The Category of Constraint Systems is Cartesian-Closed. In Logic In Computer Science, IEEE

Press 1992.

[5] Mazo R., Salinesi C., Diaz D., Lora-Michiels A. Transforming Attribute and Clone-Enabled Feature Models

Into Constraint Programs Over Finite Domains. 6th International Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE), Springer Press, Beijing–China, 8-11 June 2011.

