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SUMMARY

As a source of vibrations, noise, erosion and structure dam-
ages, cavitation is a major handicap for many industrial flows
used in different domains from propeller or pump studies, to
the analysis of hydrodynamic flows around a profile. This work
presents results of the effect of a passive control method, based on
surface roughness, on a venturi profile in order to determine how
to reduce or even suppress cloud cavitation developed on its suc-
tion side. Visualizations and velocity measurements permit to de-
tect the influence of roughness on flow development. So as to have
a better understanding of flow dynamics of sheet and cloud cav-
itation, robust mathematical methods of imaging post-processing
have been used like Proper Orthogonal Decomposition.

INTRODUCTION

Cavitation is a crucial parameter in the design of turboma-
chinery like turbopumps or liquid propellers. Indeed this phe-
nomenon causes vibrations, noise and even erosion and destruc-
tion of device solid components. These damages have to be
avoided and many studies have been already conducted in cav-
itation tunnels in order to understand this phenomenon. Many
authors worked on the problem of cavity occurence but rarely on
fully developed cavitating flows. This case is yet a common event
in many industrial flows, especially in liquid flows which present
a high acceleration induced by a fixed or moving body. Sim-
ple geometries like 2D foil sections, or Venturi type sections are
used to approach sheet cavitation dynamics. The present study is
going to determine new ways to control sheet cavitation and its
consequences on the flow for an improvement of the machinery
efficiency and a reduction of solid damages of structures in the
case of a Venturi type section in a water tunnel.

Sheet cavity is submitted to quasi-periodical fluctuations
which create a well-known cycle ( [1-5]): sheet cavity grows
from the venturi throat. A re-entrant jet is generated at the lead-
ing edge of the cavity and moved upstream. When this re-entrant
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jet reaches the interface at the cavity closure, a cloud convec-
tion appears with the shedding of a great vapour cloud convected
downstream. Then cloud cavitation collapses in a higher pressure
region and sustains the re-entrant jet due to cloud implosion and
produced a new shedding of cavitation cloud. This life cavity cy-
cle is characterized by the shedding frequency f. This frequency
is then a witness of cavity instabilities. Vibrations are an handi-
cap for many industrial applications, as for inducers ( [6-8]).

Some studies have been conducted to delay cavitation in-
ception by modifying foil surface rugosity using local protuber-
ances with different geometries or distributed roughness (Arndt
1981 [9], Arndt and Ippen (1968) [10]). This modification acts
on the turbulent boundary layer which drives sheet cavitation. In
many industrial applications, the cavitation effect on surface drag
is also an important parameter. It needs a better understanding
not only of the cavitation inception and development but also
of the sheet cavities distribution and stability. Rare works ex-
ist about the role of rugosities in a fully developed cavitating
flow. Some studies show that roughness is able to decrease sheet
cavity length and to increase oscillation frequency of the cav-
ity (Coutier-Delgosha 2005 [11], Stutz 2003 [12]). The rough-
ness distribution and geometry is a major characteristic of this
passive control method of cavitation: tranversal or longitudinal
grooves, with smooth or straight edges, for different depths or in-
terval lengths gives various results on sheet cavitation dynamics
(Yongjian et al. 2010 [13]).

The present study deals with the influence of longitudinal
grooves and the geometry of this distributed roughness on sheet
cavitation dynamics. In order to analyze images of the flow, ro-
bust mathematical post-processing methods such as Proper Or-
thogonal Decomposition (Holmes et al. 1996 [14]).



EXPERIMENTAL SETUP
Test section

Experiments were performed in the Dynfluid laboratory wa-
ter tunnel. The closed loop test rig is composed of two linked
storage tanks with a capacity of 4m> each. A vacuum pump can
decrease pressure at the free surface of tanks, in order to decrease
pressure in the test rig. A centrifugal pump which can turn up
to 1450 tr.min~! induces a 240 m>.s~!' flowrate for a Reynolds
Number Rejoar = VinroatHinorar |V = 5.5 10° where Vi o4 is the
velocity and Hyj,0q: the height of the tunnel at the venturi throat,
for a water flow, with the viscosity v. Upstream of the test sec-
tion (figure 1) the water tunnel has a series of flow management
screens (honeycombs) followed by a circular contraction for a ve-
locity top hat profile of the flow upstream the venturi (less than
1% of turbulence intensity at the test section inlet). The test
section has four plexiglas windows permitting 3D visualization
measurements of the flow induced by a venturi with 18 ° and 8 °
convergent and divergent angles respectively. Venturi surface is
smooth but grooved brass sheets can be screwed on the venturi
type suction side to study the effects of roughness on cavitation
dynamics. These grooved sheets (figure 2) are characterized by
the the groove diameter, its depth and the spacing between two
grooves (for example, the ’8-1.2-0.045” grooved sheet presents a
8 mm groove diameter, its depth is equal to 1.2 mm and a spacing
of 0.045 mm separates two grooves).
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Figure 1. Venturi type test section

Figure 2. Examples of grooved brass sheets

Visualization measurements
Visualization measurements are conducted for dif-
ferent roughness and different cavitation numbers

1
o= (pref—Pvap)/ <2pvfef) (from 0.9 to 1.7) in order to

compare results with the smooth reference case. pyq is the vapor
pressure at temperature 7 = 293K (temperature deviation during
measurements is small enough to neglect temperature effect on
results) of the fluid with the density p, p,.r and v,.r are respec-
tively the pressure and the velocity upstream the venturi profile.
4000 images are acquired for each configuration (for a given
cavitation number and a given grooved sheet geometry) with a
CamRecord 600 Optronics camera using a Zeiss Makro-planar
T* with a focal length equal to 100mm. This high-speed CMOS
camera records images with a 1280x512 pixels? resolution, a rate
of 1000fps and an exposure time equal to 0.167us. The pixels
size is 12umx12um for an active area of 15.36mmx12.29mm.
The flow is illuminated by a SLLUB (Super Long Life Ultra
Bright) White Led Backlight from Phlox on a 200mmx200mm
light output area. Its luminance minimum is 30000 cd.m 2 in
continuous mode and its uniformity is 99.54%.

Water flows in the test section with a flow rate Q =
240m3 . h= (Ve = 8m.s~ 1), for a pressure low enough to obtain
arange of cavitation numbers ¢ from 1 to 1.9.

PROPER ORTHOGONAL DECOMPOSITION

Proper Orthogonal Decomposition (POD) is an efficient
post-processing method used to study spatial and temporal co-
herent structures in a turbulent flow. This method, already tested
in many other disciplines (signal analysis, image processing,
data compression, oceanography...), was introduced in turbulence
studies by Lumley [15] in 1967. This post-processing technique
provides an optimal basis for the modal decomposition of a sta-
tistical set of functions. It captures dominant components of an
infinite dimensions process with only few modes. Calculations
are based on the spectral theory of compact self-adjoint opera-
tors. If we consider that {u* (x)} is a set of scalar fields defined
on 0 < x < 1, the aim of the POD is to find a set of optimal basis
of the space of square integrable functions L?, which describes
the typical members of the set:

N
uy (x) = Z} a;j@;(x) (D
=

(|(u,9)|*) has to be maximized with ||¢||*> = 1, where (.) is the
modulus and .|| the norm in L. A corresponding function to
this variational problem is defined as:

To)= (| (w.9) )= A (llo|P* — 1) )
Maximization for all variations ¢ 4+ 0 y amounts then to:

d
757 (¢ +6y]5_0=0 3



As Y (x) is an arbitrary variation, we obtain:

/01 <u (x)u* (x’)) 10} (x/) dx' = 21¢ (x) “4)

Where R (x,x') = (u(x)u* (x')) is the averaged autocorrelation
function. POD results in solving the eigenvalue equation:

AP =19 ®)

The eigenfunctions obtained by this decomposition are or-
thonormal and the eigenvalues are all positive or null and ranked
in descending order (A; > A;11 > ... > 0). Each scalar field of the
initial set can also be exactly reconstructed according to:

u(x) = i“""” () ©)

With a; the reconstruction coefficients calculated as:
(ajap) = Ojih; )

Ok j being the Kroenecker symbol.

In the POD method, the eigenfunctions obtained give infor-
mation on the mode shape and define the “’skeleton” of the spatial
or temporal coherent structure. On the other hand, the eigenval-
ues designate the "weight” of each mode in the reconstruction of
each initial image, in order to know the significance of the coher-
ent structure in the dynamics of the studied phenomenon.

This post-processing is used here to determine which part
of the cavitating flow can be affected by roughness effects. By
studying each mode resulting on the decomposition of cavitation
cloud evolution images, we can deduce the mode responsible for
the cloud detachment for example, and we can focus the study of
the roughness effect on this analysis.

RESULTS
Cavity mean length

In order to determine the cavity mean length, mean values
and standard deviation of the grey levels are calculated on the
4000 images of each studied case. The mean cavity length ex-
tends from the venturi throat to the cloud separation location.
This end of the cavity is detected with the maximum value of
standard deviation of grey levels, according to the method pro-
posed by Dular et al. [4] as it is shown on figure 3.

Figure 4 shows the evolution of the cavity mean length ac-
cording to the cavitation number, for different grooved sheets,
in comparison with the smooth case (red crosses). We can
see that for specific roughness conditions, the mean length cav-
ity decreases as it has been encountered in litterature (Coutier-
Delgosha [11]). But some roughness conditions seem to increase
cavity mean length too. This difference between the effects of
roughness is larger for small cavitation numbers. When o is

Figure 3. Mean cavity length represented on the (a) average and the
(b) standard deviation of the grey levels of images in the case of smooth
venturi profile, according the undimensional coordinates x* = x/h 000

and y* = y/hyproar

greater than 1.2 the influence of the surface state seems to be less
important on the mean cavity length evolution. For all grooved
sheets, the cavitation cloud length increases with the cavitation
number. But the analysis of the mean cavity length is insufficient
to understand the role of roughness in sheet cavitation dynamics,
and more particularly, the effect of the rugosity shape.
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Figure 4. Dimensionless cavity mean length L/H;,,, according to
the cavitation number ¢ for different rugosity shapes of the venturi suc-
tion side

Shedding of cloud cavitation

The shedding of the cloud cavitation is periodical. The fre-
quency of this shedding is determined by studying the evolution
of the grey levels at the cavity closure position. The power spec-
tral density of this grey level permit to determine the evolution of
the shedding according to the mean cavity length for each stud-
ied case of venturi profile surface roughness (figure 5). Here,
the frequency difference between the smooth venturi profile and
the other grooved sheets is greater when the mean cavity length



is small (it means for large cavitation numbers). In this case,
this measurement is difficult if the cavitation cloud is small. It
is then interesting to purchase analysis for large cavitation num-
bers with other shedding frequency measurement method in or-
der to interpret results. The shedding frequency is also repre-
sented on the figure 6 with the undimensional Strouhal number
Str. = Lf /Viproar- If we look at the smooth case, we can observe
that for 1 < o < 1.4, the Strouhal number is around 0.3, as it
has been calculated on other experiments in Coutier-Delgosha et
al. [11]. On the other side, for 1.4 < ¢ < 1.8, the Strouhal num-
ber decreases until reaching a value smaller than 0.1. These two
zones of Strouhal numbers exist for the grooved sheets. Figure
7 shows that this break of Strouhal number is in accordance with
Stutz et al. [2] results: in their study, they calculate the shedding
frequency according to the ratio v,.s/L. Results obtained with
the smooth case of our study are superposed to Stutz et al. results
in the range 100 < v,.y/L < 400. Out of this range, Stutz et al.
present no measurements but there is a break in the curve that
indicatse a different behaviour of the cavitation cloud dynamics
for small mean cavity length, and so for large cavitation numbers.
But we can also see with figure 6 that the roughness of the ven-
turi profile surface can modify the Strouhal number. All these
observations do not permit to determine how roughness acts on
the sheet cavity and on the cloud cavitation shedding. To improve
the analysis of this study, we can use a POD post-processing of
images recorded on the venturi profile to detect significant pa-
rameters in the cavitation cloud mechanisms.
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Figure 5. Frequency of cloud cavitation shedding f according to di-
mensionless cavity mean length L/H,j,,, for different rugosity shapes
of the venturi suction side

POD analysis of images

For each studied case, on smooth and grooved venturi pro-
files, a post-processing of POD is applied on 100 images. Tests
have been conducted to validate the number of frames used for the
POD for each case. Results obtained for the four first modes are
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Figure 6. Strouhal number St; = JL according to the cavitation
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number o for different rugosity shapes of the venturi suction side
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Figure 7. Frequency of cloud cavitation shedding f according to
Vupstream /L for different rugosity shapes of the venturi suction side

shown on figure 8, for the smooth reference case and a grooved
case, using grooves with 8mm in diameter, 1.2mm in depth and a
spacing between grooves of 0.045mm (this case is called 8-1.2-
0.045), when the cavitation number is ¢ = 1.1. We can observe
that the mode 1 looks like the mean image in both cases. This is
always the shape of the first mode of POD, for an images anal-
ysis or others (like velocity or vorticity fields analysis). We can
also see that there are differences between the smooth and the
grooved sheets on modes 2 and 3. For the mode 4, the shape of
images seems to be similar but red and blue zones are inversed.
These diffrences permit to think that roughness has effect on these
modes more particularly. If we can detect that modes witness par-
ticular instabilities of the flow, we can know on what part of the
flow dynamics the roughness can act. This post-processing is then
not a method to explain what happens in the cavity mechanisms



but a method to discover some avenues of research to explore.

As the most differences between the smooth and the grooved
sheets are shown on modes 2 and 3, we can focus our study on
these modes to measure the effect of the roughness. Now, if we
want to measure the effect of grooves geometry, we can use the
figure 9. We can see this time that modes 3 and 4 are different
from the grooved sheets 10 —2.8 — 0.2 and 8 — 1.2 — 0.045, while
the mode 2 is more similar. Roughness of these two grooved
sheets has different effects on cloud cavitation dynamics because
results are different on first POD modes. When we look at the
contribution of each mode in the initial images reconstruction
(figure 10), using eigenvalues, we can see that for smooth or
grooved sheets, contribution of the first modes are similar. We
can so validate our comparisons between POD modes of these
configurations. Grooves geometry is then a significant parameter
in the efficiency of the passive control.

(a) (b)

Figure 8. Modes 1 to 4: (a) for a smooth suction side and (b) for the
grooved sheet §-1.2-0.045 (for o =1.1)

() (b)

Figure 9. Modes 1 to 4: (a) for the grooved sheet 10-2.8-0.2 and (b)
for the grooved sheet 8-1.2-0.045 (for o = 1.1)
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Figure 10. Contribution of each modes to the initial images recon-
struction for the smooth case and grooved sheets 8-1.2-0.045 and 10-
2.8-0.2 (foro=1.1)

CONCLUSIONS

A robust post-processing POD technique is used in order to
analyze the effect of roughness on the sheet cavitation induced
by a venturi type section. Results obtained by visualization mea-
surements permit to give explanations of the effect of grooves and
the importance of grooves geometry and spacing. It is difficult in
this study to determine what parameters of the grooves geometry
are responsible for the different effect obtained with this passive
control. If we consider the depth of grooves, this parameter can
act on the boundary layer developed on the venturi profile. On
the other hand, the spacing between grooves and the diameter of
the grooves can modify the three-dimensional structures of the
flow which are observed on the figure 11, by recording images
of the flow on the top of the test section. This figure is obtained
for the smooth reference case, at a cavitation number o = 1.1.
Geometry parameters of the grooves have to be studied in more
details but, this study needs a new complex experimental config-
uration because of the difficulty to make visualizations on the top
of grooved sheets.

Figure 11. Image recorded on the top of the test section, for the
smooth venturi profile, at c = 1.1
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