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cFaculté des sciences économiques et de gestion de Sfax, Tunisia

Abstract

During the last decade, stability-based measures became popular in order to
validate the results of partitioning methods. A number of different procedures
were proposed in order to compute a measure of partitioning stability, each of
them requiring intensive computations. Among these procedures, those are
the simplest and most commonly used estimate the stability of a partition by
performing a large number of comparisons between two partitions achieved
on distinct perturbed sets (e. g. Ben-Hur et al. (2002)). The Rand index
provides a simple and easily interpretable way to achieve such comparisons,
and thus is commonly employed to assess partitioning stability. The contri-
bution of this paper is twofold. We first propose an additive decomposition
of a partitioning stability measure which is directly derived from the Rand
index, and we interpret the factors of this decomposition as stability-based
measures of the cohesion and the isolation of each cluster. Then, we derive
a bi-criterion, which takes account of both the isolation and the cohesion of
each individual cluster, in order to assess the optimal number of clusters of a
partition. Based on simulated data sets, we compare our approach with the
most successful methods for predicting the number of clusters.

Keywords: Partition stability, cluster isolation, cluster cohesion,
resampling, random noise

1. Introduction

Partitioning stability is usually requested when assessing the validity of a par-
tition that was obtained by running a clustering algorithm on a real dataset.
Recently, several cluster stability based methods were proposed in order to
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select the optimal number of clusters of a partition. Another approch, for
both assessing the validity of a partition and the optimal nomber of clusters,
consists in assessing the degree of adequacy between the dataset and the
cluster structure generated by the partitioning algorithm. Measures of this
type, which are based on geometrical properties of the clusters, were, in the
chronological order, among the first cluster validation measures to be pro-
posed in the litterature on cluster analysis. As examples of such measures,
one can cite the indices of Calinski and Harabasz [2], and of Krzanowski and
Lai [3] that have been repeatedly chosen as benchmarks [1], [4]. Note that
these indices are both based on the adequacy criterion of minimal cluster
inertia, so that they have a tendacy to favor spherical clusters.
A more recent type of approach validates clusters on the basis of their stabil-
ity (see for example, Levine and Domany [5], Ben-Hur et al. [1], Tibshirani
et al. [4], Kapp and Tibshirani [6], Bertrand and Bel Mufti [7]). Stability
measurements are nowadays also employed in practice for selecting the op-
timal number of clusters: the optimal number, say k, is then chosen such
that the k-partition stability measure is maximum among all values of k for
which a k-partitioning of the data set was performed.
Cluster stability is generally supposed to hold when small changes in the
dataset have no significant effect on membership of the clusters. In order to
obtain these changes, various perturbation methods were investigated, like
resampling the dataset [1], [8], [9], or adding a noise to the descriptors or to
the data objects [10], [11]. The resulting data sets are clustered using the
same clustering algorithm. Then, a standard way to measure partitioning
stability is to compare the partitions of two perturbed data sets, and repeat
N times (with N large) this procedure of comparison. In this paper, we
consider a variant of this procedure: instead of comparing, at each of the
N iterations, the partitions of two perturbed data sets, we will compare the
examined partition of the whole data set with the partition obtained on some
perturbed data set. As a result, an indicator that synthesizes the N compar-
isons is computed in order to assess the stability of the examined partition.
In what follows, we first consider the average of the well known Rand index,
for pairs of partitions, as a measure of partition stability, and show that this
index can be expressed as a weighted mean of two indices that estimate, re-
spectively, the isolation and the cohesion of the whole partition. These two
indices can be decomposed, in their turn, into k terms that are stability-based
measures of cohesion and isolation of each of the k clusters. The two-level
decomposition led us to propose a bi-criterion-based measure that estimates
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the optimal number of clusters. Finally, we illustrate our bi-criterion ap-
proach for cluster validation both on real data sets and on simulated data
sets taken from Kapp [12].

2. Decomposition of a partitioning stability measure based on the
Rand index

We consider a dataset X and a partition P that was obtained by applying to
X a partitioning algorithm A into k clusters. In the sequel, a partitioning al-
gorithm into k clusters will be called, simply, a k-partitioning algorithm. We
will also denote as A(S) the partition obtained by applying a k-partitioning
algorithm A to an arbitrary set S. Consequently P = A(X). Moreover, if S
is a subset of X or if S = X, the partition of S whose clusters coincide with
the intersections between S and any cluster of P is denoted P |S and is said
to be the trace of P on S. Formally P |S is then defined by

P |S = {C ∩ S : C ∈ P}.

We aim to estimate the stability of both the partition P and the clusters
of P . Our approach is based on the well known Rand index which enables
to compare any two partitions. Let P1 and P2 be two partitions defined on
dataset X and let, as usual, N11 (resp. N00) be the number of pairs clustered
together (resp. not clustered together) both in P1 and in P2, Then, the Rand
index R is defined as follows:

R(P1, P2) =
N11 +N00(

n
2

) , (1)

where n = |X |. Then R is the empirical frequency that the cluster mem-
berships of partitions P1 and P2 agree, so that R is a measure of similarity
between P1 and and P2. Formally, the Rand index is the empirical frequency
that Several measures of partitioning stability can be derived from the Rand
index. The next procedure gives an example of such a Rand-index based
measure.

1. Compute the partition P = A(X) to be validated.

2. Generate N i.i.d. random sets, denoted as S1, . . . , SN , such that each
Sj (j = 1, . . . , N) is a perturbed version of dataset X

3. Compute the N partitions A(S1), . . . ,A(SN).
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4. Compute the measure of stability of partition P here defined as the
arithmetic mean RN(P ) of the values R(P |Sj ,A(Sj)) for j = 1, . . . , N .

Notice that this procedure can be seen as a variant of the procedure pro-
posed by Ben-Hur et al. [1]. The sets S1, . . . , SN are perturbed versions
of the dataset X which are assumed to be of equal size, say m. Moreover,
S1, . . . , SN are i. i. d. random sets, so that according to the law of large
numbers, whenever N is large enough, RN(P ) is a faithful estimate of the
probability, say p, that memberships of P1 and P2 agree. Now, the Central
Limit Theorem provides a way to compute the minimum value Nε of N such
that the Confidence Interval at threshold 95% that estimates this probability
p has a length less or equal than a precision of 2ε.

Let us now investigate the extent with which the cluster-isolation degree
and the cluster-cohesion degree of each cluster of P contribute to the overall
measure of partitioning stability RN(P ):

RN(P ) =
1

N

N∑
j=1

R(P |Sj ,A(Sj)). (2)

Then, we consider both an arbitrary cluster C of P and an arbitrary per-
turbed version S of the dataset X. If D is some cluster of A(S), we denote
as mC,D the number of objects that are clustered both in cluster C ∈ P and
in cluster D ∈ A(S), so that mC,D = |C ∩D |. In addition, for all C ∈ P and
D ∈ A(S), we denote:

mC =
∑

D∈A(S)

mC,D = |C ∩ S | and mD =
∑
C∈P

mC,D = |D | .

Consequently,

m =
∑
C∈P

mC =
∑

D∈A(S)

mD =
∑
C∈P

∑
D∈A(S)

mC,D.

With these notations, we decompose R(P |S,A(S)) according to the contri-
butions of the clusters of P by means of decompositions of the terms N11
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and N00 (see (1)):

N11 =
∑
C∈P

∑
D∈A(S)

(
mC,D

2

)
=
∑
C∈P

(
mC

2

) ∑
D∈A(S)

(
mC,D

2

)
(
mC

2

) . (3)

N00 =
1

2

∑
C∈P

∑
D∈A(S)

|C ∩D ||C ∩D | .

Since |C ∩D |= |C ∪D |= m− (mC +mD −mC,D), we have:

N00 =
1

2

∑
C∈P

∑
D∈A(S)

mC,D(m−mC −mD +mC,D),

N00 =
∑
C∈P

1

2
mC(m−mC)

∑
D∈A(S)

mC,D(m−mC −mD +mC,D)

mC(m−mC)
. (4)

As a direct consequence of (1), (3) and (4), it follows:

R(P |S,A(S)) =
∑
C∈P

[
α(C) Rco(C;S) + β(C) Ris(C;S)

]
, (5)

where α(C), β(C),Rco(C;S) and Ris(C;S) are defined by:

α(C) =

(
mC
2

)(
m
2

) ,
β(C) =

1
2
mC(m−mC)(

m
2

) ,

Rco(C;S) =

∑
D∈A(S)

(
mC,D

2

)
(
mC
2

) , (6)

Ris(C;S) =

k∑
D∈A(S)

mC,D(m−mC −mD +mC,D)

mC (m−mC)
. (7)
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Since
∑
C∈P

mC = m, we have:

∑
C∈P

(
α(C) + β(C)

)
=

∑
C∈P

(
mC
2

)
+ 1

2
mC(m−mC)(
m
2

) = 1.

From equation (5) we deduce that R(P |S,A(S)) is the weighted mean, for
all C in P , of Rco(C;S) and of Ris(C;S), with weights being defined as
α(C), β(C) respectively. Note that the weights α(C), β(C) are independent
from the sample S.

Interpretation of Rco(C;S) for C ∈ P . Given an arbitrary cluster C of P ,
Rco(C;S) is the proportion, among the pairs of objects of C∩S, of those that
are clustered together by the partition A(S) (see eq. (6)). Hence Rco(C;S)
is the empirical estimation of the conditional probability that two objects of
a sample S are clustered together by partition A(S) given that they are in
cluster C. As a consequence, Rco(C;S) is the confidence index value of the
following (association) rule:

(Co) Given two objects of sample S of X, if they are clustered together in
cluster C then they are in the same cluster of A(S).

Since rule (Co) expresses the degree cohesion of cluster C, Rco(C;S) is a
measure of the degree cohesion of cluster C.

Interpretation of Ris(C;S) for C ∈ P . We proceed as for the interpretation
of Rco(C;S). Given an arbitrary cluster C of P , Ris(C;S) is the proportion
of pairs of objects that are not clustered together by partition A(S), among
those pairs of objects of S for which only one belongs to C (see eq. (7). It
results that Ris(C;S) is the empirical estimation of the conditional probabil-
ity that two objects of a sample S are are not clustered together by partition
A(S) given that only one of them belongs to C. Therefore, Ris(C;S) is the
confidence index value of the following (association) rule:

(Is) Given two objects of sample S of X, if only one is in C, then the two
objects are not in the same cluster of A(S).

Since rule (Is) expresses the degree of isolation of cluster C, Ris(C;S) is a
measure of the degree isolation of cluster C.
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As an immediate consequence of the above interpretations, Rco(C;S) and of
Ris(C;S) are empirical estimations of two conditional probabilities, these es-
timations being dependent from the sample S under consideration. Applying
the standard law of large numbers, the two means Rco,N(C) and as Ris,N(C)
defined by:

Rco,N(C) =
1

N

N∑
j=1

Rco(C;Sj),

Ris,N(C) =
1

N

N∑
j=1

Ris(C;Sj),

are faithful statistical estimations of the corresponding conditional proba-
bilities, provided that they are computed for a large number N of random
i.i.d. samples S1, . . . , SN . Furthermore, recall that the global stability of
partition P is here estimated by RN(P ) defined as mean of R(P |Sj ,A(Sj))
for j = 1, . . . , N (cf. eq. (2)). Since the coefficients α(C) and β(C), for
C ∈ P , don’t depend from the sample Sj being considered, it results from
eq. (5) that:

RN(P ) =
∑
C∈P

[
α(C) Rco,N(C) + β(C) Ris,N(C)

]
. (8)

As a consequence of the previous decomposition given by (8) we obtain the
next proposition.

Proposition. Assuming that a partitioning method provides a partition P
of some dataset, the measure of partitional stability, RN(P ), is the weighted
mean, for all clusters C in P , of Rco,N(C) and Ris,N(C) where :

- the measures Rco,N(C) and Ris,N(C) are stability-based estimations of
the cohesion degree and of the isolation degree of cluster C, respectively;

- the weight of Rco,N(C) is the proportion of pairs of objects of any sample
under consideration that are in cluster C.

- the weight of Ris,N(C) is the proportion of pairs of objects of any sample
under consideration for which only one object belongs to cluster C.
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3. Partitioning stability measure based on individual-cluster sta-
bility

The aim of this section is to derive, from the decomposition obtained
in the previous section, a partitioning stability measure that can be used
in order to identify the optimal number of clusters of a partition P of the
dataset X. Recall first that Ben David et al. [13] and Shamir and Tishby [14]
pointed out the importance of a low density of objects on the frontier between
each two clusters in order to insure an optimal stability of the partitioning.
According to this theoretical result, we propose to estimate the stability
of a partition by the minimum of its cluster cohesion degrees and its cluster
isolation degrees. Thus denoting as ICM(P ) the stability measure of partition
P defined in such a way, we have:

ICM(P ) = min
C∈P
{Rco,N(C),Ris,N(C)}.

This definition of the stability measure ICM(P ) requires to use a proce-
dure that defines and generates perturbed datasets S from the dataset X.
One approach may be to define S by adding a random noise to the value
of each variable for each object of X (typically, 5% of twice the standard
deviation for each variable). Another approach is to draw a random sample
S from the data set X using a sample rate f (typically, f = 0.80). In this
case, remark that each cluster of P may be under-represented in a given ran-
dom sample S, in particularly if some cluster sizes are less than (1 − f)|X|
then it may happen that no objects of such clusters belong to the sample
S. In such a case, it is clear that whatever the quality of partition P , the
comparison of A(S) with P cannot be in favor of the stability of P . We then
propose to use the so called proportionate stratified sampling procedure (see
for example Hansen et al. ([15], p. 140)) which consists in selecting randomly
and without replacement mC elements in each cluster C of P , where mC is
defined as the value f | C | rounded down to the nearest integer. Without
any specific indication, each sample S of X that we consider will be drawn
according to this proportionate stratified sample procedure. It results that
all the samples are of size equal to

∑
C∈P mC . Denoting as m this common

size, we then have:

m =
∑
C∈P

mC ≈ bf |X | c = bf nc.
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The proposed stability measure ICM aims at validating both the choice of the
clustering criterion and the choice of the number of clusters. In what follows,
we propose a general algorithm, denoted as Algorithm 1, that estimates the
stability measure ICM(P ) of a partition P , together with the two degrees
of cluster cohesion and cluster isolation for each cluster of P . Algorithm 1
requires to know the values of cluster-cohesion measure Rco,N(C) and cluster-
isolation measure Ris,N(C) for each cluster C of P : these values are indeed
computed hereafter by Algorithm 2.

Algorithm 1.

Require:
• X: reference dataset,
• kmax: maximum number of clusters to be tested,
• Ak: clustering algorithm into k clusters,
• γ: threshold value.

Ensure: k∗: optimal number of clusters.
1: for k = 2 to kmax do
2: Partition the reference dataset X into k clusters:

Pk = Ak(X) = {C1, . . . , Ck}.
3: For each cluster Ci(i = 1, . . . , k) of Pk, compute the cluster cohesion

measure Rco,N(Ci) and cluster isolation measure Ris,N(Ci).
4: Compute the minimum stability value:

ICM(Pk) = min
i=1,...,k

[min(Rco,N(Ci),Ris,N(Ci))].

5: end for
6: The optimal number of clusters is:

k∗ = max{k = 2, . . . , kmax : ICM(Pk) > γ}.
If all the values of ICM(Pk) are less then the specified value of γ, then
the optimal number of clusters is 1.

As mentioned in step 6 of the algorithm, a given partition Pk is stable if
all its cluster cohesion degrees and all its cluster isolation degrees are greater
than the specified value γ. In the experiences presented in next section 4,
the value of γ is fixed at 0.95.

Now, Algorithm 1 which computes our index ICM, requires to estimate
with a sufficient precision the stability-based measures Rco,N(C) and Ris,N(C)
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for each C ∈ P . Next algorithm, denoted as Algorithm 2, computes such
estimations, together with the value of RN(P ), providing these estimates
using a precision of 2ε at a confidence level of 95%. Notice that IC95%

stands here for the Confidence Interval at the level 95% of the stability-based
measure considered, this interval being computed by using the Central Limit
theorem. It is worth to notice also that Algorithm 2 runs with perturbed
datasets that can be defined either by addition of random noise or by any
type of random sampling.

Algorithm 2.

Require:
• X: reference dataset,
• Ak: clustering algorithm,
• P = Ak(X),
• ε: precision,
• I(S): stability-based measure given a single perturbed dataset S.

I(S) ∈ {R(P, S),Ris(C, S),Rco(C, S)}.

• IN =
1

N

N∑
j=1

I(Sj): mean of the stability-based measure for N perturbed

datasets S1, . . . , SN .
Ensure: INε estimate of the stability-based measure I with a precision less

or equal than ε
1: while (IC95%(IN) > 2ε) & (N < 500) do
2: N = N + 1
3: Compute the N th perturbed dataset SN derived from dataset X.
4: Compute IN
5: if (N > 30), compute IC95%(IN)
6: end while
7: Nε = N

8: INε =
1

Nε

Nε∑
i=j

I(Sj)
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4. Experimental results

In this section we compare the ICM criterion with nine among the most suc-
cessfull methods for determining the optimal number of clusters (cf. Milligan
and Cooper [10], Hardy [16] and Tibshirani and Walter [9]). This comparison
includes the In-group proportion (IGP) method proposed by Kapp and Tib-
shirani [6], the Calinski and Harabasz method (CH) [2], the Krzanowski and
Lai method (KL) [3], the Silhouette statistic proposed by Rousseeuw [17],
the Gap statistic proposed by Tibshirani et al. [4]), the Prediction strength
(PS) method of Tibshirani and Walter [9], the Jump statistic of Sugar et
James [18] and the Clest method due to Dudoit and Fridlyand [19].
We compare the ICM criterion with all these criteria on both real datasets
and artificial datasets generated from ten models that are specified in Kapp
[12]. The used parameters of the clustering validation methods considered
above are selected as in the paper which initially presented the method, in
particular two null reference distributions are considered for the Gap statis-
tic: the uniform reference distribution over the range of each observed feature
and the uniform reference in the principal components orientation.

4.1. Simulation results

We consider a dataset that consists of a n×p matrix X = (Xij) i=1,...,n
j=1,...,p

of real

values. Let Xi = (Xi1, . . . , Xip) be the ith row of X. The simulated datasets
were generated from ten models: seven low-dimensional models and three
hight-dimensional models that are presented below.

1. Uniform null in 10 dimensions: 200 data points uniformly distributed over
the unit square in 10 dimensions.

2. Gaussian null in 10 dimensions: 200 data points of a standard multivariate
normal distribution in 10 dimensions.

3. Four evenly-sized Gaussian clusters with identity covariance in 2 dimen-
sions: a mixture of 4 bivariate normal distributions with (25 25 25 25) ob-
servations and means and variance-covariance matrix given by

µ1 =

[
−3
3

]
, µ2 =

[
4
4

]
, µ3 =

[
5
5

]
, µ4 =

[
−6
6

]
and Σ =

[
1 0
0 1

]
.

4. Four unevenly-sized Gaussian clusters with identity covariance in 2 di-
mensions: a mixture of 4 bivariate normal distributions with (10 20 30 40)
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observations and means and variance-covariance matrix given by

µ1 =

[
−3
3

]
, µ2 =

[
4
4

]
, µ3 =

[
5
5

]
, µ4 =

[
−6
6

]
and Σ =

[
1 0
0 1

]
.

5. Four unevenly-sized Gaussian clusters with non-identity covariance in 2
dimensions: a mixture of 4 bivariate normal distributions with (10 20 30 40)
observations and means and variance-covariance matrix given by

µ1 =

[
−3
3

]
, µ2 =

[
4
4

]
, µ3 =

[
5
5

]
, µ4 =

[
−6
6

]
,

with Σ1 =

[
1 −0.7
−0.7 1

]
, Σ2 =

[
1 −0.3
−0.3 1

]
,Σ3 =

[
1 0.3

0.3 1

]
,

and Σ4 =

[
1 0.7

0.7 1

]
.

6. Two elongated clusters in 3 dimensions: for i = 1, . . . , 100 and j = 1, 2, 3

Xij = Yij +N(0, 0.1) withYi =

 −0.5 + i−1
99

−0.5 + i−1
99

−0.5 + i−1
99


and for i = 101, . . . , 200 and j = 1, 2, 3

Xij = Yij +N(0, 0.1) withYi =

 −0.5 + i−101
99

−0.5 + i−101
99

−0.5 + i−101
99


7. Four exponential clusters in 2 dimensions: for i = 1, . . . , 100 and j = 1, 2,

let Yij
iid∼ exp (1) and

Xi =


Yi + (2,−2) for i = 1, . . . , 25,
Yi + (2, 2) for i = 26, . . . , 50,
Yi + (−2, 2) for i = 51, . . . , 75,
Yi + (−2,−2) for i = 76, . . . , 100.

In order to take account of the effect of the high dimensionalilty of the data
sets on the results, the last three models are generated in 1000 dimensions.

8. Uniform null in 1000 dimensions: 100 data points uniformly distributed
over the unit square in 1000 dimensions.
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9. Three evenly-sized clusters separated in 900 dimensions: initially, let
Xij = 0 for all i = 1, . . . , 150 and j = 1, . . . , 1000. Then, set

Xij = 5


for i = 1, . . . , 50 and j = 51, . . . , 350,
for i = 51, . . . , 100 and j = 351, . . . , 650,
for i = 101, . . . , 150 and j = 651, . . . , 950.

To add noise to the data let the ni be the results from randomly drawing
150 elements from {1, 2, . . . , 100} with replacement. For each i, generate ni
random elements from a U [−1; 1] distribution and randomly add them to ni
elements among the Xijs.

10. Three unevenly-sized clusters separated in 900 dimensions: initially, let
Xij = 0 for all i = 1, . . . , 175 and j = 1, . . . , 1000. Then, set

Xij = 5


for i = 1, . . . , 25 and j = 51, . . . , 350,
for i = 26, . . . , 75 and j = 351, . . . , 650,
for i = 76, . . . , 175 and j = 651, . . . , 950.

To add noise to the data let the ni be the results from randomly drawing
175 elements from {1, 2, . . . , 100} with replacement. For each i, generate ni
random elements from a U [−1; 1] distribution and randomly add them to ni
elements among the Xijs.
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el
6

M
o
d

el
7

Procedure k-means

CH - - 1.00 0.99 0.69 0.00 0.34
KL - - 0.89 0.87 0.86 0.98 0.75
Silhouette - - 1.00 0.99 0.99 1.00 0.62
Gap/Unif. 0.01 0.09 0.04 0.96 0.67 0.00 0.18
Gap/PC 0.02 0.21 0.22 0.93 0.73 1.00 0.13
Clest 0.90 0.99 0.09 0.14 0.06 0.77 0.66
Jump 0.00 0.00 1.00 0.99 0.98 0.00 0.81
PS 1.00 1.00 1.00 0.90 0.75 0.43 0.85
IGP 1.00 1.00 0.80 0.15 0.10 0.76 0.11
Rand 1.00 1.00 0.02 0.01 0.01 0.00 0.41
ICM/Str. Sample 1.00 1.00 1.00 0.95 0.70 0.22 0.72
ICM/Noise 0.85 0.86 1.00 0.16 0.95 1.00 0.50

AHC (average linkage)

CH - - 1.00 0.99 0.97 0.11 0.31
KL - - 0.75 0.88 0.64 1.00 0.26
Silhouette - - 1.00 0.99 1.00 1.00 0.29
Gap/Unif. 0.78 0.95 0.89 0.96 0.98 0.03 0.06
Gap/PC 0.89 0.99 0.60 0.97 1.00 1.00 0.07
Clest 0.86 0.14 0.12 0.18 0.19 0.85 0.16
Jump 0.05 1.00 1.00 0.99 0.87 0.00 0.42
PS 0.10 0.04 0.45 0.15 0.36 0.96 0.21
IGP 1.00 1.00 0.64 0.25 0.12 0.64 0.16
Rand 1.00 1.00 0.95 0.94 0.93 0.33 0.32
ICM/Str. Sample 1.00 1.00 1.00 0.95 1.00 1.00 0.26
ICM/Noise 1.00 1.00 1.00 1.00 1.00 1.00 0.10

Table 1: Low-dimensional simulations: % of success for finding the number of clusters.

For each entry in Table 1, one hundred realizations were generated from the
model and the fraction of correct estimates for the cluster number estimation
method was computed.
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With models 1 and 2, if we exclude the CH, KL and Silhouette methods
which are not defined for data with a single cluster, ICM, IGP and the Rand
index did fairly well whether hierarchical clustering or k-means clustering was
used. The Gap and Jump methods did well in the case of a single Gaussian
cluster when hierarchical clustering was used. In contrast, the PS and Clest
methods performed much better with k-means.

With model 3, all the estimates of the CH, KL, Silhouette, Jump and ICM
methods were correct. The PS method did much better with k-means cluster-
ing and the Gap, IGP and specially Rand performed better using hierarchical
clustering. The Clest method did poorly with both clustering methods.

With model 4, the ICM method with stratified sampling, CH, Silhouette and
Jump did fairly well for the two used clustering methods and the fact that the
four clusters of the model are not sized equally improved drastically the Gap
method especially when k-means clustering was used. Furthermore, like the
Rand index, the ICM method with random noise did better with hierarchical
clustering compared with k-means clustering. The methods that did poorly
with both clustering methods were Clest and IGP.

With model 5, the additional complexity of nonidentity covariance matrices
adversely affected the performance of most of the methods when compared
to those of model 4. The notable exceptions were the silhouette and ICM
method with random noise, both of whom performed well with both cluster-
ing methods.

With model 6, the methods which almost always identified the two elongated
clusters for the two used clustering methods were KL, Silhouette, Gap (PC
reference distribution), and ICM with random noise. The ICM with stratified
sampling and PS did much better for the hierarchical clustering method than
for the k-means method. The CH, Gap (Uniform reference distribution),
Jump and Rand index did poorly especially for the k-means method (0.00%
of correct estimates).

With model 7, the performance of most of the methods declined: no method
correctly estimated the number of clusters present in model 7 every time.
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Procedure AHC k-means

CH - 1.00 1.00 - 1.00 1.00
KL - 1.00 1.00 - 1.00 1.00
Silhouette - 1.00 1.00 - 1.00 1.00
Gap/Unif. 0.08 0.26 0.12 0.00 0.20 0.06
Gap/PC 0.64 1.00 0.48 0.45 1.00 1.00
Jump 1.00 1.00 1.00 1.00 1.00 1.00
PS 0.00 0.00 0.00 0.38 0.00 0.00
IGP 1.00 1.00 1.00 1.00 1.00 1.00
Rand 1.00 1.00 1.00 1.00 0.99 0.98
ICM/Str. Sample 1.00 1.00 1.00 1.00 1.00 0.95
ICM/Noise 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: High-dimensional simulations: % of success for finding the number of clusters.
For each entry, one hundred realizations were generated from the model.

For the high-dimensional simulations, all data were in one thousand dimen-
sions. The Clest procedures were not considered in any high-dimensional
simulations because they required too much computation time.

With model 8, where a single uniform cluster was present, the Jump method,
IGP, Rand and ICM did well with the two used clustering method. The
methods that almost always overestimated the number of clusters present
were the PS and Gap (uniform reference distribution).

With model 9, when three clusters were present in the dataset, except the
Gap (uniform reference distribution) and PS, all the methods performed
perfectly in all cases.

With model 10, the results revealed that once the three clusters are not sized
equally, all of the methods that correctly estimated the number of clusters in
model 9 did also well with model 10 except the Gap (PC reference distribu-
tion) method, when hierarchical clustering was used, which did poorly with
48% off correct estimates.
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4.2. Real datasets

We have also compared the ICM method with the other methods on three
real datasets including the famous Fishers’s Iris.
The second dataset is the Wisconsin Breast Cancer Database and is consti-
tuted of 699 instances described by ten attributes. Each instance has one
of two possible classes: benign or malignant. We should note that owing to
the presence of missing values, 18 instances were removed from the original
dataset.
The third dataset is called Sonar and is constituted of 208 patterns: 111
patterns obtained by bouncing sonar signals off a metal cylinder at various
angles and under various conditions and 97 patterns obtained from rocks
under similar conditions. Each pattern is described by a set of 60 numbers
in the range 0.0 to 1.0. Each number represents the energy within a particular
frequency band, integrated over a certain period of time. A brief description
of these datasets is presented in Table 3. More details on these datasets are
available on the UCI Machine Learning Repository website. The results of
this comparison are given in Table 4.

Data
Number

of variables
Number

of objects
True number

of clusters

Fisher’s Iris 4 150 3
Wisconsin Breast Cancer 10 681 2
Sonar 60 208 2

Table 3: A description of real datasets.

With the Fisher’s Iris, the ICM method was among the six methods that
detected the 3 clusters of this dataset. The methods that failed in finding
this optimal number of clusters are Silhouette, Gap, KL and Jump.
With the Wisconsin Breast Cancer database, the methods that estimated
correctly the number of clusters are ICM, KL, Silhouette and Gap.
Finally, with the Sonar database, only three methods have succeeded in es-
timating correctly the optimal number of clusters: ICM with stratified sam-
pling, Silhouette and the CH index.
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CH 3 11 2 2
KL 9 2 3 1
Silhouette 2 2 2 2
Gap/Unif 2 2 1 1
Gap/PC 4 2 3 1
Clest 3 3 3 1
Jump 7 10 9 0
PS 3 5 1 1
IGP 3 8 1 1
ICM/Str. Sample 3 2 2 3
ICM/Noise 3 2 3 2

Number of success 6 6 3

Table 4: Real datasets : each entry in the table is the optimal number of clusters estimated
by the method.

4.3. Discussion

The simulation results showed that estimating the number of clusters present
in a dataset is a hard task in so far as it depends at the same time on the
characteristics of the dataset (shape of the clusters, dimensionality...), the
classification algorithm and the parameters of the estimation method. This
remark is illustrated by the important differences on the methods perfor-
mances from a model to another and a classification algorithm to another.
Nevertheless, based on the results presented in Table 5, our method, and more
precisely ICM with stratified sampling, was ranked first with 89% of correct
estimates when used with hierarchical clustering and was ranked fourth with
80% when used with k-means algorithm. This result is due to not only the
good performances of this method on almost all the models but also because
it always estimates the correct number of clusters in at least 22% of the
datasets for each model with both clustering algorithms. A real advantage
of this method is that it does not require selecting or using any specific defi-
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nition of the notion of cluster.
The results of the PS method that was ranked third (resp. 15th) on the
7 low-dimensional models when k-means (resp. hierarchical clustering) was
used, showed the extreme dependency of this method to the used classifica-
tion algorithm. This was predictable since this method is based on a cross
validation approach where the test set objects are classified to the group
whose center is the nearest to this object.
The Silhouette method performed very well ont models 3 to 7 and was ranked
first on these models. Nevertheless it has the major disadvantage of not be-
ing defined for data with a single cluster whereas our methods has always
detected the single cluster with both clustering algorithms.
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ICM/Str. Sample ∗ 0.89 1 0.84 4
ICM/Rand. Noise ∗ 0.87 2 0.82 5
PS ∗ 0.85 3 0.78 6
ICM/Str. Sample ∗ 0.80 4 0.71 10
Gap/PC ∗ 0.79 5 0.72 8
Rand ∗ 0.78 6 0.69 12
ICM/Rand. Noise ∗ 0.76 7 0.72 8
Gap/Unif. ∗ 0.66 8 0.58 17
Jump ∗ 0.62 9 0.65 14
IGP ∗ 0.56 10 0.38 20
Jump ∗ 0.54 11 0.75 7
IGP ∗ 0.54 12 0.36 21
Clest ∗ 0.52 13 0.34 22
Gap/PC ∗ 0.46 14 0.60 15
Clest ∗ 0.36 15 0.30 23
Rand ∗ 0.35 16 0.09 24
PS ∗ 0.32 17 0.42 18
Gap/Unif. ∗ 0.28 18 0.37 19
Silhouette ∗ - - 0.92 1
KL ∗ - - 0.87 2
Silhouette ∗ - - 0.85 3
KL ∗ - - 0.70 11
CH ∗ - - 0.67 13
CH ∗ - - 0.60 15

Table 5: The column number three and four gives respectively the average percentage of
success of each estimation procedure for the models (1-7) and the place of the estimation
procedure based on the fraction of correct estimates for all 700 artificial datasets. The
column number five and six gives respectively the average percentage of success of each
estimation procedure for the models (3-7) and the place of the estimation procedure based
on the fraction of correct estimates for these models.
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