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1 Université de Lyon, CNRS
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Abstract: Active contours and minimal paths have been extensively studied theoretical tools for image segmentation. The
recent geodesically linked active contour model, which basically consists in a set of vertices connected by paths
of minimal cost, blend the benefits of both concepts. This makes up a closed piecewise-defined curve, over
which an edge or region energy functional can be formulated. As an important shortcoming, the geodesically
linked active contour model in its initial formulation does not guarantee to represent a simple curve, consistent
with respect to the purpose of segmentation. In this paper, we propose to extract a similarly piecewise-defined
curve from a set of possible paths, such that the resulting structure is guaranteed to represent a relevant closed
curve. Toward this goal, we introduce a global constraint penalizing excessive overlap between paths.a
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1 Introduction

Methods addressing the problem of two-phase
segmentation based on energy minimization tech-
niques and variational principles provide a solid
mathematical background, and have proven to find
suitable solutions in many practical situations.
Among them, active contour models consist in
deforming an initial curve until it captures the
boundary of the target object. Whether they are
implemented in an explicit fashion or using level sets,
their evolution is usually driven by gradient descent
of the Euler-Lagrange equation, which makes them
sensitive to local minima, specifically in the presence
of noisy images. Consequently, the quality of the
resulting segmentation strongly depends on the initial
contour position. Several attempts have been made

to reduce this sensitivity, including the addition of
terms such as the balloon force (Cohen, 1991) or
the use of discrete optimization heuristics such as
dynamic programming (Amini et al., 1990) or greedy
algorithms (Williams and Shah, 1992). However,
these methods still lead to a local minimum of the
energy.

To overcome sensitivity to local minima, (Co-
hen and Kimmel, 1997) proposed to find a global
minimum of the geodesic active contour functional,
provided that one or two points of the target object
boundary are initially supplied by the user. The
resulting global geodesic curve, which can be
respectively closed or open, is efficiently derived
from the solution of the Eikonal equation obtained
with the Fast Marching method (Tsitsiklis, 1995;



Sethian, 1996). Since the control points are fixed
and must be located on the target contour, this latter
model does not represent a curve which deforms
its shape. Moreover, due to the restricted number
of these points, the geodesic may fail to capture a
relevant contour if the image is too noisy, not enough
contrasted, or if the target contour is too lengthy.
While several methods concentrate on avoiding this
second drawback (Benmansour and Cohen, 2009)
(Benmansour and Cohen, 2011) (Kaul et al., 2010),
the geodesically linked active contour model of
(Mille and Cohen, 2009) allows to overcome the first
one. This latter model combines the advantages of
geodesics with the ones of greedy algorithms in order
to deform a piecewise geodesic curve. Moreover, it
is also able to include region-based energies, such as
the minimal variance term proposed by (Chan and
Vese, 2001), or even shape prior terms. Whereas
this model is relatively robust to local minima, it
can fail to construct a valid closed curve, from the
initialization step to the end of the evolution.

To overcome this drawback, we design a new en-
ergy functional allowing to find a piecewise smooth
curve with minimal overlapping. Given several pos-
sible relevant paths, subsequently referred to as ad-
missible paths, the key idea of our contribution is to
select the combination of paths generating the most
relevant contour. In this extent, we introduce an en-
ergy functional, combining contour and region terms
with a novel overlapping measure.The construction
of admissible paths, the overlapping energy as well
as the selection of the optimal combination of paths
are described in Section 3. The effectiveness of our
extended geodesically linked active contour model,
whether given initial points are located on the target
contour or far from it, is shown in Section 4 through
several experiments. The concepts on which relies the
proposed approach are recalled in the following sec-
tion.

2 Related concepts

2.1 Minimal paths

To extract structures in a given image I :D→Rd ,
(Cohen and Kimmel, 1997) proposed to find curves
of minimal length according to an heterogeneous
isotropic metric defined from a potential P :D→R∗+.
This potential, which is chosen to take lower values
on the structure of interest, allows to measure the
length of piecewise smooth curves γ : [0,1]→D as fol-

lows:

L[γ] =
∫ 1

0
P(γ(u))

∥∥γ
′(u)
∥∥du. (1)

In the context of contour extraction, curves should be
located along edges. The potential is thus defined as
P=g+w, where g :D→R+ is a decreasing function
of the gradient magnitude of the image (usually con-
volved with the derivatives of a Gaussian with given
standard deviation σ),

g(x) =
1

1+‖∇(Kσ ∗ I)(x)‖
(2)

and w∈R∗+ is a regularizing constant. The target im-
age structure is then extracted by finding a path of
minimal length among all paths connecting two given
points x1 and x2 located on the structure

argmin
γ⊂D

{L[γ]} s.t.
{

γ(0) = x1
γ(1) = x2

. (3)

Such a globally defined minimal path is called a
geodesic. The solution of minimization problem (3)
can be obtained by considering the geodesic distance
map, also referred to as the minimal action map,
Uv :D→R+ which assigns, to each point x∈D , the
length of the minimal path connecting x to a given
point v∈D:

Uv(x) = inf
γ
{L[γ]} s.t.

{
γ(0) = v,
γ(1) = x. (4)

This map is the unique viscosity solution of the
Eikonal equation{ ‖∇Uv(x)‖= P(x), ∀x ∈D \{v},

Uv(v) = 0,
(5)

see for instance (Crandall et al., 1992). This allows
to replace optimization problem (4) by a partial dif-
ferential equation. Its discrete version, on a cartesian
grid, can be efficiently solved by the Fast Marching
(FM) method in O(N logN) operations, where N is
the number of grid points (Tsitsiklis, 1995; Sethian,
1996; Sethian, 1999). Once the distance map has been
numerically computed, the minimal path between v
and any other point x of D can be extracted by a gra-
dient descent on Uvγ

′(u) =− ∇Uv(γ(u))
‖∇Uv(γ(u))‖

,

γ(0) = x,
(6)

that corresponds to a back-propagation starting
from x until v is reached. In practice, since the
FM is a monotonically front propagation method,
finding the minimal path bewteen two points does
not require to compute the distance on the whole



(a) (b) (c) (d) (e)
Figure 1: (a) Input image. (b) Potential P. (c) Geodesic between two given points. (d) Undesirable sructure extraction. (e)
Piecewise geodesic curve.

domain D . Starting from one point, the FM can
be stopped when the second point is reached, en-
suring that the minimal path can be extracted with (6).

The minimal path approach is not restricted to
extract an open curve, provided its endpoints. In
particular, in the context of object extraction, it is
able to find a closed curve, provided only one point
on the target object boundary. The closed curve is
obtained by detecting a saddle point of the distance
map and then by performing two back-propagations,
in opposite directions, starting from this saddle point
(Cohen and Kimmel, 1997). Whether the curve
is closed or open, the minimal path approach can
fail to extract the desired curve. As depicted in
Fig. 1(d), some portions of the minimal path do not
follow the desired curve. This happens for instance
when P is too noisy or not enough contrasted, when
the length of the target curve is too important, or
when the regularization constant w is too high. This
undesirable behaviour hides a sampling problem, that
is one or two points are usually not enough to capture
the whole desired curve.

To overcome this drawback, several ap-
proaches aim at finding a piecewise geodesic
curve Γ=(V,{γi}i), where V ={vi}i is a set of ver-
tices that samples the structure to extract, and {γi}i
is the set of geodesics connecting pairs of succesive
vertices (see Fig. 1(e)):

γi = argmin
γ

{L[γ]} s.t.
{

γ(0) = vi,
γ(1) = vi+1.

(7)

Given an initial vertex set, new vertices can be re-
cursively and efficiently detected in several practical
situations such that the resulting piecewise geodesic
curve matches the desired structure. See (Benman-
sour and Cohen, 2009; Peyré et al., 2010) for a com-
plete survey. In Section 3 we propose an alternative
approach to overcome this drawback when a closed
curve needs to be extracted. This approach is closely
related to the geodesically linked active contour de-

scribed in the following section.

2.2 The geodesically linked active
contour model

In order to extract an object from an image, (Mille and
Cohen, 2009) proposed an active contour model ex-
plicitely represented by a closed piecewise geodesic
curve, allowing initialization inside the object or
around the object boundary. The optimal contour
is defined as the piecewise geodesic closed curve
Γ=(V,{γi}1≤i≤n) that minimizes a weighted sum of
edge-based and region-based energy functionals:

E[Γ] = ωedgeEedge[Γ]+ωregionEregion[Γ]. (8)

The edge-based energy integrates the edge indicator
function g (Eq. (2)) along the geodesics

Eedge(Γ) =
1
|Γ|

n

∑
i=1

∫ 1

0
g(γi(u))

∥∥γ
′
i(u)
∥∥du. (9)

In order not to penalize lengthy contours, it is normal-
ized by the euclidean length

|Γ|=
n

∑
i=1

∫ 1

0

∥∥γ
′
i(u)
∥∥du.

One may note that the edge indicator g is used instead
of the potential P so that the euclidean component
of the curve length is not taken into account. This
ensures that short curves, which could be undesirable
shortcuts, are not preferred over longer ones. This
edge term may be associated with a balloon term
similar to the one introduced in (Cohen, 1991) in
order to increase the capture range of the contour
when located far from the object boundary.

In addition, the region-based energy allows to
overcome limitations of the edge-based only model,
in particular when dealing with noisy, low-constrasted
or textured images. (Mille and Cohen, 2009) pro-
posed to use a modified version of the two-phase
piecewise constant segmentation model developped



Figure 2: Evolution of geodesically linked active contour: in the evolution steps, all test geodesics from neighboring vertices
to test positions in windows are represented.

by (Chan and Vese, 2001). Assuming that curve Γ

partitions the image into inner region Ωin and outer
region Ωout, the region term is expressed as the sum
of inner and outer image variances:

Eregion[Γ] =
1
|Ωin|

∫
Ωin

‖I(x)−µin‖
2 dx

+ 1
|Ωout|

∫
Ωout
‖I(x)−µout‖

2 dx,
(10)

where µin and µout are average colors in these regions.
Following (Mille, 2009), a relaxed image homogene-
ity term focusing on the vicinity of the curve, referred
to as narrow band region term, was also addressed as
a possible replacement for the previous region term.

Evolution of active contours, whether they are im-
plemented explicitly or in a level-set fashion, is usu-
ally performed with gradient descent of the Euler-
Lagrange equation. However, in the present case,
the energy cannot be differentiated with respect to a
given vertex vi. It depends on geodesics linked to vi,
which are not expressed in closed form. Hence, the
piecewise geodesic structure is evolved thanks to a
greedy algorithm similar in principle to the one pro-
posed in (Williams and Shah, 1992), which is discrete
by nature and does not imply differentiation. Basi-
cally, vertices are moved in local windows in order to
minimize the selected energy. Let WN be a normal-
oriented window of length m centered at vertex vi:

WN(vi) =

{
vi + kni

∣∣∣ k =−m
2
· · m

2

}
where ni is the inward unit normal vector, esti-
mated by finite difference on corresponding points on
geodesics γi and γi+1, respectively. Greedy evolution
is performed by moving vertex vi to the position in
the window which corresponding geodesically linked
contour has the smallest energy E. Let us consider a
test position ṽi belonging to the window, and its as-
sociated test geodesics γ̃i−1 and γ̃i linking it to the
neighbors of vi−1 and vi+1, respectively. The evolu-
tion scheme for vertex vi is formalized by the itera-
tion:

v(t+1)
i = argmin

ṽi∈WN

(
v(t)i

)E(Γ̃)

where Γ̃ is the tested piecewise geodesic curve:
Γ̃ = {γ1, ...,γi−2, γ̃i−1, γ̃i,γi+1, ...,γn} (11)

The behavior of the geodesically linked active con-
tour is depicted in Fig. 2. We can observe that it is
able to capture accurately the object boundaries with
a reduced number of vertices.

While the geodesically linked active contour
model allows to blend the benefits of minimal paths
and region-based terms, it turns out to have a sig-
nificant drawback, as its initial state is not necessar-
ily a simple closed curve. As depicted in Fig. 3(a),
this can occur when the initial vertices are unevenly
distributed around the target boundary. In this case,
geodesics are very likely to gather on particular sides
of the target instead of roughly covering the boundary.
The reason is that each geodesic is generated indepen-
dently of the others, such that the obtained piecewise-
geodesic curve does not depend on the visiting order
of pairs of adjacent vertices. This undesirable phe-
nomenon may occur either as soon as the geodesically
linked contour is initialized, or after several evolution
steps on a previously well initialized contour.

As in Section 2.1, this problem can be seen as a
sampling one. Intuitively, one could think of impos-
ing evenly spaced vertices, as depicted in Fig. 3(b),
or adding vertices near the parts of the target bound-
ary which are not covered by the piecewise geodesic
curve, like in Fig. 3(c). In the considered context,
such sampling criteria are difficult to express, since
the target boundary is unknown and applications usu-
ally need minimal user interaction. Otherwise, one
could think of imposing hard constraints on the over-
lapping between paths or penalizing paths enclosing
a region with excessively small area, but the indepen-
dent construction of paths prevents such constraints
to be implemented. We address this shortcoming in
what follows.

3 Finding the best path set

To overcome the drawbacks of the geodesically
linked active contour model, we focus on determin-



v1

v2

v3

v1

v2

v3

(a) (b)

v1

v2

v3

v4

v1

v2

v3

(c) (d)
Figure 3: Towards a relevant initialization of the geodesi-
cally linked active contour model: (a) undesirable overlap-
ping with unevenly spaced vertices, (b) improvement by
even spacing of vertices, (c) improvement by addition of
vertex, (d) admissible paths sets between pairs of vertices
with K = 4 paths per pair and high regularization constant w

ing a more relevant contour representation which pre-
serves the advantages of piecewise geodesic curves.
Assuming that several possible relevant paths linking
successive vertices are available, the idea of our con-
tribution is to select the combination of paths generat-
ing the most relevant boundary curve. This piecewise
smooth closed curve is built by selecting a single path
from each set, related to each pair of successive ver-
tices. The relevancy of the generated contour is mea-
sured by an energy functional, combining contour and
region terms with an overlapping measure. This last
term ensures the resulting curve to minimally overlap.

3.1 Sets of admissible paths

Let V = {vi}1≤i≤n be a sequence of n given vertices.
Instead of a single geodesic γi for each pair of suc-
cessive vertices vi and vi+1, we consider a set Si of K
admissible paths available for this pair, as exemplified
in Fig. 3(d):

Si = {γi, j}1≤ j≤K

Paths in Si are sorted by cost in ascending order, so
that γi,1 actually corresponds to the minimal path be-
tween vi and vi+1 whereas the remaining curves γi, j,
2 ≤ j ≤ K, are only short paths of increasing cost.
Moreover, all paths in Si are constrained to be pair-
wise disjoint, except at their endpoints, which is for-

mulated as the following condition:

γi, j1(u) 6= γi, j2(v),
∀( j1, j2) ∈ [1..K]2, j1 6= j2,
∀(u,v) ∈]0,1[2,u 6= v.

One may notice that the current approach is more
constrained than the so-called K shortest paths prob-
lem (Yen, 1971; Eppstein, 1998), which, in its basic
formulation, does not impose paths to be disjoint. In
the present case, the non-overlap constraint simplifies
the generation of several paths. Intuitively, in a graph,
the disjoint paths between a pair of vertices can be
found by running several instances of the shortest
path algorithm, after removal of vertices and incident
edges belonging to already found paths.

In our approach, recall that paths are extracted us-
ing the Fast Marching method. Hence, the K admis-
sible paths are built by successive deletion of already
existing paths from the potential map. Curve γi,1 is
the minimal path between vi and vi+1 in the space
endowed by the initial potential P1 = P. Once the
minimal path γi,1 has been computed, the second ad-
missible path γi,2 is sought under the constraint that
it should not pass through points belonging to γi,1.
Hence, γi,2 is not a geodesic in the space induced by
potential P, but in the space induced by a modified
potential P2. The deletion of γi,1 in the modified po-
tential map is achieved by setting the potential to +∞

at all points of the geodesic. Extending this princi-
ple to the construction of the jth admissible path γi, j
as shown in Fig. 4, a recursive definition of potential
functions can be written as:

Pj(x) =
{

+∞ if x ∈ γi, j−1
Pj−1(x) otherwise.

This leads to the following recursive definition of the
set of admissible paths:

γi, j = argmin
γ

{∫ 1

0
Pj(γ(u))

∥∥γ
′(u)
∥∥du

}
s.t. γi, j(0) = vi and γi, j(1) = vi+1.

From a practical point of view, one may note that the
gradient descent scheme used to built path is contin-
uous, which generates path points with real coordi-
nates, whereas the potential is implemented on a dis-
crete grid. Hence, in order to set Pj(x) to +∞, we
actually set the 4 integer points surrounding x to +∞.

3.2 Paths configuration of minimal cost

The computation of an admissible closed contour con-
sists in selecting one path out of each set Si, such that
the contour resulting from the concatenation of se-
lected paths exhibit desirable properties in the image.



Figure 4: Successive potential maps Pj (top row) and corresponding admissible paths γ·, j (bottom row) given two endpoints.

One of these properties is that the generated contour
should be simple, i.e. non-intersecting. In practice,
it is reasonable to allow some overlapping between
paths. A natural example arises when vertices are
located far from the target boundaries, which might
cause several admissible paths to have common sec-
tions before splitting up. Hence, the non-overlapping
condition should be reformulated as a soft constraint.
Towards this purpose, we first introduce the overlap
measure O between two curves:

O[C1,C2] = max
(

1
|C1|

∫ 1

0
ψ[C1(u),C2]

∥∥C1
′∥∥du,

1
|C2|

∫ 1

0
ψ[C2(u),C1]

∥∥C2
′∥∥du

)
.

(12)
It may be considered as the similarity counterpart of
the modified Hausdorff distance (Dubuisson and Jain,
1994), as the integrated quantity is a proximity mea-
sure instead of a distance. Penalty functional ψ mea-
sures the cost of the proximity of point x to curve C .
We chose a truncated linear decreasing function of the
euclidean distance between x and its nearest point lo-
cated on C :

ψ[x,C ] = max
(

0,1−α min
v∈[0,1]

{
‖x−C (v)‖

})
,

where weight α controls the decreasing slope, which
is related to the fuzziness of the overlap cost. Note
that O is symmetrical and O[C ,C ] = 1.

The computation of an admissible closed contour
can be formulated as determining the sequence of la-
bels {x1,x2, . . . ,xn} ∈ [1..K]n minimizing an energy
functional E, where label xi corresponds to the cho-
sen path in set Si:

min
{x1,x2,··· ,xn}∈[1..K]n

E [Γ(γ1,x1 ,γ2,x2 , · · · ,γn,xn)] ,

where Γ(γ1,x1 ,γ2,x2 , ....,γn,xn) is the closed contour
built by concatenation of paths γi,xi . It is subse-
quently shortened to Γ for simplicity. Energy E is
the mathematical formulation of required properties
of Γ within the image, extending the energy func-
tional (8) involved in the geodesically linked active
contour model. It is designed to penalize contours ex-
hibiting strongly overlapping sections, poorly fitting
to image edges or enclosing regions with high color
disparity:

E[Γ] = Eoverlap[Γ] + ωedgeEedge[Γ]

+ ωregionEregion[Γ].
(13)

Weights ωedge and ωregion are user-defined parameters
controlling the relative significance of the edge and
region terms over the overlap term. This last one is
defined by applying the overlap measure defined in
equation (12) over all pairs of paths:

Eoverlap[Γ] =
n−1

∑
i=1

n

∑
j=i+1

O
[
γi,xi ,γ j,x j

]
.

The edge energy integrates the edge indicator func-
tion g along paths normalized by their euclidean
length:

Eedge[Γ] =
n

∑
i=1

1
|γi,xi |

∫ 1

0
g(γi,xi(u))

∥∥γi,xi
′(u)
∥∥du.

Unlike the previous edge term in Eq. (9), normaliza-
tion by euclidean length is performed on each path
before summation. This makes Eedge a separable sum
of path-wise terms, which is an advantageous prop-
erty for optimization (this point is further discussed
in subsection 3.3). As the current curve to be opti-
mized is closed, we propose to use a region term, sim-
ilar to (10), which combines image color variances of



the two regions delimited by the curve, as proposed
by (Chan and Vese, 2001):

Eregion[Γ] =
λ

|Ωin|

∫
Ωin

‖I(x)−µin‖
2 dx

+
1−λ

|Ωout|

∫
Ωout
‖I(x)−µout‖

2 dx,
(14)

where λ∈ [0,1] controls the blending of the two terms.
While the overlap and the edge energy functionals
constitute the building blocks of the proposed model,
the region term can be easily replaced in specific sit-
uations, e.g. with piecewise-smooth models (Lankton
and Tannenbaum, 2008; Brox and Cremers, 2009) or
texture features (Sagiv et al., 2006).

3.3 Optimization

The best sequence of labels {x1,x2, ...,xn} is de-
termined using a brute force search among the Kn

possible configurations. Note that all energy terms
are fully or partially precomputed before testing
these configurations. Trivially, the edge term needs
to be computed only once for each path. Overlap
coefficients O[·, ·] are pre-computed between all pairs
of path and stored in an upper triangular similarity
matrix, allowing straightforward computation of the
overlap term.

Regarding the region term, Green’s theorem en-
ables to convert region integrals over Ωin(Γ) - and si-
multaneously over Ωout(Γ) = D\Ωin(Γ) - into a sum
of contour integrals over each path, according to the
following template formula. For any integrable func-
tion f over D , we have:∫

Ωin(Γ)
f (x)dx =

n

∑
i=1

∫ 1

0
F(γi,xi) · γi,xi

′⊥du (15)

where F is a vector field verifying div F = f . The
computation of color means and variances is therefore
separable over each path, which allows precomputa-
tion. Vector field F is obtained by integrating f along
the x and y-dimensions:

F(x,y) =
[∫ x

0
f (t,y)dt ,

∫ y

0
f (x, t)dt

]T

Two vector fields are computed once at every loca-
tion, for f = I and f = ‖I‖2, which allows color
means and variances, over inner and outer regions of
a given tested configuration Γ, to be efficiently deter-
mined.

4 Experiments and discussion

We demonstrate the ability of the model to
recover closed boundaries of objects in natural color
images, given few user-provided points. These
points are either located on the target boundary,
to assess the relevancy of the proposed approach
independently from any deformation algorithm, or
far from the boundary, in order to show its benefits
when integrated into the deformation process of the
geodesically linked active contour model. In all
experiments, regularization weight w was set to 0.01,
the RGB components being assumed to vary from 0
to 1. Low values of w prevent paths from creating
undesirable shortcuts, therefore favouring high gradi-
ent edges. Reported execution times were obtained
with a C++ implementation running on a standard
Intel Core2 Duo 2.8GHz architecture with 4Gb RAM.

4.1 From points localized on the
contour

Fig. 5 depicts an experiment intended to demon-
strate the consistency of contour extraction with
respect to various initial locations of vertices. The
closed contour was generated given n = 2 vertices
and K = 5 admissible paths. On the aforementioned
architecture, paths generation took 0.94s and contour
selection took 0.14s. As neighboring areas are
sufficiently contrasted, the edge map alone turned out
to be reliable enough, which allowed not to use the
region homogeneity term. Hence, only the overlap
and edge terms were used on this particular image.
The proposed approach proves to recover suitable
contours regardless of the positions of endpoints. In
particular, vertices do not need to be evenly spaced
along the actual object boundary.

One of the main benefits of the proposed approach
over classical minimal path-based segmentation is the
ability to formulate a region-based criterion, as in
classical active contours. Figures 6 and 7 illustrate
the interest of using such criterion, as well as the
overlap constraint. The 700×529 data in Fig. 6 was
processed with n = 3 vertices and K = 5 admissible
paths per pair of successive vertices. Paths genera-
tion took 13.3s and contour selection 3.9s. The an-
noying overlapping phenomenon yielded by the ba-
sic geodesically linked active contour is shown in
Fig. 6(c). Incorporation of the overlap constraint en-
ables to generate a closed contour, which remains
nevertheless unrelevant with respect to image parti-
tion. This can be explained by the fact that various



Figure 5: Robustness of contour extraction with respect to vertices locations: all admissible paths (top row) and selected
contour (bottom row).

(a) (b) (c)

(d) (e) (f)
Figure 6: Influence of the region homogeneity term: (a) input image, (b) inverted gradient magnitude, (c) initial configuration
of the basic geodesically linked active contour (independent minimal paths), (d) all admissible paths, (e) selected contour with
overlap and edge terms, (f) selected contour with overlap, edge and region terms.

edges, stronger that the actual boundaries of the tar-
get object, can be encountered in neighboring struc-
tures. This undesirable feature is addressed by the
addition of the region homogeneity term (weight λ

balancing the inner and outer region terms was set
to 1, as only the inner object is almost homogeneous).
The last experiment shown in Fig. 7 follows a simi-
lar principle, with n = 4 and K = 5, on a 800×600
image. Reported execution times for paths generation
and contour selection are 22.5s and 7.8s, respectively.

For this image, while the proposed approach outper-
forms the geodesically linked active contour model at
its initialization, the resulting curve fails to fully ex-
tract the desired contour, due to weak edges near the
object center. Since the object of interest is textured,
this could be improved by considering a region energy
that favors homogeneous textured regions.



(a) (b) (c)

(d) (e) (f)
Figure 7: Influence of the region homogeneity term: (a) input image, (b) inverted gradient magnitude, (c) initial configuration
of the basic geodesically linked active contour (independent minimal paths), (d) all admissible paths, (e) selected contour with
overlap and edge terms, (f) selected contour with overlap, edge and region terms

(a1) (a2) (b1) (b2)

(c1) (c2) (d1) (d2)
Figure 8: Integration of non-overlapping constraint in the geodesically linked active contour model. For each subfigure: (x1)
initial state, (x2) final state. (a & c) Basic geodesically linked active contour, (b & d) Geodesically linked active contour
model with non-overlapping constraint

4.2 Integration into deformation
process

We report experiments where the proposed approach
was integrated into the evolution algorithm of the
geodesically linked active contour model, so that con-

tour extraction can be performed with initial points
located far from the target contour. The integra-
tion is as follows: during deformation, when displac-
ing a given vertex vi, tested geodesics γ̃i−1 and γ̃i
are built such that they do not overlap with existing
geodesics {γ1, ...,γi−2,γi+1, ...,γn}. This is achieved
by deleting these existing geodesics in the potential



map, as described in subsection 3.1. The energy of
the tested contour is endowed with the overlap term
according to Eq. (13).
The proposed approach can solve the overlapping
problem arising in two different cases. The first case,
shown in Fig. 8(a), corresponds to an overlapping
present as soon as the contour is initialized and propa-
gated afterwards. On the other hand, the second case,
depicted in Fig. 8(c), shows the result of an overlap-
ping occuring during evolution of a well-initialized
curve. In both cases, the integration of our approach
when updating geodesics during evolution allows to
maintain a valid contour (Fig. 8(b) and Fig. 8(d)),
at the expense of additional time cost to check paths
configurations.

5 Conclusion and perspectives

By searching the best paths configurations among
sets of admissible paths, given an energy functional
combining an edge fitting term, a region homogeneity
term and a novel overlap-penalizing energy, we aimed
at overcoming some important shortcomings arising
in geodesic-based segmentation. The introduced con-
straints allowed to guarantee consistent closed con-
tours, whether given initial points were located on the
target boundaries or far from them. Incorporation into
the geodesically linked active contour model demon-
strated the advantages of the approach. Future work
may focus on designing finer search methods to de-
termine the optimal set of paths, since a basic brute
force search was implemented so far. A related possi-
ble investigation deals with the generation of admis-
sible paths. In this extent, instead of generating all
admissible paths per pair of successive vertices at ini-
tialization, one could think of an adaptive approach
in which only necessary extra admissible paths would
be created during the search process.
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