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The symmetry of minimisers for the best constant in the trace inequality in a ball, Sq(ρ) = inf u∈W 1,p (Bρ) u p W 1,p (Bρ) / u p L q (∂B(ρ)) has been studied by various authors. Partial results are known which imply radial symmetry of minimisers, or lack thereof, depending on the values of trace exponent q and the radius of the ball ρ. In this work we consider a one dimensional analogue of the trace inequality and the corresponding minimisation problem for the best constant. We describe the exact values of q and ρ for which minimisers are symmetric. We also consider the behaviour of minimisers as the symmetry breaking threshold for q and ρ is breached, and show a case in which both symmetric and nonsymmetric minimisers coexist.

Introduction

This note describes a one dimensional problem that is related to the study of the symmetry properties of minimisers for the best constant in the trace inequality in a ball. To motivate what follows we first review some known results.

Let B ρ denote the ball of radius ρ > 0 centered at the origin in R N with N ≥ 2. Let 1 < p < ∞ and let 1 < q < p * where p * is the critical trace O. Torné exponent. The best constant in the Sobolev trace inequality is given by (1.1) S q (ρ) = inf u∈W 1,p (Bρ)

Bρ |∇u| p + |u| p dx ( ∂Bρ |u| q dσ) p/q .

If 1 < q < p * this infimum is achieved by a function u which has definite sign and any nonzero multiple of u is again a minimiser. Since the minimisation problem is invariant under any rotation it is natural to ask if u is a radial function.

When p = 2 the results of [START_REF] Bonder | Symmetry properties for the extremals of the Sobolev trace embedding[END_REF], [START_REF] Del Pino | Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains[END_REF], [START_REF] Lami Dozo | Symmetry and symmetry breaking for minimizers in the trace inequality[END_REF] show that if q ≤ 2 then any minimiser is radial. Also, if q > 2 is fixed and ρ is sufficiently small, or if ρ > 0 is fixed and q > 2 is sufficiently close to 2, then any minimiser is radial. On the other hand if q > 2 is fixed, then there is no radial minimiser provided ρ is large enough.

The case for general 1 < p < ∞ is studied in [START_REF] Lami Dozo | Symmetry and symmetry breaking for minimizers in the trace inequality[END_REF]. It is shown that if 1 < q ≤ p, then any minimiser for (1.1) is radial. Moreover, under certain conditions radial symmetry is lost if either q or ρ is sufficiently large. Define the function Q(ρ) by

(1.2) Q(ρ) = 1 λ 1 (ρ) p/(p-1) 1 -(N -1) λ 1 (ρ) ρ + 1.
Here λ 1 (B ρ ) denotes the first positive eigenvalue in the Steklov problem

(1.3) ∆ p u = |u| p-2 u in B ρ , |∇u| p-2 ∂u ∂ν = λ|u| p-2 u on ∂B ρ .
It is shown that if q > Q(ρ) then there is no radial minimizer for S q (ρ). Also, Q(ρ) ↓ p as ρ → ∞ from which it follows that if q > p is fixed, radial symmetry is lost provided ρ is sufficiently large. It is also known that if there exists a radial minimiser for some S q0 (ρ), then any minimiser for S q (ρ), with q < q 0 , is radial. If a radial minimiser does exist, it is given by the unique (up to normalisation) eigenfunction associated to λ 1 (ρ). In light of this, one may define a threshold value Q * (ρ) such that if q < Q * then any minimiser is radial, whereas if q > Q * then there does not exist a radial minimiser. Also one may show there exists a radial minimiser for q = Q * but it's not known in this case whether or not there may also exist a nonradial one.

Clearly there holds Q * (ρ) ≤ Q(ρ), however thus far there do not appear to be any cases in which it is known if Q(ρ) is the exact threshold for loss of radial symmetry, or merely an upper bound.

In this note we consider a one dimensional analogue of the minimisation problem (1.1) in which Q is found to be the exact threshold for symmetry breaking. Let 1 < p < ∞, 1 < q < ∞ and ρ > 0. In analogy with (1.1), we define

(1.4) S q (ρ) = inf u∈W 1,p (-ρ,ρ) ρ -ρ |u ′ | p + |u| p dx (|u(-ρ)| q + |u(ρ)| q ) p/q .
As above, the infimum in (1.4) is achieved by a function of definite sign that can be assumed to be positive. In this setting the notion of radial symmetry is naturally replaced by that of an even function. As above, the case q = p is referred to as the Steklov problem and the corresponding minimiser u 1 is unique up to normalisation. We have the following result.

Theorem 1.1. Assume p > 3/2. Let u ∈ W 1,p (-ρ, ρ) be a minimiser for S q (ρ) defined by (1.4). Then u is an even function if, and only if, q ≤ Q(ρ) where Q is given by (1.2) with N = 1 and with λ 1 the first eigenvalue in the corresponding one dimensional Steklov problem.

It is interesting to note that in the case p = 2, ρ = 1 and N ≥ 3, Gazzini and Serra [START_REF] Gazzini | The Neumann problem for the Henon equation, trace inequalities and Steklov eigenvalues[END_REF] find, amongst other results, that minimisers for the Rayleigh quotient (1.1) restricted to radial functions, are nondegenerate local minima over the whole of H 1 for all q < 2 * . In this case Q(ρ) > 2 * so the condition q < Q(ρ) is automatically satisfied. Furthermore, those authors observe that if one were to have Q * < 2 * then this would imply that nonradial minimisers are always far away from the radial minisers and do not branch out smoothly as the level Q * is breached. In the case of problem (1.4) we are able to show that such counter intuitive behaviour may or may not occur depending on the value of p.

Under the assumptions of Theorem 1.1, the behaviour of minimisers is as expected in that noneven minimisers branch out from the even one when the symmetry breaking threshold is breached.

Theorem 1.2. Assume p > 3/2. Any minimiser for S Q(ρ) (ρ) is even and, up to normalisation, is given by u 1 . Also, noneven minimisers branch out from u 1 in the sense that if q i ↓ Q(ρ), and u qi is an appropriately normalised minimiser for S qi (ρ), then u qi → u 1 .

When p is close to unity, we do not know if there holds Q * (ρ) = Q(ρ). However we can prove that noneven minimisers make a sudden appearance and do not branch out from even ones. Theorem 1.3. Let ρ > 0 be fixed. If p > 1 is sufficiently close to 1 then there exists both an even and a noneven minimiser for S Q * (ρ). Moreover, if q i ↓ Q * (ρ), and u qi is an appropriately normalised minimiser for S qi (ρ), then up to a subsequence u qi converges to a noneven minimiser.

Proofs

If u is a minimiser for (1.4) then it satisfies the following equations.

(2.1)

(|u ′ | p-2 u ′ ) ′ = u p-1 in ]-ρ, ρ[, |u ′ | p-2 u ′ (±ρ) = ±S q (ρ)(|u(-ρ)| q + |u(ρ)| q ) p/q-1 |u(±ρ)| q-2 u(±ρ).
When q = p this is a one dimensional version of the Steklov eigenvalue problem, the first positive eigenvalue being λ 1 (ρ) = S p (ρ). As in the multi dimensional case, the associated eigenfunction u 1 is unique up to normalisation and it is even. If u is a solution of (2.1) such that u(-ρ) = u(ρ), then up to normalisation it satisfies the same Dirichlet problem as u 1 , and thus u = u 1 . In particular, u 1 can be viewed as a function defined over all R and whose restriction to an interval [-ρ, ρ] is the Steklov eigenfunction associated to λ 1 (ρ). To fix ideas we assume u 1 is normalised so that u 1 (0) = 1.

If there exists an even minimiser for S q0 (ρ) then any minimiser for S q (ρ), with q < q 0 is even and is equal to u 1 up to normalisation. The proof of this fact is contained in [START_REF] Lami Dozo | Symmetry and symmetry breaking for minimizers in the trace inequality[END_REF] in the case N ≥ 2 and it carries over to the current setting without difficulty. Now, since the case q = p corresponds to the Steklov problem in which the minimiser is known to be even, we need only consider the case q > p in what follows.

Proof of Theorem 1.1. First we prove the "if" part. Let u > 0 be a minimiser for (1.4) and assume that u is not even. Since any nonzero multiple of a minimiser is again a minimiser, we can assume that u has been normalised in such a way that u(-ρ) = 1 and u(ρ) = a with 0 < a ≤ 1. Now, if a = 1 then, up to a further normalisation, u satisfies the same Dirichlet boundary value problem as the first Steklov eigenfunction u 1 and thus u = u 1 . Since u 1 is even we can exclude this case and assume that 0 < a < 1. Now u satisfies

(|u ′ | p-2 u ′ ) ′ = |u| p-2 u on ]-ρ, ρ[.
Multiplying both sides by u ′ and integrating we get

(p -1)(|u ′ | p ) ′ = (|u| p ) ′ , so that (p -1)(|u ′ (ρ)| p -|u ′ (-ρ)| p ) = |u(ρ)| p -|u(-ρ)| p = a p -1.
On the other hand, u satisfies the boundary conditions appearing in (2.1) which now take on the form (-u ′ (-ρ)) p-1 = S q (1 + a q ) p/q-1 , u ′ (ρ) p-1 = S q (1 + a q ) p/q-1 a q-1 .

Inserting this into the previous equation and rearranging gives

(p -1)S q (ρ) p ′ = f q (a), where p ′ = p/(p -1) and (2.2) f q (a) = 1 -a p 1 -a p(q-1)/(p-1) (1 + a q ) p ′ (1-p/q) . We shall see below that f q is decreasing on ]0, 1[ from which it follows,

(2.3) (p -1)S q (ρ) p ′ = f (a) > lim t→1 f (t) = 2 p ′ (1-p/q) p -1 q -1 .
Now consider S even q (ρ), the infimum (1.4) restricted to even functions. Up to normalisation an even minimiser will satisfy the same Dirichlet boundary value problem as the first Steklov eigenfunction u 1 and will thus coincide with u 1 . Thus S even q (ρ) is given by the Rayleigh quotient (1.4) evaluated at u 1 and we find that, (2.4) S even q (ρ) = 2 1-p/q λ 1 (ρ).

Since S q (ρ) ≤ S even q (ρ), equations (2.3) and (2.4) now yield

q > 1 + 1 λ 1 (ρ) p/(p-1) = Q(ρ),
which is the desired result.

It remains only to show that, under the assumptions of the theorem, f q defined above is decreasing on the interval ]0, 1[. We have,

df q dt (t) = t p-1 (1 + t q ) (p 2 -q)/(q-pq) p (-1 + t p(-1+q)/(-1+p) ) 2 (-1 + p)
• [1 + t -p+p(-1+q)/(-1+p)+q (-1 + p) -p + t q (1 -q) + t -p+p(-2+p+q)/(-1+p) (p -q) + t -p+p(-1+q)/(-1+p) (-1 + q) + t -p+q (-p + q)].

Let the term in square brackets be denoted by g 1 (t). Then g 1 (0) = 1 -p < 0 and g 1 (1) = 0 so it suffices to check that g 1 is increasing on ]0, 1[. We have

dg 1 dt (t) = t -(1+p-q) (p -q) 2 - p(p -q)(-1 + q) -1 + p t (-p+q)/(-1+p) + p(p -q)(-1 + q) -1 + p t (-2p+p 2 +q)/(-1+p)
-qt p (-1 + q) -t p(-1+q)/(-1+p) (p 2 + q -2pq) .

Denote the term in square brackets by g 2 (t), so g 2 (0) = (p -q) 2 and g 2 (1) = 0. We wish to show g 2 ≥ 0 for all 0 ≤ t ≤ 1.

In order to simplify notations we make the following substitutions,

A = (p -q) 2 (-1 + p) 2 , B = (q -p)(-2p + p 2 + q) (-1 + p) 2 , C = -p 2 -q + 2pq -1 + p , α = 1 p p 2 -q -1 + p , β = q p ,
so that A, B, C, β > 0. We then have

dg 2 dt (t) = p(-1 + q)t (1-2p+q)/(-1+p) h(t p ), where h(s) = h 1 (s) -h 2 (s), h 1 (s) = A -Bs + Cs β , h 2 (s) = qs α .
First assume that p < q < p 2 . Then β > 1 so that h 1 is convex, and 0 ≤ α < 1 so h 2 is concave. Thus h = h 1 -h 2 can have at most two zeros. Since h 1 (1) = h 2 (1) = q we conclude that dg 2 /dt has at most one zero on ]0, 1[. Next observe that dg 2 /dt(t) > 0 for t close to 0, and g 2 (0) > and g 2 (1) = 0 as noted above. It follows that g 2 ≥ 0 on ]0, 1[. Now let q > p 2 . In this case α < 0 so h(0) = -∞, and h(1) = 0. We wish to show h(s) ≤ 0 for all 0 < s < 1. If h has a local maximum at some point 0 < s 0 < 1, then it must hold (2.5)

-Bs 0 = -βCs β 0 + qαs α 0 .

We define a new function h by substituting (2.5) into the formula for h(s),

h(s) = A + q(α -1)s α -C(β -1)s β , so that h(s 0 ) = h(s 0 ). Also, h(0) = -∞ and h(1) = A + q(α -1) -C(β -1) = q -p (-1 + p) 2 (p 2 -2p + q(3 -2p)).
If q > p 2 and p > 3/2 then h(1) ≤ 0. Now if h has a local maximum at some point 0 < s 1 < 1, then it must hold

q α β (α -1)s α 1 = C(β -1)s β 1 ,
and consequently

h(s 1 ) = A + q(α -1) 1 - α β s α 1 .
Since α < 0 there holds s α 1 > 1. Also q(α -1)(1 -α/β) < 0 so it follows

h(s 1 ) ≤ A + q(α -1) 1 - α β = 0.
It follows that h ≤ 0 and g 2 is nonnegative on [0, 1]. The proof of the "only if" part is similar to [START_REF] Lami Dozo | Symmetry and symmetry breaking for minimizers in the trace inequality[END_REF] but we sketch it here for completeness. Let u be a minimiser and assume that u is even. Then, up to normalisation, u = u 1 the first Steklov eigenfunction. Set u t (x) = u 1 (x -t) for t ∈ R and define

Φ(t) = ρ -ρ |u ′ t | p + |u t | p dx (|u t (-ρ)| q + |u t (ρ)| q ) p/q . Direct calculations show that Φ ′ (0) = 0 and Φ ′′ (0) = C(1 -(q -1)λ 1 (ρ) p/(p-1) ),
where C is a positive constant. Therefore if q > Q(ρ) then Φ ′′ (0) < 0 and u does not minimise (1.4) which is a contradiction.

The proof of Theorem 1.1 relies on f q , given by (2.2), being a decreasing function on [0, 1]. This fact is proved when either p > 3/2 or 1 < q < p 2 , but it does not hold for all p and q. Indeed let q > 1 be fixed. Then f q (0) = 1 but lim p→1,t→1 f q (t) = ∞ so for q fixed and p close enough to 1, the function f q is not monotonically decreasing.

Proof of Theorem 1.2. Let q i → Q(ρ). Let u qi be a minimiser for S qi (ρ), normalised so that u qi (-ρ) = 1 and u qi (ρ) = a i with 0 < a i ≤ 1. As in the proof of Theorem 1.1 we have (p -1)S qi (ρ) p/(p-1) = f qi (a i ).

It follows from standard arguments that q → S q (ρ) is continuous (this is true both for the usual trace constant (1.1) and in the one dimensional analogue (1.4)). Also, up to a subsequence, a i → a for some 0 < a ≤ 1. Therefore, [START_REF] Bonder | Symmetry properties for the extremals of the Sobolev trace embedding[END_REF]. In the proof of Theorem 1.1 it is shown that f Q(ρ) is a decreasing function on the interval [0, 1] so we must have a = 1. It follows that the u qi converge to the first Steklov eigenfunction u 1 . Proof. A similar statement is proved in the case N ≥ 2 in [START_REF] Lami Dozo | Symmetry and symmetry breaking for minimizers in the trace inequality[END_REF] and the proof therein carries to the present setting in a straightforward way.

(p -1)S Q(ρ) (ρ) p/(p-1) = f Q(ρ) (a). Now S Q(ρ) (ρ) is realised by the first Steklov eigenfunction so that (p -1)S Q(ρ) (ρ) p/(p-1) = (p -1)(2 1-p/q λ 1 (ρ)) p/(p-1) = f Q(ρ) (1), and therefore f Q(ρ) (a) = f Q(ρ)
Proof of Theorem 1.3. Firstly we note that S Q * (ρ) (ρ) always has an even minimiser. Indeed, u 1 is a minimiser for all S q (ρ) with q < Q * (ρ), and q → S q (ρ) is continuous, so it follows u 1 is also a minimiser for S Q * (ρ) (ρ).

Next, we observe that if v > 0 is a minimiser for S q (ρ), then there exist α > 0 and -ρ < t < ρ such that v(x) = αu 1 (x + t). (Recall from the beginning of this section that u 1 is a function defined over all R). To see this, assume first v(-ρ) = v(ρ). Taking α = v(-ρ)/u 1 (-ρ), we have v(±ρ) = αu 1 (±ρ) so that αu 

Lemma 2 . 1 .

 21 The first eigenvalue in the one dimensional Steklov eigenvalue problem, ρ → λ 1 (ρ), is increasing andλ ′ 1 = 1 -(p -

1

 1 and v are solutions to the same Dirichlet problem on [-ρ, ρ] (see equation (2.1)). Therefore v(x) = αu 1 (x) on [-ρ, ρ]. Assume now, without loss
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O. Torné of generality, v(-ρ) < v(ρ). By (2.1), v is convex and sign v ′ (-ρ) = sign v ′ (ρ). Therefore there exists s, with -ρ < s < ρ, such that v(-ρ) = v(s). Now set α = v(-ρ)/u 1 (-ρ + (ρ -s)/2) and t = (ρ -s)/2 and consider the function x → αu 1 (x + t). Both this function and v satisfy the differential equation in the first line of (2.1). Also v(-ρ) = αu 1 (-ρ + t) and v(s) = αu 1 (s + t), so that αu 1 ( • + t) and v are solutions to the same Dirichlet problem on the interval -ρ < x < s. It follows that v(x) = αu 1 (x + t) on the interval -ρ < x < s, and therefore also on -ρ < x < ρ.

Let v(x) = u 1 (x + t), t = 0, be a minimiser for some S q (ρ). From the boundary conditions satisfied by v we have

It follows that q = q(t) where we have defined

Up to a subsequence, t i → t ≥ 0 and it's then easy to see that u 1 (x + t) is a minimiser for S Q * (ρ) (ρ). First assume t = 0. Since q(t i ) = q i ↓ Q * (ρ), there must hold q(t i ) > q(0). However this is impossible if p is sufficiently close to 1 since in this case we have lim t→0 q ′ (t) = 0 and lim t→0 q ′′ (t) < 0, as will shown below. It follows that t i → t for some t > 0. Consequently, u 1 (x + t) is a noneven minimiser for S Q * (ρ) (ρ).

It's clear that lim t→0 q ′ (t) = 0 since q is even, so it remains only to show q ′′ (0) = lim t→0 q ′′ (t) < 0. Using that u ′ 1 (±ρ + t) = ±λ 1/(p-1) 1

(ρ ± t)u ′ 1 (±ρ + t), we can write

where

Then,

Using this expression, we apply l'Hospital's rule twice on the first fraction and thrice on the second one, to obtain

. Now we formally expand the derivatives, and use that ϕ

Using the expression for λ ′ 1 appearing in Lemma 2.1, direct calculations yield

so that, after simplification,

In the following, we denote λ 1 (ρ) = λ 1 (ρ; p) to make explicit the dependence of λ 1 on p, and also q(t) = q(t; p). By Lemma 2.1 there holds (2.8) λ 1 (ρ; p) < 1 p -1 (p-1)/p , and this upper bound tends to 1 as p → 1. Now let ρ > 0 be fixed and consider a sequence p i ↓ 1. By (2.8) we can extract of a subsequence, again noted p i , such that λ 1 (ρ; p i ) → λ for some 0 ≤ λ ≤ 1. The final term in (2.7) becomes negative as p approaches 1 so,

It follows that for ρ > 0 fixed, q ′′ (0; p i ) → -∞ as p i → 1. Since the sequence p i was arbitrary, we conclude that q ′′ (0; p) < 0 for p sufficiently close to 1.