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A ONE DIMENSIONAL PROBLEM

RELATED TO THE SYMMETRY OF MINIMISERS

FOR THE SOBOLEV TRACE CONSTANT IN A BALL

Olaf Torné

Abstract. The symmetry of minimisers for the best constant in the trace
inequality in a ball, Sq(ρ) = infu∈W1,p(Bρ) ‖u‖

p

W1,p(Bρ)
/‖u‖p

Lq(∂B(ρ))
has

been studied by various authors. Partial results are known which imply

radial symmetry of minimisers, or lack thereof, depending on the values of

trace exponent q and the radius of the ball ρ. In this work we consider

a one dimensional analogue of the trace inequality and the corresponding

minimisation problem for the best constant. We describe the exact values of

q and ρ for which minimisers are symmetric. We also consider the behaviour
of minimisers as the symmetry breaking threshold for q and ρ is breached,

and show a case in which both symmetric and nonsymmetric minimisers

coexist.

1. Introduction

This note describes a one dimensional problem that is related to the study

of the symmetry properties of minimisers for the best constant in the trace

inequality in a ball. To motivate what follows we first review some known results.

Let Bρ denote the ball of radius ρ > 0 centered at the origin in R
N with

N ≥ 2. Let 1 < p < ∞ and let 1 < q < p∗ where p∗ is the critical trace
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364 O. Torné

exponent. The best constant in the Sobolev trace inequality is given by

(1.1) Sq(ρ) = inf
u∈W 1,p(Bρ)

∫
Bρ

|∇u|p + |u|p dx

(
∫

∂Bρ
|u|q dσ)p/q

.

If 1 < q < p∗ this infimum is achieved by a function u which has definite sign and

any nonzero multiple of u is again a minimiser. Since the minimisation problem

is invariant under any rotation it is natural to ask if u is a radial function.

When p = 2 the results of [1], [2], [4] show that if q ≤ 2 then any minimiser

is radial. Also, if q > 2 is fixed and ρ is sufficiently small, or if ρ > 0 is fixed and

q > 2 is sufficiently close to 2, then any minimiser is radial. On the other hand

if q > 2 is fixed, then there is no radial minimiser provided ρ is large enough.

The case for general 1 < p < ∞ is studied in [4]. It is shown that if 1 < q ≤ p,

then any minimiser for (1.1) is radial. Moreover, under certain conditions radial

symmetry is lost if either q or ρ is sufficiently large. Define the function Q(ρ) by

(1.2) Q(ρ) =
1

λ1(ρ)p/(p−1)

(
1 − (N − 1)

λ1(ρ)

ρ

)
+ 1.

Here λ1(Bρ) denotes the first positive eigenvalue in the Steklov problem

(1.3)

{
∆pu = |u|p−2u in Bρ,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Bρ.

It is shown that if q > Q(ρ) then there is no radial minimizer for Sq(ρ). Also,

Q(ρ) ↓ p as ρ → ∞ from which it follows that if q > p is fixed, radial symmetry

is lost provided ρ is sufficiently large. It is also known that if there exists a radial

minimiser for some Sq0
(ρ), then any minimiser for Sq(ρ), with q < q0, is radial.

If a radial minimiser does exist, it is given by the unique (up to normalisation)

eigenfunction associated to λ1(ρ).

In light of this, one may define a threshold value Q∗(ρ) such that if q < Q∗

then any minimiser is radial, whereas if q > Q∗ then there does not exist a radial

minimiser. Also one may show there exists a radial minimiser for q = Q∗ but

it’s not known in this case whether or not there may also exist a nonradial one.

Clearly there holds Q∗(ρ) ≤ Q(ρ), however thus far there do not appear to

be any cases in which it is known if Q(ρ) is the exact threshold for loss of radial

symmetry, or merely an upper bound.

In this note we consider a one dimensional analogue of the minimisation prob-

lem (1.1) in which Q is found to be the exact threshold for symmetry breaking.

Let 1 < p < ∞, 1 < q < ∞ and ρ > 0. In analogy with (1.1), we define

(1.4) Sq(ρ) = inf
u∈W 1,p(−ρ,ρ)

∫ ρ

−ρ
|u′|p + |u|p dx

(|u(−ρ)|q + |u(ρ)|q)p/q
.
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As above, the infimum in (1.4) is achieved by a function of definite sign that

can be assumed to be positive. In this setting the notion of radial symmetry

is naturally replaced by that of an even function. As above, the case q = p is

referred to as the Steklov problem and the corresponding minimiser u1 is unique

up to normalisation. We have the following result.

Theorem 1.1. Assume p > 3/2. Let u ∈ W 1,p(−ρ, ρ) be a minimiser for

Sq(ρ) defined by (1.4). Then u is an even function if, and only if, q ≤ Q(ρ)

where Q is given by (1.2) with N = 1 and with λ1 the first eigenvalue in the

corresponding one dimensional Steklov problem.

It is interesting to note that in the case p = 2, ρ = 1 and N ≥ 3, Gazzini and

Serra [3] find, amongst other results, that minimisers for the Rayleigh quotient

(1.1) restricted to radial functions, are nondegenerate local minima over the

whole of H1 for all q < 2∗. In this case Q(ρ) > 2∗ so the condition q < Q(ρ)

is automatically satisfied. Furthermore, those authors observe that if one were

to have Q∗ < 2∗ then this would imply that nonradial minimisers are always far

away from the radial minisers and do not branch out smoothly as the level Q∗

is breached. In the case of problem (1.4) we are able to show that such counter

intuitive behaviour may or may not occur depending on the value of p.

Under the assumptions of Theorem 1.1, the behaviour of minimisers is as

expected in that noneven minimisers branch out from the even one when the

symmetry breaking threshold is breached.

Theorem 1.2. Assume p > 3/2. Any minimiser for SQ(ρ)(ρ) is even and,

up to normalisation, is given by u1. Also, noneven minimisers branch out from

u1 in the sense that if qi ↓ Q(ρ), and uqi
is an appropriately normalised min-

imiser for Sqi
(ρ), then uqi

→ u1.

When p is close to unity, we do not know if there holds Q∗(ρ) = Q(ρ).

However we can prove that noneven minimisers make a sudden appearance and

do not branch out from even ones.

Theorem 1.3. Let ρ > 0 be fixed. If p > 1 is sufficiently close to 1 then

there exists both an even and a noneven minimiser for SQ∗(ρ). Moreover, if

qi ↓ Q∗(ρ), and uqi
is an appropriately normalised minimiser for Sqi

(ρ), then up

to a subsequence uqi
converges to a noneven minimiser.

2. Proofs

If u is a minimiser for (1.4) then it satisfies the following equations.

(2.1)

{
(|u′|p−2u′)′ = up−1 in ]−ρ, ρ[,

|u′|p−2u′(±ρ) = ±Sq(ρ)(|u(−ρ)|q + |u(ρ)|q)p/q−1|u(±ρ)|q−2u(±ρ).
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When q = p this is a one dimensional version of the Steklov eigenvalue problem,

the first positive eigenvalue being λ1(ρ) = Sp(ρ). As in the multi dimensional

case, the associated eigenfunction u1 is unique up to normalisation and it is even.

If u is a solution of (2.1) such that u(−ρ) = u(ρ), then up to normalisation it

satisfies the same Dirichlet problem as u1, and thus u = u1. In particular, u1 can

be viewed as a function defined over all R and whose restriction to an interval

[−ρ, ρ] is the Steklov eigenfunction associated to λ1(ρ). To fix ideas we assume

u1 is normalised so that u1(0) = 1.

If there exists an even minimiser for Sq0
(ρ) then any minimiser for Sq(ρ),

with q < q0 is even and is equal to u1 up to normalisation. The proof of this fact

is contained in [4] in the case N ≥ 2 and it carries over to the current setting

without difficulty. Now, since the case q = p corresponds to the Steklov problem

in which the minimiser is known to be even, we need only consider the case q > p

in what follows.

Proof of Theorem 1.1. First we prove the “if” part. Let u > 0 be

a minimiser for (1.4) and assume that u is not even. Since any nonzero multiple

of a minimiser is again a minimiser, we can assume that u has been normalised

in such a way that u(−ρ) = 1 and u(ρ) = a with 0 < a ≤ 1. Now, if a = 1

then, up to a further normalisation, u satisfies the same Dirichlet boundary value

problem as the first Steklov eigenfunction u1 and thus u = u1. Since u1 is even

we can exclude this case and assume that 0 < a < 1. Now u satisfies

(|u′|p−2u′)′ = |u|p−2u on ]−ρ, ρ[.

Multiplying both sides by u′ and integrating we get

(p − 1)(|u′|p)′ = (|u|p)′,

so that

(p − 1)(|u′(ρ)|p − |u′(−ρ)|p) = |u(ρ)|p − |u(−ρ)|p = ap − 1.

On the other hand, u satisfies the boundary conditions appearing in (2.1) which

now take on the form

(−u′(−ρ))p−1 = Sq(1 + aq)p/q−1,

u′(ρ)p−1 = Sq(1 + aq)p/q−1aq−1.

Inserting this into the previous equation and rearranging gives

(p − 1)Sq(ρ)p′

= fq(a),

where p′ = p/(p − 1) and

(2.2) fq(a) =
1 − ap

1 − ap(q−1)/(p−1)
(1 + aq)p′(1−p/q).
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We shall see below that fq is decreasing on ]0, 1[ from which it follows,

(2.3) (p − 1)Sq(ρ)p′

= f(a) > lim
t→1

f(t) = 2p′(1−p/q) p − 1

q − 1
.

Now consider Seven
q (ρ), the infimum (1.4) restricted to even functions. Up to

normalisation an even minimiser will satisfy the same Dirichlet boundary value

problem as the first Steklov eigenfunction u1 and will thus coincide with u1.

Thus Seven
q (ρ) is given by the Rayleigh quotient (1.4) evaluated at u1 and we

find that,

(2.4) Seven
q (ρ) = 21−p/qλ1(ρ).

Since Sq(ρ) ≤ Seven
q (ρ), equations (2.3) and (2.4) now yield

q > 1 +
1

λ1(ρ)p/(p−1)
= Q(ρ),

which is the desired result.

It remains only to show that, under the assumptions of the theorem, fq

defined above is decreasing on the interval ]0, 1[. We have,

dfq

dt
(t) =

tp−1(1 + tq)(p
2
−q)/(q−pq)p

(−1 + tp(−1+q)/(−1+p))2(−1 + p)

· [1 + t−p+p(−1+q)/(−1+p)+q(−1 + p) − p

+ tq(1 − q) + t−p+p(−2+p+q)/(−1+p)(p − q)

+ t−p+p(−1+q)/(−1+p)(−1 + q) + t−p+q (−p + q)].

Let the term in square brackets be denoted by g1(t). Then g1(0) = 1 − p < 0

and g1(1) = 0 so it suffices to check that g1 is increasing on ]0, 1[. We have

dg1

dt
(t) = t−(1+p−q)

[
(p − q)2 −

p(p − q)(−1 + q)

−1 + p
t(−p+q)/(−1+p)

+
p(p − q)(−1 + q)

−1 + p
t(−2p+p2+q)/(−1+p)

− qtp(−1 + q) − tp(−1+q)/(−1+p)(p2 + q − 2pq)

]
.

Denote the term in square brackets by g2(t), so g2(0) = (p − q)2 and g2(1) = 0.

We wish to show g2 ≥ 0 for all 0 ≤ t ≤ 1.

In order to simplify notations we make the following substitutions,

A =
(p − q)

2

(−1 + p)
2 , B =

(q − p)(−2p + p2 + q)

(−1 + p)2
, C =

(
−p2 − q + 2pq

)

−1 + p
,

α =
1

p

p2 − q

−1 + p
, β =

q

p
,
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so that A,B,C, β > 0. We then have

dg2

dt
(t) = p(−1 + q)t(1−2p+q)/(−1+p)h(tp),

where h(s) = h1(s) − h2(s), h1(s) = A − Bs + Csβ , h2(s) = qsα.

First assume that p < q < p2. Then β > 1 so that h1 is convex, and

0 ≤ α < 1 so h2 is concave. Thus h = h1 −h2 can have at most two zeros. Since

h1(1) = h2(1) = q we conclude that dg2/dt has at most one zero on ]0, 1[. Next

observe that dg2/dt(t) > 0 for t close to 0, and g2(0) > and g2(1) = 0 as noted

above. It follows that g2 ≥ 0 on ]0, 1[.

Now let q > p2. In this case α < 0 so h(0) = −∞, and h(1) = 0. We wish

to show h(s) ≤ 0 for all 0 < s < 1. If h has a local maximum at some point

0 < s0 < 1, then it must hold

(2.5) −Bs0 = −βCsβ
0 + qαsα

0 .

We define a new function ĥ by substituting (2.5) into the formula for h(s),

ĥ(s) = A + q(α − 1)sα − C(β − 1)sβ ,

so that ĥ(s0) = h(s0). Also, ĥ(0) = −∞ and

ĥ(1) = A + q(α − 1) − C(β − 1) =
q − p

(−1 + p)2
(p2 − 2p + q(3 − 2p)).

If q > p2 and p > 3/2 then ĥ(1) ≤ 0. Now if ĥ has a local maximum at some

point 0 < s1 < 1, then it must hold

q
α

β
(α − 1)sα

1 = C(β − 1)sβ
1 ,

and consequently

ĥ(s1) = A + q(α − 1)

(
1 −

α

β

)
sα
1 .

Since α < 0 there holds sα
1 > 1. Also q(α − 1)(1 − α/β) < 0 so it follows

ĥ(s1) ≤ A + q(α − 1)

(
1 −

α

β

)
= 0.

It follows that h ≤ 0 and g2 is nonnegative on [0, 1].

The proof of the “only if” part is similar to [4] but we sketch it here for

completeness. Let u be a minimiser and assume that u is even. Then, up to

normalisation, u = u1 the first Steklov eigenfunction. Set ut(x) = u1(x − t) for

t ∈ R and define

Φ(t) =

∫ ρ

−ρ
|u′

t|
p + |ut|

p dx

(|ut(−ρ)|q + |ut(ρ)|q)p/q
.

Direct calculations show that Φ′(0) = 0 and

Φ′′(0) = C(1 − (q − 1)λ1(ρ)p/(p−1)),
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where C is a positive constant. Therefore if q > Q(ρ) then Φ′′(0) < 0 and u does

not minimise (1.4) which is a contradiction. �

The proof of Theorem 1.1 relies on fq, given by (2.2), being a decreasing

function on [0, 1]. This fact is proved when either p > 3/2 or 1 < q < p2, but

it does not hold for all p and q. Indeed let q > 1 be fixed. Then fq(0) = 1 but

limp→1,t→1 fq(t) = ∞ so for q fixed and p close enough to 1, the function fq is

not monotonically decreasing.

Proof of Theorem 1.2. Let qi → Q(ρ). Let uqi
be a minimiser for Sqi

(ρ),

normalised so that uqi
(−ρ) = 1 and uqi

(ρ) = ai with 0 < ai ≤ 1. As in the proof

of Theorem 1.1 we have

(p − 1)Sqi
(ρ)p/(p−1) = fqi

(ai).

It follows from standard arguments that q 7→ Sq(ρ) is continuous (this is true

both for the usual trace constant (1.1) and in the one dimensional analogue

(1.4)). Also, up to a subsequence, ai → a for some 0 < a ≤ 1. Therefore,

(p − 1)SQ(ρ)(ρ)p/(p−1) = fQ(ρ)(a).

Now SQ(ρ)(ρ) is realised by the first Steklov eigenfunction so that

(p − 1)SQ(ρ)(ρ)p/(p−1) = (p − 1)(21−p/qλ1(ρ))p/(p−1) = fQ(ρ)(1),

and therefore fQ(ρ)(a) = fQ(ρ)(1). In the proof of Theorem 1.1 it is shown that

fQ(ρ) is a decreasing function on the interval [0, 1] so we must have a = 1. It

follows that the uqi
converge to the first Steklov eigenfunction u1. �

Lemma 2.1. The first eigenvalue in the one dimensional Steklov eigenvalue

problem, ρ 7→ λ1(ρ), is increasing and

λ′

1 = 1 − (p − 1)λ
p/(p−1)
1 and lim

ρ→∞

λ1(ρ) =

(
1

p − 1

)(p−1)/p

.

Proof. A similar statement is proved in the case N ≥ 2 in [4] and the proof

therein carries to the present setting in a straightforward way. �

Proof of Theorem 1.3. Firstly we note that SQ∗(ρ)(ρ) always has an even

minimiser. Indeed, u1 is a minimiser for all Sq(ρ) with q < Q∗(ρ), and q 7→ Sq(ρ)

is continuous, so it follows u1 is also a minimiser for SQ∗(ρ)(ρ).

Next, we observe that if v > 0 is a minimiser for Sq(ρ), then there exist

α > 0 and −ρ < t < ρ such that v(x) = αu1(x + t). (Recall from the beginning

of this section that u1 is a function defined over all R). To see this, assume

first v(−ρ) = v(ρ). Taking α = v(−ρ)/u1(−ρ), we have v(±ρ) = αu1(±ρ)

so that αu1 and v are solutions to the same Dirichlet problem on [−ρ, ρ] (see

equation (2.1)). Therefore v(x) = αu1(x) on [−ρ, ρ]. Assume now, without loss
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of generality, v(−ρ) < v(ρ). By (2.1), v is convex and sign v′(−ρ) 6= sign v′(ρ).

Therefore there exists s, with −ρ < s < ρ, such that v(−ρ) = v(s). Now set

α = v(−ρ)/u1(−ρ + (ρ − s)/2) and t = (ρ − s)/2 and consider the function

x 7→ αu1(x + t). Both this function and v satisfy the differential equation in

the first line of (2.1). Also v(−ρ) = αu1(−ρ + t) and v(s) = αu1(s + t), so that

αu1( · + t) and v are solutions to the same Dirichlet problem on the interval

−ρ < x < s. It follows that v(x) = αu1(x + t) on the interval −ρ < x < s, and

therefore also on −ρ < x < ρ.

Let v(x) = u1(x + t), t 6= 0, be a minimiser for some Sq(ρ). From the

boundary conditions satisfied by v we have

|u′

1(ρ + t)|p−2u′

1(ρ + t)

u1(ρ + t)q−1
=

|u′

1(−ρ + t)|p−2u′

1(−ρ + t)

u1(−ρ + t)q−1
.

It follows that q = q̂(t) where we have defined

(2.6) q̂(t) = 1 +

ln

(
u′

1(ρ + t)p−1

(−u′

1(−ρ + t))
p−1

)

ln

(
u1(ρ + t)

u1(−ρ + t)

) .

Now let qi ↓ Q∗(ρ) and let vi(x) = u1(x+ti) be a minimiser for Sqi
(ρ). Up to

a subsequence, ti → t ≥ 0 and it’s then easy to see that u1(x + t) is a minimiser

for SQ∗(ρ)(ρ). First assume t = 0. Since q̂(ti) = qi ↓ Q∗(ρ), there must hold

q̂(ti) > q̂(0). However this is impossible if p is sufficiently close to 1 since in

this case we have limt→0 q̂′(t) = 0 and limt→0 q̂′′(t) < 0, as will shown below.

It follows that ti → t for some t > 0. Consequently, u1(x + t) is a noneven

minimiser for SQ∗(ρ)(ρ).

It’s clear that limt→0 q̂′(t) = 0 since q̂ is even, so it remains only to show

q̂′′(0) = limt→0 q̂′′(t) < 0. Using that u′

1(±ρ + t) = ±λ
1/(p−1)
1 (ρ ± t)u′

1(±ρ + t),

we can write

q̂(t) = p +
ϕ1(t)

ϕ2(t)
,

where

ϕ1(t) = ln
λ1(ρ + t)

λ1(ρ − t)
and ϕ2(t) = ln

u1(ρ + t)

u1(−ρ + t)
.

Then,

q̂′′ =
ϕ′′

1ϕ2 − ϕ1ϕ
′′

2

ϕ2
2

− 2
ϕ′

1ϕ2ϕ
′

2 − ϕ1ϕ
2
2
′

ϕ3
2

.

Using this expression, we apply l’Hospital’s rule twice on the first fraction and

thrice on the second one, to obtain

q̂′′(0) =
(ϕ′′

1ϕ2 − ϕ1ϕ
′′

2)′′(0)

(ϕ2
2)

′′(0)
− 2

(ϕ′

1ϕ2ϕ
′

2 − ϕ1ϕ
2
2
′
)′′′(0)

(ϕ3
2)

′′′(0)
.
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Now we formally expand the derivatives, and use that ϕ1(0) = ϕ2(0) = ϕ′′

1(0) =

ϕ′′

2(0) = 0, to obtain,

q̂′′(0) =
1

3

ϕ′′′

1 (0)ϕ′

2(0) − ϕ′′′

2 (0)ϕ′

1(0)

ϕ′

2(0)2
.

Using the expression for λ′

1 appearing in Lemma 2.1, direct calculations yield

ϕ′

1(0) = 2

(
1

λ1(ρ)
− (p − 1)λ

p/(p−1)−1
1 (ρ)

)
,

ϕ′

2(0) = 2λ
1/(p−1)
1 (ρ),

ϕ′′′

1 (0) = 2

(
2

λ3
1(ρ)

−

(
p

p − 1
− 2

)
λ

p/(p−1)−3
1 (ρ)

)
(1 − (p − 1)λ

p/(p−1)
1 (ρ))2

− 2λ
p/(p−1)−1
1 (ρ)

(
−1

λ2
1(ρ)

− λ
p/(p−1)−2
1 (ρ)

)
(1 − (p − 1)λ

p/(p−1)
1 (ρ)),

ϕ′′′

2 (0) = 2

(
2 − p

(p − 1)2
λ

(3−2p)/(p−1)
1 (ρ) +

−4 + p

p − 1
λ

(3−p)/(p−1)
1 (ρ) + 2λ

3/(p−1)
1 (ρ)

)
,

so that, after simplification,

q̂′′(0) =
1

3

(
2 −

2 − p

(p − 1)2

)
λ

(−3p+2)/(p−1)
1 (ρ)(2.7)

+
−p2 + 2p

p − 1
λ−2

1 (ρ) +

(
p2

3
− p

)
λ

(−p+2)/(p−1)
1 (ρ).

In the following, we denote λ1(ρ) = λ1(ρ; p) to make explicit the dependence

of λ1 on p, and also q̂(t) = q̂(t; p). By Lemma 2.1 there holds

(2.8) λ1(ρ; p) <

(
1

p − 1

)(p−1)/p

,

and this upper bound tends to 1 as p → 1. Now let ρ > 0 be fixed and consider

a sequence pi ↓ 1. By (2.8) we can extract of a subsequence, again noted pi, such

that λ1(ρ; pi) → λ for some 0 ≤ λ ≤ 1. The final term in (2.7) becomes negative

as p approaches 1 so,

q̂′′(0; pi) ≤
1

3

(
2 −

2 − pi

(pi − 1)2

)
λ1(ρ; pi)

(−3pi+2)/(pi−1) +
−p2

i + 2pi

pi − 1
λ1(ρ; pi)

−2

=
1

(pi − 1)λ1(ρ; pi)2

·

(
1

3

(
2(pi − 1) −

2 − pi

pi − 1

)(
1

λ1(ρ; pi)

)pi/(pi−1)

− p2
i + 2pi

)
.

It follows that for ρ > 0 fixed, q̂′′(0; pi) → −∞ as pi → 1. Since the sequence pi

was arbitrary, we conclude that q̂′′(0; p) < 0 for p sufficiently close to 1. �
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