
HAL Id: hal-00707200
https://hal.science/hal-00707200v1

Submitted on 12 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Dedicated Solver for Fast Operational-Space Inverse
Dynamics

Nicolas Mansard

To cite this version:
Nicolas Mansard. A Dedicated Solver for Fast Operational-Space Inverse Dynamics. 2012 IEEE
International Conference on Robotics and Automation, May 2012, St Paul, United States. pp.4943-
4949. �hal-00707200�

https://hal.science/hal-00707200v1
https://hal.archives-ouvertes.fr


A Dedicated Solver
for Fast Operational-Space Inverse Dynamics

N. Mansard

Abstract— The most classical solution to generate whole-body
motions on humanoid robots is to use the inverse kinematics
on a set of tasks. It enables flexibility, repeatability, sensor-
feedback if needed, and can be applied in real time on-
board the robot. However, it cannot comprehend the whole
complexity of the robot dynamics. Inverse dynamics is then a
mandatory evolution. Before application as a generic motion
generator, two important concerns need to be solved. First,
when including in the motion-generation problem the forces
and torques variables, the numerical conditioning can become
very low, inducing undesired behaviors or even divergence.
Second, the computational costs of the problem resolution is
much more important than when considering the kinematics
alone. This paper proposes a complete reformulation of the
inverse-dynamics problem, by cutting the ill-conditioned part
of the problem, solving in a same way the problem of numerical
stability and of cost reduction. The approach is validated by a
set of dynamic whole-body movements of the HRP-2 robot.

I. I NTRODUCTION

Designing the whole-body motion of a humanoid robot
directly in the joint space is a very tedious task, requiring
a lot of trials and errors. On the opposite, the task-function
approach provides an elegant way to formulate the motion
objectives [1]. A dedicated task space (also called operational
space [2]) is chosen, in which the control law driving the
robot to the objective is easy to write. Transposing the control
law from the task space to the whole-body joint space is then
simply a matter of resolving a linear system [3].

On humanoid robots, there is typically several objectives
to be accounted at the same time. Two approaches can
be considered to fuse several tasks in a single control
law. It is possible to sum several tasks in a single task,
by performing a Cartesian product of the task spaces [4].
The tasks are generally weighted to give some respective
importance between objectives when it is not possible to
fulfill all of them. On the opposite, it is possible to define
a strict hierarchy between tasks (called a stack of tasks [5]),
by using the redundancy projectors [6], [7]. The coupling
between concurrent tasks is then artificially nullified. It can
be shown that a stack of tasks is the limit of a weighted
tasks composition, when the weight magnitude orders reach
the infinity [8]. In the following, we focus on hierarchy, as
weighted composition is a special case of it.

The task-function approach is valid when considering only
the robot kinematics [9], [10], but can be extended similarly
to the robot dynamics [2], [11]. Hierarchy of tasks can
also be generalized to inverse dynamics [12]. Connections
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Fig. 1. Reaching “Standing Lotus”: dynamic motion from motion-capture

between the two inverses can be found in [13]. Basically,
inverse kinematics consists in finding the robot joint velocity
that fits with the references velocity in the given task spaces.
On the opposite, inverse dynamics consists in finding the
joint accelerations and torques along with the external con-
tact forces, that fit the reference accelerations and forcesin
the given task spaces. If mathematically, both problems can
be written under a similar shape, the number of parameters
in the second case is much more important: two times more
variables in the case of a robot without contact, and up to
four times more for classical cases on a humanoid robot.
Since the inversion methods have a quadratic cost in the
number of parameters, inverse dynamics involves much more
computation than inverse kinematics [14].

The computation cost is composed on one side of the
cost of the numerical resolution, and on the other side, of
the cost of the problem formulation (typically, computing
the numerical quantities, Jacobians, inertia matrices, etc).
A complete resolution of the inverse dynamics requires to
compute explicitly all the variables (accelerations, torques
and forces). However, at the end, only the control variables
are needed. A first solution to reduce the cost is to refor-
mulate the problem to hide the unnecessary variables and
avoid their computations. This is typically what is done in
general in the work of Khatibet al. [2], [12], [15] (detailed
in Section II-B). This solution enables to reduce the cost
of the inversion. However, the formulation of the numerical
quantities of the reduce problem induces a supplementary
computation cost, and a supplementary design cost as the
reduction is not automatic. Moreover, it is not possible to
express constraints that requires explicitly the hidden force
and acceleration variables (e.g. center of pressure).

A very appealing solution is to reduce together the for-
mulation and inversion costs, as done for non-contacting
manipulator robot [16] (detailed in Section II-A). However,
such a solution seems impossible to generalize.

On the opposite, in [4], [13] (detailed in Section II-C), a
quadratic-problem (QP) solver is used that can solve literally
the whole set of variable. In that case, no reformulation at
all is needed. The interest of this method is its genericity:



the whole dynamics is taken into account, and constraints
(equality or inequality) can be expressed on any part, acceler-
ation, torque or forces. However, computation-cost overhead
is very important and do not allow to obtain real-time control.
Moreover, since there is no artificial decoupling between the
spaces of actuation and movement, low condition number
can appear, that are not acceptable on a control scheme.

In this paper, we propose to keep this last approach by
enabling a generic solver working on all the variables of the
system. However, following the spirit of [12], we propose to
automatically reduce the variables spaces along the null or
ill-conditioned spaces, in order to both save computation cost
and improve the condition number of the numerical problem.
We first recall the previous approaches in Section II. Our
original solution is presented in Section III. The method is
validated on the humanoid robot HRP2 in Section IV.

II. OPERATIONAL-SPACE CONTROL

The robot configuration is denoted byq1. The joint torque
is denoted byτ . The dynamic equation of the system is then:

Aq̈ + b = τ (1)

where A is the generalized inertia matrix, andb is the
dynamic drift (gravity and Coriolis forces summed). The
robot objective is given under the shape of a task function
e1(q). The Jacobian of this function is denoted byJ1 = ∂e1

∂q
:

ė1 = J1q̇ (2)

The image space ofe1(q) is called the task space. In this
task space, a control law that bring the system to an stable
position is given by ë1

∗2. The operational-space inverse
dynamics is to find̈q andτ such thatë1 = ë1

∗. The size of
τ is denoted bynτ , while the size ofe1 is denoted byn1
(generally,n1 < nτ ).

A. Basic operational-space inverse dynamics

A first solution is to findq̈ from the derivative of (2):

ë1 = J1q̈ + J̇1q̇ (3)

Inverting (3) gives a minimal̈q respectingë1
∗. Then, us-

ing (1), τ is obtained:

τ = AJ1
#(ë1

∗ − J̇1q̇) + b (4)

where.# is any generalized inverse [14], typically the pseudo
inverse.+ or a left-weighted inverse.#W defined by

X#W =WX⊤(XWX⊤)+ (5)

whereW is any user-defined positive definite symmetrical
matrix. This solution only results in a minimal̈q, while
minimal τ is generally preferred. For that, a torque-based
equation is obtained by multiplying (1) byJ1A−1, and
inserting (3):

ë1 − J̇1q̇ + J1A
−1b = J1A

−1τ (6)

1For mobile robots, the first part of the configuration is the free-floating
configurationxf . The first part ofq̇ is the free-floating velocityνf , which
is not integrable. The vectoṙq is abusively used in the paper.

2The notationx∗ will always designate the reference value ofx.

The control law is obtained by invertingJ1A−1:

τ = (J1A
−1)#(ë1

∗ − J̇1q̇ + J1A
−1b) (7)

Any weight can be used to define the inverse.# [11]. In
[2], it is generally chosen to weight by the inertia matrix. In
that case, unrolling (5) gives:

τ = J1
⊤Λ1(ë1

∗ − J̇1q̇ + J1A
−1b) (8)

with Λ1 = (J1AJ1
⊤)# the operational-space inertia ma-

trix. In general, it is better for the numerical algorithm to
compute directly the pseudo inverse (e.g. using a singular
value decomposition, or an extension for weighted inverse
[12]), rather than inverse the quadratic shapeXWX⊤ whose
condition number is very low whenX is ill conditioned.

In [16], it is proposed to compute analytically the inertia
Λ1, directly from the robot model. The computation cost of
the problem formulation is then reduced, since instead of
computingA, only Λ1 of smaller size is needed. Moreover,
the inversion cost is also reduced, since no explicit inversion
algorithm is called, and the cost is finally reduced to the
multiplication of two matrices. This approach has only been
applied for controlling the position and orientation of a
Cartesian point of the robot. Its generalization to other types
of tasks (controlling the robot gaze for example) is not
immediate. Moreover, a dedicated algorithm to computeΛ1

is needed for each type of task, which is not tractable for
humanoids with a wide range of possible tasks.

B. Projected inverse dynamics

Eq. (1) is limited to non-contacting robots. For humanoid
robots, two other constraints have to be accounted: the robot
is in contact with the world, and it cannot actuate its free-
floating basis. In general, the contact study is limited to rigid
contacts. The dynamic equations are thus:

Aq̈ + b+ J⊤f = S⊤τ (9)

Jq̈ + J̇q̇ = 0 (10)

with f the contact forces,J the Jacobian of the contact point.
In case of multiple contacts, the forces are simply stacked
in the vectorf . The size off is denoted bynf . Due to the
under actuation, the size of̈q is now nτ + 6.

1) For one task: Now, the problem is to find the parameter
x = (q̈, τ, f) such that the task constrainẗe1 = ë1

∗ is
fulfilled. However, as previously, only the control inputτ
is needed,f and q̈ do not have to be explicitly computed in
general. A first solution was proposed in [12] to reduce the
whole dynamics to a single link betweenτ and ë1. First, the
contact forces can be computed from̈q andτ , by multiplying
(9) by JA−1 and replacing the result by (10):

(JA−1J⊤)f = JA−1S⊤τ − JA−1b+ J̇q̇ (11)

If (JA−1J⊤) is invertible, (9) can be projected into the null
space of (10) by replacing (11) in (9). This produces a force-
free dynamic equation with a pattern similar to (1):

Aq̈ +Nb+ bc = NS⊤τ (12)



whereN = I − (JA−1)#JA−1 is the projector in the null
space ofJA−1, and bc = (JA−1)#J̇q̇. Using the same
method as in the non-contact case, the dynamics is then
projected in the task space to hide the acceleration variable:

ë1 + µ1 = J1A
−1NS⊤τ (13)

with µ1 = −J̇1q̇+ J1A
−1(Nb+ bc). The minimal torque is

obtained by invertingJ1A−1NS⊤. In [15], it is proposed to
useW = SA−1NS⊤ to weight this last inverse:

τ = (J1A
−1NS⊤)#W (ë1 + µ1) (14)

The pattern of this last solution is similar to (7). It is
even possible to rewrite the equation to obtain a shape with
a pseudo inertia matrixΛ. However, it is not possible to
obtain a nice simplification of it that allows an analytical
computation of the inertia, or of any part of the inverse.

Consequently, this solution involves the cost of the inver-
sion of the size ofτ (o(nτn21)). However, the corresponding
formulation implies a cost: computingN implies a cost of
o((nτ + 6)3), with similar costs forW andJ1A−1NS⊤.

2) Extension to a stack of tasks: Until now, we have
only considered a single task. The equations can be easily
generalized to a hierarchized set of tasks(e1, ...em). Indeed,
(14) is the minimalW -norm solution. The generic solution
involves a secondary inputτ2:

τ = (J1A
−1NS⊤)#W (ë1 + µ1) + P1τ2 (15)

with P1 the projector in the null space ofJ1A−1NS⊤ along
W , and τ2 any secondary input. This secondary input can
be used to fulfill a second task, by replacingτ in (12), and
projecting the resulting dynamics in the second task space
e2. The resolution of the secondary task is:

τ2 = (J2A
−1P1NS

⊤)#W (ë2 + µ2|1) + P2τ3 (16)

whereµ2|1 is the task drift due to the dynamics of the task
e1, P2 is the projector corresponding to the inverse, andτ3
is a third input used to propagate the recurrence tom tasks.

This solution costs the inversion of a stack of tasks
(o(nτn2m) ≈ o(n3τ ). There is no additional costs of for-
mulation compared to the solution for only one task.

C. Explicit QP formulation

1) For one task: Formulating the whole dynamics into
the task space by (13) is appealing, first by its similarity
with the classical inverse kinematics, and by its conciseness
that spares computation during the inversion. However, the
formulation is tedious and costly. On the opposite, it is
possible to formulate directly the inverse-dynamics problem
as a QP, that is straight forward to formulate and invert.
Basically, the problem can be written: find the variables
q̈, τ, f that are consistent with the dynamic equations and
minimize the distance to the task reference:

min
q̈,τ,f

||J1q̈ + J̇1q̇ − ë1
∗||2 (17)

subject toAq̈ + b+ J⊤f = S⊤τ

Jq̈ + J̇q̇ = 0

Another interest of the QP formulation is that it enables
directly the use of inequality constraints, which was not
possible with the solutions based on the pseudo-inverse
described above. For example, it is easy to add the joint-
limit constraints in the problem (17) [4].

The contact model (10) is partial. Indeed, when consider-
ing a point contact where the robot position along the contact
normal is denoted byz, the entire model is:

z̈ ≥ 0 ⊥ f⊥ ≥ 0 (18)

The motion along the normal is null or the force is null. A
similar constraint can be written for the tangential directions,
which will not be considered here. By writing (10), we
implicitly chose the solution to be in the second case: positive
normal forces. This constraint is never explicitly checkedin
the previous methods, while it can be directly taken into
account by the QP formulation:

f⊥ ≥ 0 (19)

wheref⊥ = S⊥f are the normal components off .
Another difference between QP and pseudo-inverse-based

methods is the management of the redundancy. Among the
possible solution (14) will chose the one that minimizes
the torque variable. This choice acts as a third level of
constraints, the dynamic equations being the first level and
the task reference at the second level. Such a behavior is not
possible with a standard QP. Similarly, it is not possible to
account for a secondary taske2, except by fusing it withe1,
loosing the notion of hierarchy.

2) Hierarchized QP: In [13], we have proposed to use
an extended hierarchical QP (HQP) solver to solve the
operational-space inverse dynamics. A classical QP can be
seen as a hierarchy of two levels, the first one, having
priority, used to constraint the dynamic consistency, the
second one being used for the task reference. A HQP is
simply a generalization of the classical QP to an arbitrary
number of hierarchy levels. The task hierarchy is denoted
by ≺. A dynamic stack ofm tasks is (9)≺ (10) ≺ (19) ≺
(3.1) ≺ ... ≺ (3.m) ≺ (20), where the last constraint level

τ = 0 (20)

enforces a minimization of the motor torques.
This control scheme generalizes the QP-based inverse-

dynamics solver, and has been proved equivalent to the
pseudo-inverse based solvers in [13] when not considering
any inequalities. Its formulation is free of overhead, needing
only the direct quantities (Jacobians, inertia matrix). How-
ever, its resolution for a full stack (when all the degrees of
freedom -DOF- of the robot are used) iso((2nτ +6+nf )

3)
3) Ill-condition of motion-actuation coupling: Apart from

its cost, a second problem can be noticed with the explicit
HQP formulation. Due to the dynamic equations, the variable
spacex = (q̈, f, τ) can be divided theoretically in two
sub spaces: the motion space, where the acceleration can
be chosen freely (setting accordingly the necessary force
and torque variables), and the actuation space, where the



acceleration is fixed (practically 0) and only forces can be
chosen. However, in practice, the distinction between motion
and actuation is equivalent to the problem of deciding if a
value is null: it relies on a fixed threshold. This is a generic
problem, that has to be solved explicitly when computing
the projector (12) for pseudo-inverse based methods. This
problem is linked to the decision of the singularity of a task.

However, when accounting for inequality constraint in
a QP solver, the threshold cannot be arbitrarily selected:
it is fixed and depends on the precision of the solver,
generally1e−8. The consequence is that three subspaces of
the variables have to be considered: the motion and actuation
spaces, and aǫ-motion space, where motion variables are free
in theory, but in exchange of impractical force values.

D. Conclusion

Two classes of solutions for operational-space inverse
dynamic have been described. The first class is based on the
pseudo inverse. The cost for a full stack of tasks is ino(n3τ ).
The drawbacks are the impossibility to account for inequal-
ities, and the specific treatment to formulate the problem,
tedious to write and costly. On the other hand, QP are easier
to formulate, and can account for more generic constraints,
involving hidden variables and inequalities. However, the
cost is more important and the simultaneous treatment of
contact and tasks can involve ill-conditioned subspaces.

In the next section, we will propose to automatically
formulate of a reduced HQP, where the actuation space is
explicitly distinguished from the motion space. This formu-
lation keeps the possibility to have generic constraints, but
for a cost lower than both classes of solution, and with an
explicit and arbitrary condition threshold.

III. D ECOUPLED DYNAMICS

The idea is to explicitly separate the variable spaces
between motion and actuation. Then, instead of keeping
the explicit variables we will rely on the basis of the two
decoupled, that are of lower dimension than the coupled
original variables. However, due to the consistency with the
inertia matrix, the decoupling is not trivial.

A. Motion-force decoupling

The inertia matrix is decomposed into an inverse Choleski:

A−1 = BB⊤ A = B−⊤B−1 (21)

whereB, the square-root ofA−1, is invertible triangular (no
zero term on the diagonal). Using the decomposition, the
dynamics can be rewritten:

B−1q̈ +B⊤J⊤f +B⊤b = B⊤S⊤τ (22)

For shortcuts, we denoteG = JB. The projector into the
null space ofG is denoted byP. Using the pseudo-inverse
constructive definition:

P = I −G+G (23)

Multiplying (22) by P gives:

B−1q̈ −G+Jq̈ + PG⊤f + PB⊤b = PB⊤S⊤τ (24)

The second term is constant with respect to the variables
(q̈, τ, f) sinceJq̈ = J̇q̇. The third term is null by definition
of P. The dynamic evolution under constraint of contact is
then:

B−1q̈ + PB⊤b+G+J̇q̇ = PB⊤S⊤τ (25)

or, by multiplying byB−⊤ and using the classical notations:

Aq̈ +Nb+B−⊤G+J̇q̇ = NS⊤τ (26)

with N = B−⊤PB⊤ the projector (12).

B. Contact constraint

Alternatively, the contact constraint can be rewritten by
multiplying (22) byG:

GG⊤f +GB⊤b− J̇q̇ = Gz (27)

with z = B⊤S⊤τ . Computingτ is equivalent to computing
the variablez. When considering the last equation onz, it
clearly appears that a sub manifold of possiblez values has
no effect on the motion, but only on the internal forces. This
space is then useless since it is already considered in thef

variables. To reduce the space wherez is searched, we simply
have to search it under a shape that is consistent with (27):

z = G⊤f + V u+B⊤b+ δc (28)

where δc = −G+J̇q̇, V is a basis of the null space ofG
(P = V V ⊤) andu is any vector in this kernel. Introducing
z in (22) gives:

B−1q̈ = V u+ δc (29)

This very simple equation is the reduced motion dynamics
implied by contact constraints. It is fully decoupled from
the force dynamics, and reduced to the lower dimensionV

space. The possible motions are then directly given by the
subspaceV B−1. The projection of the reference motion into
the subspace of possible motion is simply:

u = V ⊤(B−1q̈ − δc) (30)

C. Forces resolution

Consider that a reference feasible motion is given under
the shape of a reducedu∗. It is now necessary to compute
the actual necessary torques and forces. As said upper, in
most cases, there is a redundancy of actuation. Therefore,
there is not a single possible pair of(f, τ), but a set of
possible values. However, the necessary external forces can
be explicitly expressed in the null space of the selection
matrix. The selection of the floating part is denoted byS̄
(S̄ = [I 0], S̄S⊤ = 0). Multiplying (28) by S̄B−⊤ gives:

S̄J⊤f + S̄b+ S̄B−⊤δc = −S̄B−⊤V u (31)

In the case of a single contact with reduced forces,S̄J⊤

is 6x6 invertible, and the contact forces can be computed
uniquely. Otherwise, any forces satisfying the previous equal-
ity are admissible. The torques are obtained by subtraction:

τ = S(J⊤f +B−⊤V u+ b+B−⊤δc) (32)



If searching for a particular̈q respecting some linear
constraintsJt, et, under inequality constraint onf , the opti-
mization problem will be written:

min
u,f

||JtBV u− et||
2 (33)

s.t. S̄J⊤f + S̄b+ S̄B−⊤δc = −S̄B−⊤V u (34)

f⊥ ≥ 0 (35)

The problem of this formulation is that there is still many
0 on the cost function due to the invariance tof , and many 0
on the inequality part due to the invariance tou. Moreover,
f is possibly still of large size, while only a reduced space
acts on the problem.

D. Reduction of the force variable

Due to the underactuation, the only constraint on the force
is to ensure the full actuation of the floating DOF. The
constraint can be written:

S̄J⊤f = −S̄(B−⊤V u+ b+B−⊤δc) (36)

The variablef can be searched under the following shape:

f = −(S̄J⊤)+S̄(B−⊤V u+ b+B−⊤δc) +Kψ (37)

whereK is a basis of the null space of matrix̄SJ⊤. Because
B is triangular, the previous equality can be reduced to:

f = −(S̄G⊤)+S̄(V u+B⊤b+ δc) +Kψ (38)

The optimization problem can be reformulated consequently:

min
u,ψ

||JtBV u− et||
2 (39)

s.t. −(S̄G⊤)+S̄V u+Kψ ≥ f0 (40)

with f0 any solution ofS̄G⊤f0 = B⊤b + δc , for example
f0 = (S̄G⊤)+(B⊤b+ δc).

The problem is directly generalized to a stack of tasks
using the following HQP: (40)≺ (3.1) ≺ ... ≺ (3.m). A
last stage can be added to minimize the torques. However, it
is generally better for the system stability to add sufficient
tasks to fill up the stack. Then, there is no more redundancy
to minimize the torques. In the case where the stack is not
full, a last task of friction or posture (see Section IV) is
generally added to complete it.

E. Spatial-force reduction

In practice, each contact is defined by a finite set of
convex points where 3D point contacts occurs. The points
are fixed with respect to one of the robot body. The contact
forces summed into a 6D spatial force (linear and angular
components), expressed in the body coordinates system at the
central point. From the forces at the contact points denoted
fi, the forcef =

∑n
i=1 fi and torqueτ =

∑n
i=1 pi × fi

at the central points can be computed. The Jacobian of the
contact can by written:

J = XJ6

whereJ6 is the 6D Jacobian of the frame attached to the
body, and X is a3n× 6 matrix involving the cross product

with pi. When the contact happens on three points or more
of the same body,X is full column rank. This property is
then used to reduce the computation cost ofV = ker(J6).

F. Conclusion

Finally, the solver is reduced to the variablex = [u, ψ],
whose size is typically equal tonτ + 6. The computation
cost for a full stack of tasks is thus ino((nτ + 6)3), similar
to the cost of the pseudo-inverse based solution. If using a
proper solver, like the one proposed in [17], it should even
be faster in practice, as shown in the experiments.

The formulation of the problem is reduced to the compu-
tation ofV andδc. The two quantities are computed from a
QR decomposition of the matrixJp, for a total cost ofo(k2),
with k the number of joints of the robot that are linked with
a contact (typically,k = c ∗ 6 + 6, each contacts occurring
on an end-effector after a 6-joint limb, plus 6 for the free
flyer). The cost ofK can be neglected, since this computation
is only needed once in a while. Having the decomposition
corresponding toK, the computation off0 is negligible.

The proposed solution offers a versatile implementation of
the dynamic stack of tasks. The dynamic balance of the robot
is ensured by (40), that can be shown to be equivalent to the
classical zero-momentum point (ZMP) condition in the case
of coplanar contacts. The classical task functions can then
be added to manipulate the robot motion.

IV. EXPERIMENTS

The control law presented above is theoretically strictly
equivalent to the explicit HQP proposed in [13], that was
previously shown equivalent to [15] if limited to equalities.
The objective is thus not to validate the motions that it is
possible to generate, but to compare the computation times.
The motions presented below consist in dynamic reaching of
a robot pose that is defined by various set of tasks on the
end-effector positions and orientation, a set of contacts,the
robot gaze, or some joint positions. The tasks are the same
as those used in [18]. The task sequence is defined by hand.

Three motions are presented below. They all have been
designed for a dissemination event, where the robot is
interacting with dancers. They are dynamic motions, in the
sense that considering only the center of mass position is
not sufficient to ensure the feasibility by the real robot:
due to large accelerations or quantities of motion, the robot
can loose contact if the ZMP constraint is not properly
satisfied. The first motion is a simple but fast motion: with
the two feet on the ground, the robot moves mainly its
waist while keeping its hands fixed at a given position. The
second movement requires to balance the robot body while
making large upper-body movements standing on one foot.
The last motion involves a large step while keeping the
balance using a contact of the hand. The two last motions
involves variations of the contact set during the sequence.
The movies corresponding to each motion can be found at
homepages.laas.fr/nmansard/icra2012 .

For each motion, the three solvers,PINV based on the
pseudo inverse (Sec. II-B),HQP based on the explicit HQP
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Fig. 2. Experiment A: COM and ZMP position: the COM fluctuates along
the Y axis, while the ZMP is limited in the defined support polygon.

formulation (Sec. II-C), andRED based on the reduced dy-
namic HQP (Sec. III-D) are compared. Since thePINV solver
cannot handle inequalities, the ZMP can not be constrained in
PINV: the resulting motion can be dynamically inconsistent.
In simulation, it is then necessary to artificially enforce the
foot contact, in order to compare the computation times
of each method. For the same reasons, inPINV, the joint-
limit constraint has been removed, and the eventual floating
COM transform to a fix attractor. To prove the validity of
the obtained dynamics, the motion generated byRED for
the experiments A and B has been realized by the robot.
However, all the time-computation comparisons have been
run on the same computer in simulation.

For each execution, two computation costs are measured:
on the one side the cost of the solver, i.e. the time spent by
the numerical resolution (call to the QP program forHQP
and RED, call to the pseudo inverse operator forPINV),
and on the other side the formulation cost, i.e. all the other
computation (Jacobian, projectors, etc).

A. Experiment A: waist rotation

The robot hands are controlled to reach a fixed point in
front of the robot shoulders. They are then constrained to
keep this position, and to keep the rotation along the robot
X axis (front axis). Another task is then added to move
the robot waist position. The waist is successively driven
to the four corners of a rectangle set along the Y-Z plane
(perpendicular to the front axis), whose coordinates are top-
left corner: (0,0.1,0.65) to bottom-right corner: (0,-0.1,0.35).
The robot COM is constrained to stay along the segment
linking the two robot feet. Finally, the friction task is used
to limit the robot velocity without constraining the posture.
The set of contact is constant during all the motion: the two
feet are flat on the ground. To account for the flexibility in
the ankles, the ZMP should be kept close to the center of the
foot. The support polygon is then a rectangle of5cm× 3cm
centered on the vertical the last ankle motor. The stack of
tasks is (40)≺ (joint-limits) ≺ (right-hand)≺ (left-hand)≺
(COM) ≺ (waist)≺ (friction).
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Fig. 3. Experiment A: formulation time (bold) and solver time (non-bold)

The COM and ZMP position are displayed on Fig 2. The
computation times are shown on Fig. 3. The computation cost
of the PINV solver only depends on the number of tasks in
the stack: it is very stable through the time. On the opposite,
the cost of theHQP varies each time a limit is reached. Due
to the mentioned numerical problems (here caused by the leg
closed kinematic chain), limits are very often hit, that causes
some variations in the computation time. The variations when
the stack size varies is also visible. In average, theHQP
solver costs 30% more than thePINV. The cost of theRED
solver is around four times less. The major costs is due to
the friction task, that implies a large multiplication byBV .
Therefore, its computation cost is nearly constant.

The computation cost of the formulation ofHQP is null as
expected. The size of the formulation ofRED is mainly due
to the computation ofV . It is thus constant in this motion,
since the contact set do not vary. Similarly forPINV, the
computation cost is nearly constant. In both cases, the cost
of the formulation is equivalent to the cost of the solver itself.

B. Experiment B: standing lotus

The robot starts with the two feet on the ground, then
ups its right foot and moves it near its left knee, while
bringing both hand close to contact in front of its shape,
reaching thus the positionstanding lotus. The position is
maintained during 2 secs, and the robot finally moves back
to the initial position. The arms and right leg trajectories
are captured from a real human demonstration, as well as
the overall posture, as proposed in [18]. During the control,
the trajectories are simply tracked by the classical tasks.
The stack is (40)≺ (right-hand)≺ (left-hand)≺ (COM)
≺ (waist)≺ (gaze)≺ (friction).

Snapshots of the motion on the robot are given on Fig. 1.
The times are given in Fig. 4. The same observation as
previously can be noticed. Additionally, the change in the
contact set appears: the cost of the formulation for bothRED
and PINV diminish. The cost of theRED solver increases
since the variable space is bigger during simple support. The
cost of bothPINV andHQP solvers remains invariant while
the contact set changes.
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Fig. 4. Experiment B: formulation time (bold) and solver time (non-bold)

C. Experiment C: arm-contact step

This last motion is a typical example of the interest of
considering the dynamics. It was already demonstrated in
[17], [19]. The robot first contacts its left arm on a table.
Then, it performs a large step with the right leg. The step is
sufficiently small to be realized by the robot kinematics, but
not when considering ZMP and joint limits. When the arm is
in contact with the table, the ZMP is not defined anymore,
but the constraint (40) is still valid. This motion presents
several variations of the contact set (from 1 to 3 bodies).

The computation times are given in Fig. 5. The same
observations as previously can be made. During this motion,
ill-conditioned spaces appears during the triple contact phase,
due to the quasi-null respective orientation of the feet.
The contact forces estimated by theHQP solver reaches
impossible values (1e7). The forces chosen by theRED
solver remain consistent.

V. CONCLUSION

In this paper, we have first compared QP- and pseudo-
inverse- based dynamic motion generators, in term of for-
mulation and computation cost. QP are more generic, and
easier to set up, but more expensive and with possible numer-
ical problems. On the opposite, pseudo-inverse methods are
cheaper, but more complex to set up, and cannot comprehend
inequalities, in particular the classical ZMP constraint.

We have then proposed a new formulation of the problem,
to reduce its dimensionality, while keeping the capabilities
of the QP solver. This solution allows fast resolution (around
4ms for typical HRP2 problems), and is numerically stable.
The control scheme can comprehend the whole robot dynam-
ics with complex set of equalities and inequalities constraints
in real time at 200Hz. The solution was tested to generate
dynamic movements on the real robot.
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