
HAL Id: hal-00707185
https://hal.science/hal-00707185v1

Submitted on 12 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Semantic Wiki: Kolflow Project -Task 5-
State of the art (D5.1)
Hala Skaf-Molli, Pascal Molli

To cite this version:
Hala Skaf-Molli, Pascal Molli. Distributed Semantic Wiki: Kolflow Project -Task 5- State of the art
(D5.1). 2012. �hal-00707185�

https://hal.science/hal-00707185v1
https://hal.archives-ouvertes.fr

Distributed Semantic Wiki: Kolflow Project

-Task 5- State of the art (D5.1)

Hala Skaf-Molli and Pascal Molli,
GDD Team, Nantes University

Hala.Skaf@univ-nantes.fr, Pasca.Molli@univ-nantes.fr

June 12, 2012

Abstract

This paper presents the state of the art on Distributed Semantic Wikis.
This work is part of the Kolflow project, more precisely it is part of the
task 5, D(5.1).

1 Semantic Wikis

Wikis are the most popular tools of Web 2.0, they provide an easy to share
and contribute to global knowledge. The encyclopedia Wikipedia is a famous
example of a wiki system. In spite of their fast success, wiki systems have some
drawbacks. They suffer from search and navigation [6], it is not easy to find
information in wikis [2]. They have also scalability, availability and performance
problems [19, 8] and they do not support offline works and atomic changes [3].
To overcome these limitations, wiki systems have evolved in two different ways:
semantic wikis and peer-to-peer wikis.

Semantic wikis such as Sematic MediaWiki [6], IkeWiki [14], SweetWiki [2]
and SWooki [17] are a new generation of collaborative editing tools, they allow
users to add semantic annotations in the wiki pages. These semantic annotations
can then be used to find pertinent answers to complex queries. Semantic wikis
can be viewed as an efficient way to better structure wikis by providing a means
to navigate and answer questions or reason, based on annotations. Semantic
wikis are an extension of wiki systems that preserve the same principles of wikis
such as simplicity in creating and editing wikis pages. Semantic wikis embed
semantic annotations in the wiki content by using Semantic Web technologies
such as RDF and SPARQL. In semantic wikis, users collaborate not only for
writing the wiki pages but also for writing semantic annotations. Traditionally,
authoring semantics and creation ontologies has mainly been in the hand of
“ontologists” and knowledge management experts. Semantic wikis allow mass
collaboration for creating and emerging ontologies. Some existing semantic wikis
allows the emergence of the ontology, MediaWiki(SMW) [6] and SweetWiki [2].

1

Others use the wikis as a collaborative ontologies editors. IkeWiki [14] aims to
create an instance of existing ontologies, while OntoWiki [1] aims the creation
of ontology schema. In a semantic wiki, users add semantic annotations to wiki
page text to represent relations and properties on this page. In SMW users
choose their own vocabularies to type links. For instance, a link between the
wiki pages “France” and “Paris” may be annotated by a user as “capital”.

Content of wiki page of “France” Content of semantic wiki page of “France”

France is located in [Europe] France is located in [locatedIn::Europe]
The capital of France is [Paris] The capital of France is [hasCapital:: Paris]

These annotations express semantic relationships between wikis pages. Se-
mantic annotations are usually written in a formal syntax so they are processed
automatically by machines and they are exploited by semantic queries. There
are two approaches of semantic wikis [2]:
• The use of ontologies for wikis: requires the load of an existing ontology.

The advantage is to build controlled vocabularies [14] but it can be too rigid for
emergent domains where ontologies are not clearly defined.
• The use of wikis for ontologies: semantic wikis let users choose their own

vocabularies [6]. Semantic annotations are integrated directly in the wiki text.
Semantic data appear in their context. The main advantage is to allow the
emergence of an ontology.

In spite of their success, semantic wikis do not support a multi-synchronous
work mode. Their current model provides only one copy of a semantic wiki
page. The state of a semantic wiki page is always the current visible one on
the server, intermediate inconsistent states are always visible. Consequently,
transactional changes are not be supported neither the isolated work mode nor
off-line editing mode.

2 P2P wikis

The basic idea of peer-to-peer wikis is to replicate wiki pages on the peers of a
P2P network.

The main problem is to ensure the consistency of copies. Strong consis-
tency of copies such as sequential consistency or 1-copy serializability cannot
be currently ensured on P2P networks. P2P wikis rely on algorithms with high
communication complexity or on algorithms that do not support dynamicity of
P2P networks [13]. All existing P2P wikis are using an optimistic replication
algorithm that ensures only a weaker consistency such as causal consistency,
eventual consistency or CCI consistency (causality, convergence, intentions). A
wiki deployed on a P2P network takes natural advantages of a P2P network
i.e. faults-tolerance, better scalability, infrastructure cost sharing and better
performances. P2P wikis can be divided into two categories:

Partial replication. The replication is “partial” if a single page has a fixed
number of copies [8], [3] and [10]. Partial replication is generally implemented

2

Figure 1: Wiki, Semantic Wiki and P2P Wiki

on Distributed Hash tables (DHT). The main advantages of partial replication
are: (i) a virtual infinite storage i.e. adding a peer in the network increases
storage capacity, (ii) a less traffic generation than the total replication approach
(iii) a cheap join of a new site to the P2P network.

Total replication. The replication is “total” if all pages are replicated on
all servers [19], [5], [4]. The main advantages of total replication compared
to partial replication are: (i) off-line editing i.e. even when disconnected, a
peer can continue editing, this is mandatory for mobile work, (ii) transactional
changes i.e. by allowing off-line work, it is possible to generate a change that
concerns multiple wiki pages (iii) local requests execution i.e. as all data are
local, all requests can be processed locally.

Compared to partial replication, total replication has some drawbacks : (i)
total replication generates more traffic for write operations i.e. when a change
is made on a copy, it is propagated to all copies and not to a fixed number
of copies, (ii) when a peer is joining the network, it requires transferring the
complete state of the wiki not just the range of wiki pages that the peer is
responsible to.

In this paper, we focus on the state of the art of distributed semantic wiki.
Such a system combines advantages of P2P wikis and Semantic wikis. We will

3

detail two systems: SWOOKI and DSMW. Both of these systems are based on
the the use of wikis for ontologies approach such as Semantic MediaWiki.
However, Swooki is peer-to-peer wiki based on total replication and CCI
consistency and DSMW is a peer-to-peer wiki based on partial replication
and CCI consistency.

3 SWooki : A peer-to-peer Semantic Wiki

A P2P semantic wiki is a P2P network of autonomous semantic wiki servers
(called also peers or nodes) that can dynamically join and leave the network.
Every peer hosts a copy of all semantic wiki pages and an RDF store for the
semantic data. Every peer can autonomously offer all the services of a seman-
tic wiki server. When a peer updates its local copy of data, it generates a
corresponding operation. This operation is processed in four steps:

1. It is executed immediately against the local replica of the peer,
2. it is broadcasted through the P2P network to all other peers,
3. it is received by the other peers,
4. it is integrated to their local replica. If needed, the integration process

merges this modification with concurrent ones, generated either locally or re-
ceived from a remote server.

The system is correct if it ensures the CCI consistency model (see section ??).

3.1 Data Model

The data model is an extension of Wooki [19] data model to take in consid-
eration semantic data. Every semantic wiki peer is assigned a global unique
identifier named NodeID. These identifiers are totally ordered. As in any wiki
system, the basic element is a semantic wiki page and every semantic wiki page
is assigned a unique identifier PageID, which is the name of the page. The
name is set at the creation of the page. If several servers create concurrently
pages with the same name, their content will be directly merged by the synchro-
nization algorithm. Notice that a URI can be used to unambiguously identify
the concept described in the page. The URI must be global and location inde-
pendent in order to ensure load balancing. For simplicity, in this paper, we use
a string as page identifier.

Definition 1 A semantic wiki page Page is an ordered sequence of lines
LBL1, L2, . . . LnLE where LB and LE are special lines. LB indicates the begin-
ning of the page and LE indicates the ending of the page.

Definition 2 A semantic wiki line L is a four-tuple < LineID, content, degree,
visibility > where

• LineID is the line identifier, it is a pair of (NodeID, logicalclock) where
NodeID is the identifier of the semantic wiki server and logicalclock is a logical
clock of that server. Every semantic wiki server maintains a logical clock, this

4

clock is incremented when an operation is generated. Lines identifiers are totally
ordered so if LineID1 and LineID2 are two different lines with the values
(NodeID1, LineID1) and (NodeID2, LineID2) then LineID1 < LineID2 if
and only if (1) NodeID1 < NodeID2 or (2) NodeID1 = NodeID2 and LineID1

< LineID2.
• content is a string representing text and the semantic data embedded in

the line.
• degree is an integer used by the synchronization algorithm, the degree of a

line is fixed when the line is generated, it represents a kind of loose hierarchical
relation between lines. Lines with a lower degree are more likely generated
earlier than lines with a higher degree. By definition the degree of LE and LB

is zero.
• visibility is a boolean representing if the line is visible or not. Lines are

never really deleted they are just marked as invisible. For instance, suppose
there are two lines in a semantic wiki page about ”France” , ”France” is the
identifier of the page.

France is located in [locatedIn :: Europe]
The capital of France is [hasCapital::Paris]

Suppose these two lines are generated on the server with NodeID = 1 in
the above order and there are no invisible lines, so the semantic wiki page will
be internally stored as.

LB

((1,1), France is located in [locatedIn :: Europe], 1, true)
((1,2), The capital of France is [hasCapital::Paris], 2, true)
LE

Text and semantic data are stored in separate persistent storages. Text
can be stored in files and semantic data can be stored in RDF repositories, as
described in the next section.

Semantic data storage model RDF is the standard data model for encod-
ing semantic data. In P2P semantic wikis, every peer has a local RDF repository
that contains a set of RDF statements extracted from its wikis pages. A state-
ment is defined as a triple (Subject, Predicate, Object) where the subject is the
name of the page and the predicates (or properties) and the objects are related
to that concept. For instance, the local RDF repository of the above server
contains: R = {(”France”, ”locatedIn”, ”Europe”), (”France”, ”hasCapital”,
”Paris”) }. As for the page identifier, a global URI can be assigned to pred-
icates and objects of a concept, for simplicity, we use a string. We define two
operations on the RDF repositories:
• insertRDF(R,t): adds a statement t to the local RDF repository R. • dele-

teRDF(R,t): deletes a statement t from the local RDF repository R.
These operations are not manipulated directly by the end user, they are

called implicitly by the editing operations as shown later.

5

3.2 Editing operations

A user of a P2P semantic wiki does not edit directly the data model. Instead,
she uses traditional wiki editing operations, when she opens a semantic wiki
page, she sees a view of the model. In this view, only visible lines are displayed.
As in a traditional semantic wiki, she makes modifications i.e. adds new lines
or deletes existing ones and she saves the page(s). To detect user operations,
a diff algorithm is used to compute the difference between the initial requested
page and the saved one. Then these operations are transformed into model
editing operations. A delete of the line number n is transformed into a delete
of the nth visible line and an insert at the position n is transformed into insert
between the (n− 1)th and the nth visible lines. These operations are integrated
locally and then broadcasted to the other servers to be integrated. There are
two editing operations for editing the wiki text: insert and delete. An update
is considered as a delete of old value followed by an insert of a new value. There
are no special operations for editing semantic data. Since semantic data are
embedded in the text, the RDF repositories are updated as a side effect of
text replication and synchronization. (1) Insert(PageID, line, lP , lN) where
PageID is the identifier of the page of the inserted line. line is the line to be
inserted. It is a tuple containing < LineID, content, degree, visibility >. lP is
the identifier of the line that precedes the inserted line. lN is the identifier of
the line that follows the inserted line. During the insert operation, the semantic
data embedded in the line are extracted, RDF statements are built with the page
name as a subject and then they are added to the local RDF repository thanks
to the function insertRDF (R, t). (2) The delete(PageID, LineID) operation
sets the visibility of the line identified by LineID of the page PageID to false.
The line is not deleted physically, it is just marked as deleted. The identifiers
of deleted lines must be kept as a tombstones. During the delete operation, the
set of RDF statements contained in the deleted line is deleted from the local
RDF repository thanks to the deleteRDF (R, t).

3.3 Correction Model

This section defines causal relationships and intentions of the editing operations
for our P2P semantic wiki data model.

3.4 Causality preservation

The causality property ensures that operations ordered by a precedence relation
will be executed in the same order on every server. In WOOT, the precedence
relation relies on the semantic causal dependency. This dependency is explicitly
declared as preconditions of the operations. Therefore, operations are executed
on a state where they are legal i.e. preconditions are verified. We define causal-
ity for editing operations that manipulate text and RDF data model as:

Definition 3 insert Preconditions Let Page be the page identified by PageID,
let the operation op=Insert(PageID, newline, p , n), newline =< LineID, c,

6

d, v> generated at a server NodeID, R is its local RDF repository. The line
newline can be inserted in the page Page if its previous and next lines are
already present in the data model of the page Page.

∃i ∃j LineID(Page[i]) = p ∧ LineID(Page[j]) = n

Definition 4 Preconditions of delete operation Let Page be the page iden-
tified by PageID, let op = Delete(PageID, dl) generated at a server NodeID
with local RDF repository R, the line identified by dl can be deleted (marked as
invisible), if its dl exists in the page.

∃i LineID(Page[i]) = dl

When a server receives an operation, the operation is integrated immediately
if its pre-conditions are evaluated to true else the operation is added to a waiting
queue, it is integrated later when its pre-conditions become true.

peer1 peer2 peer3

Text
RDFRepository

Text
RDFRepository

Text
RDFRepository

op1 = Insert(1, ”France is located..”)

33

op2 = Insert(1, ”France is a country... ”)

oo

$$

France is located in [locatedIn::Europe]

{(France, locatedIn, Europe)}
France is a country in [locatedIn::Europe]

{(France, locatedIn, Europe)}

op2 op1

France is located in [locatedIn::Europe]
France is a country in [locatedIn::Europe]

{(France, locatedIn, Europe)}

France is located in [locatedIn::Europe]

{(France, locatedIn, Europe)}

op3 = delete(1)

rr

Text

op3 op2

France is a country in [locatedIn::Europe]

{ }
France is a country in [locatedIn::Europe]

{(France, locatedIn, Europe)}

Figure 2: Semantic inconsistency after integrating concurrent modifications

3.5 Intentions and Intentions preservation

The intention of an operation is the visible effect observed when a change is
generated at one peer, the intention preservation means that the intention of the
operation will be observable on all peers, in spite of any sequence of concurrent
operations. We can have a naive definition of intention for insert and delete:
• The intention of an insert operation op= Insert(PageID, newline, p , n)

when generated at site NodeID, where newline =< nid, c, d, v> is defined as:
(1) The content is inserted between the previous and the next lines and (2) the
semantic data in the line content are added to the RDF repository of the server.

7

• The intention of a delete operation op= delete(pid, l) when generated at
site S is defined as : (1) the line content of the operation is set to invisible and
(2) the semantic data in the line content are deleted from the RDF repository
of the server.

Unfortunately, it is not possible to preserve the previous intention definitions.
We illustrate a scenario of violation of these intentions in figure 2. Assume
that three P2P semantic wiki servers, peer1, peer2 and peer3 share a semantic
wiki page about ”France”. Every server has its copy of shared data and has
its own persistence storage repository. At the beginning, the local text and
the RDF repositories are empty. At peer1, user1 inserts the line ”France is
located [located In::Europe]” at the position 1 in her copy of the ”France” page.
Concurrently, at peer2 user2 inserts a new line ”France is a country in [located
In::Europe]” in her local copy of ”France” page at the same position and finally
at peer3 user3 deletes the line added by user1. When op2 is integrated at peer1,
the semantic annotation is present two times in the text and just one time in
the RDF repository. In fact, the RDF repository cannot store twice the same
triple. When op3 is finally integrated on peer1, it deletes the corresponding
line and the semantic entry in the RDF repository. In this state, the text and
the RDF repository are inconsistent. Concurrently, peer3 has integrated the
sequence [op1;op3;op2]. This sequence leads to a state different than the state
on peer1. Copies are not identical, convergence is violated.

The above intentions cannot be preserved because the effect of executing
op3 changes the effect of op2 which is independent, of op3 i.e. op3 deletes the
statement inserted by op2, but op3 has not seen op2 at generation time.

3.6 Model for Intention preservation

It is not possible to preserve intentions if the RDF store is defined as a set of
statements. However, if we transform the RDF store into multi-set of state-
ments, it becomes possible to define intentions that can be preserved.

Definition 5 RDF repository is the storage container for RDF statements,
each container is a multi-set of RDF statements. Each RDF repository is de-
fined as a pair (T,m) where T is a set of RDF statements and m is the multi-
plicity function m : T → N where N = 1, 2......

For instance, the multi-set R = { (”France”, ”LocatedIn”, ”Europe”),(”France”,
”LocatedIn”, ”Europe”),(”France”, ”hasCapital”, ”Paris”) } can presented by
R = { (”France”, ”LocatedIn”, ”Europe”)2, (”France”, ”hasCapital”, ”Paris”
)1 } where 2 is the number of occurrence of the first statement and 1 is this of
the second one.

Definition 6 Intention of insert operation Let S be a P2P semantic wiki
server, R is its local RDF repository and Page is a semantic wiki page. The
intention of an insert operation op= Insert(PageID, newline, p , n) when
generated at site S, where newline =< nid, c, d, v> and T is the set (or multi-
set) of RDF statements in the inserted line, is defined as: (1) The content is

8

inserted between the previous and the next lines and (2) the semantic data in
the line content are added to R.

∃i ∧ ∃ iP < i LineID(Page[iP]) = p (1)

∧ ∃ i ≤ iN LineID(Page[iN]) = n (2)

∧Page′[i] = newline (3)

∧ ∀j < i Page′[j] = Page[j] (4)

∧ ∀j ≥ i Page′[j] = Page[j − 1] (5)

∧R′ ← R] T (6)

Where Page′ and R′ are the new values of the page and the RDF repository
respectively after the application of the insert operation at the server S and]
is the union operator of multi-sets. If a statement in T already exists in R so
its multiplicity is incremented else it is added to R with multiplicity one.

Definition 7 Intention of delete operation Let S be a P2P semantic wiki
server, R is the local RDF repository and Page is a semantic wiki page. The
intention of a delete operation op= delete(PageID, ld) where T is the set (or
multi-set) of RDF statements in the deleted line, is defined as: (1) the line ld is
set to invisible and (2) the number of occurrence of the semantic data embedded
in ld is decreased by one, if this occurrence is equal to zero which means these
semantic data are no more referenced in the page then they are physically deleted
from the R.

∃i ∧ PageID(Page′[i]) = ld (7)

∧ visibility(Page′[i])← false (8)

∧ R′ ← R − T (9)

Where Page′ and R′ are the new values of the page and the RDF repository
respectively after the application of the delete operation at the server S and −
is the difference of multi-sets. If statement(s) in T exists already in R so its
multiplicity is decremented and deleted from the repository if it is equal to zero.

Let us consider again the scenario of the figure 2. When op2 is integrated
on peer1, the multiplicity of the statement (”France”, ”locatedIn”, ”Europe”)
is incremented to 2. When op3 is integrated on peer1, the multiplicity of the
corresponding statement is decreased and the consistency between text and RDF
repository is ensured. We can observe that Peer1 and Peer3 now converge and
that intentions are preserved.

3.7 Algorithms

As any wiki server, a P2P semantic server defines a Save operation which de-
scribes what happens when a semantic wiki page is saved. In addition, it defines
Receive and Integrate operations. The first describes what happens upon re-
ceiving a remote operation and the second integrates the operation locally.

9

Peer 1 Peer 2 Peer 3

Text
RDFRepository

Text
RDFRepository

Text
RDFRepository

op1 = Insert(1, ”France is located..”)

33

op2 = Insert(1, ”France is a country... ”)

oo

$$

France is located in [locatedIn::Europe]

{(France, locatedIn, Europe,1)}
France is a country in [locatedIn::Europe]

{(France, locatedIn, Europe,1)}

op2 op1

France is located in [locatedIn::Europe]
France is a country in [locatedIn::Europe]

{(France, locatedIn,Europe)2}

France is located in [locatedIn::Europe]

{(France, locatedIn,Europe)1}

op3 = delete(1)

rr

Text

op3 op2

France is a country in [locatedIn::Europe]

{(France, locatedIn,Europe)1}
France is a country in [locatedIn::Europe]

{(France, locatedIn,Europe)1}

Figure 3: Convergence after integrating concurrent modifications

Save operation During saving a wiki page, a Diff algorithm computes the
difference between the saved and the previous version of the page and generates
a patch. A patch is the set of delete and insert operations on the page (Op =
Insert(PageID, line, lP , lN) or Op = Delete(PageID, LineID)). These
operations are integrated locally and then broadcasted to other sites in order to
be executed as shown below.

Upon Save(page, oldPage) :
let P ← Diff(page, oldPage)

for each op ∈ P do
Receive(op)

endfor
Broadcast(P)

At this level of description, we just make the hypothesis that Broadcast(P) will
eventually deliver the patch P to all sites. More details are given in section ??.

Delivery Operation When an operation is received (cf figure 4) its precon-
ditions are checked (cf figure 5). If they are not satisfied, the operation is added
to the waiting log of the server, else according to the type of the operations
some steps are executed.

The waiting log is visited after the integration and the operations that satisfy
their preconditions are removed from the log and integrated. The function
ContainsL(PageID, id) tests the existence of the line in the page, it returns
true if this is the case. The function isV isible(LineID) tests the visibility of

10

Upon Receive(op) :
if isExecutable(op) then
if type(op) = insert then

IntegrateIns(op)
if type(op) = delete then

IntegrateDel(op)
else

waitingLog ← waitingLog
⋃
{op}

endif

Figure 4: Receive operation

isExecutable(op) :
if type(op) = del then

return
containsL(PageID,LineID)
and isVisible(LineID)

else
return ContainsL(PageID,lP)

and ContainsL(PageID, lN)
endif

Figure 5: isExecutable Operation

IntegrateDel(LineID) :
IntegrateDelT(LineID)
IntegrateDelRDF(LineID)

Figure 6: IntegrateDel operation

IntegrateDelT(LineID) :
Page[LineID]. visibility ←false

Figure 7: IntegrateDelT Operation

the line.

Integrate operation The integration of an operation is processed in two
steps (cf figure 6): (1) text integration and (2) RDF statements integration.
To integrate a text delete operation (cf. figure 7), the visibility flag of the
line is set to false whatever is its content. To integrate RDF statements (cf
figure 8), a counter is used to implement a multi-set RDF repository. A counter
is attached to every RDF triple, the value of the counter corresponds to the
number of occurrence of the triple in the repository. During the delete operation,
the counter of the deleted statements is decreased, if the counter is zero the
statements are physically deleted from the repository.

To integrate an insert operation (cf figure 9) the line has to be placed among
all the lines between lP and lN , some of these lines can be previously deleted
or inserted concurrently and the inserted semantic data are integrated. To

IntegrateDelRDF(LineID) :
let S ← ExtractRDF(LineID)
if S 6= ∅ then
for each triple ∈ S do

triple .counter−−
if triple .counter = 0 then

deleteRDF(R,triple)
endif

endif

Figure 8: IntegrateDelRDF opera-
tion

IntegrateIns(PageID, line, lP , lN) :
IntegratedInsT(PageID, line, lP , lN)
IntegrateInsRDF(line)

Figure 9: IntegrateIns Operation

11

IntegrateInsT(PageID, line, lP , lN) :
let S’ ←
subseq(Page[PageID]), lP , lN)
if S = ∅ then
insert(PageID, line, lN)

else
let i ← 0
let dmin ← min(degree(S′))
let F ← filter(S′, degree = dmin)
while (i < |F | − 1)and(F [i] <idline)
do i ← i +1

IntegrateInsT(PageID,line,F[i−1],F[i])
endif

Figure 10: Integrate insert text op-
eration

IntegrateInsRDF(line) :
let S ← ExtractRDF(line)
if S 6= ∅ then
for each triple ∈ S do

if Contains(triple) then
triple .counter++

else
insertRDF(R,triple)

endif
endif

Figure 11: IntegrateInsRDFOpera-
tion

integrate a line in a wiki page, we use the integration algorithm defined in [19].
This algorithm (cf. figure 10) selects the sub-sequence S’ of lines between the
previous and the next lines, in case of an empty result, the line is inserted before
the next line. Else, the sub-sequence S’ is filtered by keeping only lines with
the minimum degree of S’. The remaining lines are sorted according to the line
identifiers order relation <id [9], therefore, line will be integrated in its place
according <id among remaining lines, the procedure is called recursively to place
line among lines with higher degree in S’. To integrate the semantic data (cf
figure 11), the RDF statements of the inserted line are extracted and added to
the local RDF repository. If the statements exist already in the repository, their
counter is incremented, otherwise, they are inserted into the RDF repository
with a counter value equals to one as shown below.

To summarize, causality as defined in section 3.4 is ensured by the Receive
algorithm. Convergence for text is already ensured by the WOOT algorithm [9].
Convergence for semantic data is trivially ensured by the multi-set extension of
the RDF repository. The intention preservation for a text is demonstrated in [9].
Here, we are concerned with the intention of semantic data as defined in 3.5.
The intention of an insert operation is trivially preserved by the algorithm In-
tegrateInsRDF. Since a possible way to implement a multi-set is to associate
a counter to every element. In the same way, the algorithm IntegrateDelRDF
preserves the intention of the delete operation. The basic idea behind all these
algorithms is to reach convergence and preserve intentions whatever is the order
of reception of operations. This implies that these algorithms “force” commuta-
tivity of operations. If operations are commuting then all concurrent executions
are equivalent to a serial one. In our system, users can start a transaction just
by switching to the offline mode and end a transaction by switching to online
mode. We chose this way to interact with users in order to keep the system
simple. If a user produces a consistent change, as all operations of any transac-
tion are commuting and ensure the same effects, then all concurrent execution

12

of transactions generate a correct state.
The SWOOKI prototype has been implemented in Java as servlets in a

Tomcat Server and demonstrated in [11]. This prototype is available with a
GPL license on sourceforge at http://sourceforge.net/projects/wooki and it is
also available online at: http://wooki.loria.fr/wooki1.

3.8 Synthesis

SWooki is a peer-to-peer semantic wikis combines both advantages of semantic
wikis and P2P wikis. The fundamental problem is to develop an optimistic
replication algorithm that ensures an adequate level of consistency, supports
P2P constraints and manages semantic wiki page data type.

SWooki is based on total replication this allows to query, access, reason and
retrieve data locally from any peer without the need for search mechanisms nor
transfer of the semantic data between peers to resolve queries Therefore, ”query-
ing the network” [18] becomes querying any peer. (ii) Total replication enables
transactional changes i.e. atomic changes across multiple pages. Supporting
transactional changes is a very important feature in the context of semantic
wiki. In semantic wiki, a wiki page presents a concept of an ontology, so a
modification of one concept may requires atomic changes to other concepts. If
the change is not atomic, it means that intermediate changes will be visible to
others users and to concurrent requests. This can lead to confusion for other
users and to false results for requests.

SWooki [17] combines the advantages of P2P wikis and semantic wikis. It
is based on an optimistic replication algorithm that ensures the CCI consis-
tency model. It supports the off-line work mode and transactional changes. Its
main limitations are the total replication and the collaboration model. Every
peer of the network hosts a replica of wiki pages and a replica of the semantic
store. Users cannot choose the pages that they want to replicate neither the
period of synchronization. Modifications are propagated on page saving. The
collaborative community is implicit. Users cannot choose to whom propagate
modifications. Changes propagation is under the control of system and not
the users. All connected peers receive and integrate changes. A disconnected
peer will receive the modifications of the others at reconnection thanks to the
anti-entropy algorithm.

4 Multi-synchronous Semantic Wiki Approach
(DSMW)

Multi-synchronous semantic wikis allow users to build their own cooperation
networks. The construction of the collaborative community is declarative, in
the sense, every user declares explicitly with whom he would like to cooperate.
Every user can have a multi-synchronous semantic wiki server installed on her
machine. She can create and edit her own semantic wiki pages as in a normal

13

semantic wiki system. Later, she can decide to share or not these semantic wiki
pages and decide with whom to share.

4.1 Multi-synchronous Collaboration Model

The replication of data and the communication between servers is made through
channels (feeds). The channel usage is restricted to few servers with simple secu-
rity mechanisms that requires no login and complex access control. Capabilities
fit perfectly these requirements [7]. The key point is that channels are read-
only for consumers and can be hosted on hardware of users. When a semantic
wiki page is updated on a multi-synchronous semantic wiki server, it generates
a corresponding operation. This operation is processed in four steps: (1) It
is executed immediately against page, (2) it is published to the corresponding
channels, (3) it is pulled by the authorized servers, and (4) it is integrated to
their local replica of the page. If needed, the integration process merges this
modification with concurrent ones, generated either locally or received from a
remote server.

The system is correct if it ensures the CCI (Causality, Convergence and In-
tention Preservation) consistency model. Multi-synchronous semantic wikis use
the Logoot synchronization algorithm [20] to integrate modifications. Logoot
ensures the CCI consistency model. More precisely, Logoot ensures convergence
and preserves the intentions of operations if the causality of the operations is
preserved.

4.2 Collaboration Scenarios

This section presents two scenarios of collaboration in multi-synchronouns se-
mantic wikis. We suppose several professors collaborate together through a
semantic wiki to prepare lectures, exercises and exams. Later, they want to
make lectures available for students and they want to integrate relevant feed-
backs from students.

Figure 12: multi-synchronous semantic wikis scenario

14

Scenario 1: Collaboration among professors For simplicity, we suppose
there are two professors prof1 and prof2 (see figure 12). Every professor has
her own multi-synchronous semantic wiki, site1 for prof1 and site2 for prof2,
respectively.

1. prof1 edits three semantic wiki pages lesson1, exercises1 and exam1 on
her site site1. For instance, the page lesson1 edited by prof1 has three
lines:

Introduction:

In "multi-synchronous" work, parties work independently in parallel.

[Category::Lesson] [forYear:2009]

2. prof1 wants to publish her modifications on lesson1 to prof2. Therefore,
she creates a feed url1 that contains change set. Finally, she communicates
the address of the feed to prof2.

3. prof2 subscribes to this channel and creates a feed url2 to pull modifica-
tions. The result is a local semantic wiki page lesson1 that has the same
content as lesson1 of prof1.

4. prof2 edits his local copy of the lesson1 page. lesson1 has now five lines:

Introduction:

In "multi-synchronous" work mode, parties work independently in parallel.

[Category::Lesson] [forYear:2009]. This mode is based on divergence and

synchronization phases.

5. In her turn, prof2 shares his modifications on lesson1 with prof1. He
creates a feed and publishes his modifications. prof1 subscribes to the
feed and pulls the modifications published by prof2 and finally integrates
these modifications on her local copy of lesson1. The integration process
merges the remote modifications with concurrent ones, if any, generated
locally by prof1. The integration process has to ensure the convergence
of all copies on lesson1 if all generated operations on site1 and site2 are
integrated on both sites.

The advantages of this collaboration model are, on the one hand, there is
no need for centralized server to cooperate. On the other hand, every professor
works on her or his own copy in isolation, publishes and pulls changes whenever
she wants, i.e. the changes propagation is under the control of the user. This
collaboration process is not supported in classical semantic wikis. The table 1
represents a part of the scenario.

Scenario 2: Collaboration among professors and students In this sce-
nario, prof1 wants to make lesson1 available for her students while she continues to make
corrections and minor modifications on lesson1. In order to provide her students with the
courses, prof1 publishes them on a public site pubSite that can be either her proper public
wiki site or the site of the university. pubSite is accessible by the students for read only to

15

Site1 Site2
Edit(lesson1)

Edit(exercises1)
Edit(exam1)

CreatePushFeed(f1,q1)
CreatePullFeed(f1, f2)

Edit(lesson1) Edit(lesson1)
Push(f1)

CreatePushFeed(f3,q2)

Table 1: Multi-synchronous collaboration scenario

maintain the courses consistency. However, prof1 manages to integrate relevant feedbacks
from students provided by the students sites.

Professor can make continuous improvement of the lessons and can make continuous
integration of the modifications and make only consistent modifications visible. Without
multi-synchronous support all incremental changes will be visible to both end users and to
semantic request engines. Every participant professor and student want to control the visibility
of their modifications and want to control the integration of others’ modifications.

5 Multi-synchronous Semantic Wiki System
This section presents the data model and the algorithms for multi-synchronous Semantic Wiki
systems (M2SW). The data model is defined an ontology. Therefore, it is possible to querying
and reasoning on the model itself and make future extension. For instance, it is possible to
make queries like: (1)“list all unpublished changes”, (2) “list all published changes on a given
channel”, (3) “list unpublished change set of a given semantic wiki page”, (4) ”list all pulled
change sets”, etc.

5.1 DSMW Ontology
The M2SW ontology is defined as an extension of existing ontologies of semantic wikis [2].
In this section, we present the M2SW ontology and detail only its new vocabulary and their
properties.

• WikiSite : this concept corresponds to a semantic wiki server. A site has the following
properties:

– siteID : this attribute contains the URL of the site.

– logicalClock : this attribute has a numeric value. Every semantic wiki server
maintains a logical clock, this clock is used to identify patches and operations in
an unique way in the whole network.

– hasPush, hasPull and hasPage : the range of these properties are respectively
a push feed, a pull feed and a semantic wiki page. A wiki site has several push
feeds, pull feeds and several pages .

• SemanticWikiPage: this concept corresponds to a normal semantic wiki page. It has
the following properties:

– pageID : this attribute contains the URL of the page.

– hasContent the range of this property is a String, it contains text and the se-
mantic data embedded in the semantic wiki page.

16

Figure 13: Multi-synchronous ontology

– head : this property points to the last patch applied to the page.

• Operation : this concept represents a change in a line of a wiki page. In our model,
there are two editing operations : insert and delete. An update is considered as a
delete of old value followed by an insert of a new value. An operation has the following
properties:

– operationID: this attribute contains the unique identifier of the operation. operationID
is calculated by: operationID = concat(Site.siteID,
Site.logicalClock + +), the concat function concatenates two strings.

– opType: this attribute contains the type of the operation, it can be either an
insert or a delete.

– positionID: denotes the position of the line in the wiki page. This identifier is
calculated by the Logoot algorithm[20].

– lineContent: is a string representing text and the semantic data embedded in
the line.

• Patch : a patch is a set of operations. A patch is calculated during the save of the
modified semantic wiki page using the Logoot algorithm. A patch has the following
properties:

– patchID: is a unique identifier of the patch. Its value is calculated by :
patchID = concat(Site.siteID, Site.logicalClock + +)

– onPage: the range of this property is the page where the patch was applied.

– hasOperation: this property points to the operations generated during the save
of the page.

17

– previous: points to the precedent patch.

• ChangeSet : a change set contains a set of patches. This concept is important in order
to support transactional changes. It allows to regroup patches generated on multiple
semantic wiki pages. Therefore, it is possible to push modifications on multiple pages.
ChangeSet has the following properties:

– changSetID: is a unique identifier of a change set. Its value is calculated as :
changeSetID = concat(Site.siteID,Site.logicalClock + +)

– hasPatch property points to the patches generated since the last push.

– previousChangeSet: points to the precedent change set.

– inPushFeed: the range of this property is PushFeed. This property indicates
the PushFeed that publishes a ChangeSet.

– inPullFeed: the range of this property is PullFeed . This property indicates
the PullFeed that pulls a ChangeSet.

• PushFeed : this concept is used to publish changes of a WikiSite. It is a special
semantic wiki page. It inherits the properties of the SemanticWikiPage concept and
defines its own properties:

– hasPushHead : this property points to the last published changeSet.

– hasSemanticQuery: this property contains a semantic query. This query de-
termines the content of the push feed. For instance, the query can be “find all
Lessons”, this will return all the pages in the class (category) Lessons. To answer
hasSemanticQuery, reasoning and querying capabilities of semantic wikis are
used.

• Pull Feed : this concept is used to pull changes from a remote WikiSite. A pull
feed is related to one push feed. In the sense that it is impossible to pull unpublished
data. A pull feed is also a special semantic wiki page. It inherits the properties of the
Semantic Wiki Page concepts and defines it own properties:

– hasPullHead: this property points to the last pulled change set pulled.

– relatedPushFeed: this property relates a pull feed to the URL of its associated
push feed.

We can extend and build on MS2W ontology. The MS2W ontology is maintained by
the MS2W developers. It is defined in OWL DL allowing to querying and reasoning on the
patches, ChangeSet, PushFeed, etc. SPARQL can be used to query the MS2W data. For
instance, it is possible to list all published patches on a push feed:

Published ≡ ∃(hasPatch−1).∃(inPushFeed−1).PushFeed

5.2 Algorithms
As any semantic wiki server, a multi-synchronous semantic wiki server defines a Save operation
which describes what happens when a semantic wiki page is saved. In addition, we define
special operations : CreatePushFeed, Push, CreatePullFeed, Pull and Integrate for the multi-
synchronous semantic wiki. We use the Logoot algorithm [20] for the generation and the
integration of the insert and delete operations. In the following, detail these operations for a
semantic wiki server called site.

18

Save Operation During the saving a wiki page, the Logoot algorithm computes the dif-
ference between the saved and the previous version of the page and generates a patch. A patch
is a set of delete and insert operations on the page (Op = (opType, operationID, positionID, lineContent)).
Logoot calculates the positionID, lineContent and the opType of the operation. These oper-
ations are integrated locally and then eventually published on a push feed.

On Save(page : String, page:String) :
Patch(pid=concat(site.siteID, site . logicalClock + +))
foreach op ∈ Logoot(page, page) do

Operation(opid=concat(site.siteID,site . logicalClock+ +))
hasOperation(pid,opid)

endfor;
previous(pid,page.head)
head(page,pid)
onPage(pid,page)

CreatePushFeed Operation The communication between multi-synchronouns se-
mantic wiki servers is made through feeds. The CreatePushFeed operation creates of a push
feed. A push feed is a special semantic wiki page that contains a query that specifies the
pushed data. It is used to publish changes of a wiki server. Authorized sites can access the
published data. CreatePushFeed operation calls the Push operation.

On CreatePushFeed(name:String,request:String):
PushFeed(name)
hasSemanticQuery(name,request)
hasPush(site,name)
call Push(name)

Push Operation This operation creates a change set corresponding to the pages re-
turned by the semantic query and adds it to the push feed. Firstly, the semantic query is
executed, then the patches of the pages returned by the query are extracted. These patches
are added to the change set if they have not been published on this push feed yet.

78 On Push(name:String):
79 ChangeSet(csid=concat(site.siteID,site . logicalClock++))
80 inPushFeed(csid, name)
81 let published ← { ∃x ∃y ∧ inPushFeed(y,name) ∧ hasPatch(y,x) }
82 let patches ← { ∃x ∀p ∈ execQuery(name.hasSemanticQuery) ∧ onPage(x,p)}
83 foreach patch ∈ {patches − published} do
84 hasPatch(csid, patch)
85 endfor
86 previousChangeSet(csid, name.hasPushHead)
87 hasPushHead(name,csid)

CreatePullFeed Operation As the replication of data and the communica-
tion between multi-synchronouns semantic wiki servers are made through feeds,
pull feeds are created to pull changes from push feeds on remote peers to the
local peer (cf figure 14). A pull feed is related to a push feed. In the sense that
it is impossible to pull unpublished data.

19

On CreatePullFeed(name:String, url:URL)
PullFeed(name);
relatedPushFeed(name,url)
call Pull(name);

Figure 14: CreatePullFeed operation

On ChangeSet get(cs : ChangeSetId ,url)
if ∃x previousChangeSet(cs,x)

return x
else return null;

Figure 15: get a ChangeSet opera-
tion

On Pull(name:String):
while ((cs ← get(name.headPullFeed,

name.relatedPushFeed) 6= null)
let p ← {∃x ∧ inPushFeed(x,name)}
if cs /∈ {p} then

inPullFeed(cs,name)
call Integrate(cs)

endif
hasPullHead(name,cs)
endwhile

Figure 16: Pull Operation

Integrate(cs :ChangeSet):
foreach patch ∈ cs do

previous(patch,patch.onPage.head)
head(patch.onPage,patch)
foreach op ∈ hasOperation.patch

do call logootIntegrate(op)
endfor

endfor

Figure 17: IntegrateOperation

Pull Operation This operation fetches for published change sets that have
not pulled yet (cf figure16). It adds these change sets to the pull feed and
integrate them to the concerned pages on the pulled site.

get Function This function allows to retreive a ChangeSet (cf figure 15).

Integration operation The integration of a change set is processed as follows
(cf figure 17). First all the patches of the change set are extracted. Every
operation in the patch is integrated in the corresponding semantic wiki page
thanks to the Logoot algorithm.

DSMW algorithms ensure the causality and the CCI model (Causality, Con-
vergence, Intention) as demonstrated in [12]

DSMW is implemented as an extension of Semantic MediaWiki [6]. Feeds,
ChangeSets and Patches are represented as special semantic wiki pages. They
stored in a special namespace to prevent user modification. The Logoot al-
gorithm has been implemented in PHP and integrated in Mediawiki relying
on the hook mechanism. The push, pull, createPushFeed and createPullFeed
operations are available in special administration pages of MediaWiki. This
extension is designed to respect the simplicity of the wikis while supporting
the MS2W model and the result is an easy way to construct a P2P network
of semantic wikis based on Semantic MediaWiki. DSMW was demonstrated in
different conference [15, 16].

20

6 Conclusion

DSMW extends a semantic wiki with multi-synchronous capabilities. Multi-
synchronous semantic wikis allow users to build their own cooperation networks.
The construction of the collaborative community is declarative. Every user
declares explicitly with whom he would like to cooperate. The replication of the
wiki pages on semantic wikis servers and the synchronization periods are variant
and under the control of the users. The MS2W model enhances the existing
semantic wikis by supporting transactional changes and the off-line work mode.
Hence, multiple dataflow oriented workflows can be supported. In addition, the
model takes natural advantages of a P2P network, i.e. faults-tolerance, better
scalability, infrastructure cost sharing and better performance.

References

[1] S. Auer, S. Dietzold, and T. Riechert. Ontowiki - A tool for social, semantic
collaboration. In International Semantic Web Conference, 2006.

[2] M. Buffa, F. L. Gandon, G. Ereteo, P. Sander, and C. Faron. Sweetwiki:
A semantic wiki. Journal of Web Semantics, 6(1):84–97, 2008.

[3] B. Du and E. A. Brewer. Dtwiki: a disconnection and intermittency tolerant
wiki. In WWW ’08: Proceeding of the 17th international conference on
World Wide Web, pages 945–952, New York, NY, USA, 2008. ACM.

[4] Git. git based wiki: http://atonie.org/2008/02/git-wiki, 2008.

[5] B. Kang, R. Wilensky, and J. Kubiatowicz. The hash history approach
for reconciling mutual inconsistency. 23rd International Conference on
Distributed Computing Systems, 2003, pages 670–677, 2003.

[6] M. Krötzsch, D. Vrandecic, M. Völkel, H. Haller, and R. Studer. Semantic
wikipedia. Journal of Web Semantic, 5(4):251–261, 2007.

[7] H. Levy. Capability-Based Computer Systems. Butterworth-Heinemann
Newton, MA, USA, 1984.

[8] J. Morris. DistriWiki:: a distributed peer-to-peer wiki network. Proceedings
of the 2007 international symposium on Wikis, pages 69–74, 2007.

[9] G. Oster, P. Urso, P. Molli, and A. Imine. Data Consistency for P2P Col-
laborative Editing. In Proceedings of the ACM Conference on Computer-
Supported Cooperative Work - CSCW 2006, Banff, Alberta, Canada,
November 2006. ACM Press.

[10] C. L. Patrick Mukherjee and A. Schurr. Piki - a peer-to-peer based wiki
engine. In Eighth International Conference on Peer-to-Peer Computing,
pages 185–186. IEEE, 2008.

21

[11] C. Rahhal, H. Skaf-Molli, and P. Molli. Swooki: A peer-to-peer semantic
wiki. In The 3rd Semantic Wikis workshop, co-located with the 5th Annual
European Semantic Web Conference (ESWC), Tenerife, Spain, June 2008.

[12] C. Rahhal, H. Skaf-Molli, P. Molli, and S. Weiss. Multi-synchronous col-
laborative semantic wikis. In 10th International Conference on Web In-
formation Systems Engineering - WISE ’09, volume 5802 of LNCS, pages
115–129. Springer, October 2009.

[13] Y. Saito and M. Shapiro. Optimistic Replication. ACM Computing Surveys,
37(1):42–81, 2005.

[14] S. Schaffert. IkeWiki: A Semantic Wiki for Collaborative Knowledge Man-
agement. 1st Workshop on Semantic Technologies in Collaborative Appli-
cations, 2006.

[15] H. Skaf-Molli, G. Canals, and P. Molli. Dsmw: a distributed infrastructure
for the cooperative edition of semantic wiki documents. In A. Antonacopou-
los, M. J. Gormish, and R. Ingold, editors, ACM Symposium on Document
Engineering, pages 185–186. ACM, 2010.

[16] H. Skaf-Molli, G. Canals, and P. Molli. Dsmw: Distributed semantic me-
diawiki. In L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stucken-
schmidt, L. Cabral, and T. Tudorache, editors, ESWC (2), volume 6089 of
Lecture Notes in Computer Science, pages 426–430. Springer, 2010.

[17] H. Skaf-Molli, C. Rahhal, and P. Molli. Peer-to-peer semantic wikis. In
DEXA’09: 20th International Conference on Database and Expert Systems
Applications, 2009.

[18] S. Staab and H. Stuckenschmidt, editors. Semantic Web and Peer-to-peer.
Springer, 2005.

[19] S. Weiss, P. Urso, and P. Molli. Wooki: a p2p wiki-based collaborative
writing tool. In Web Information Systems Engineering, Nancy, France,
2007.

[20] S. Weiss, P. Urso, and P. Molli. Logoot : a scalable optimistic replication
algorithm for collaborative editing on p2p networks. In ICDCS. IEEE,
2009.

22

