
HAL Id: hal-00707077
https://hal.science/hal-00707077

Submitted on 14 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Conceptual Modelling to Requirements
Engineering

Colette Rolland, Naveen Prakash

To cite this version:
Colette Rolland, Naveen Prakash. From Conceptual Modelling to Requirements Engineering. Annals
of Software Engineering on Comparative Studies of Engineering Approaches for Software Engineering,
2001, pp.1. �hal-00707077�

https://hal.science/hal-00707077
https://hal.archives-ouvertes.fr

From Conceptual Modelling to Requirements Engineering

Colette Rolland Naveen Prakash

Université Paris 1-Sorbonne Delhi Institute of Technology

17, rue de la Sorbonne Pappankala

75231 Paris Cedex 5 110045 Delhi, India

rolland@univ-paris1.fr praknav@hotmail.com

 2

Abstract

Conceptual modelling is situated in the broader view of information systems requirements

engineering. Requirements Engineering (RE) explores the objectives of different

stakeholders and the activities carried out by them to meet these objectives in order to

derive purposeful system requirements and therefore lead to better quality systems i.e.

systems that meet the requirements of their users. Thus RE product models use concepts

for modelling these instead of concepts like data, process, events etc. used in conceptual

models. Since the former are more stable than the latter, requirements engineering

manages change better. The paper gives the rationale for extending traditional conceptual

models and introduces some RE product models. Furthermore, in contrast to conceptual

modelling, requirements engineering lays great stress on the engineering process

employed. The paper introduces some RE process models and considers their effect on

tool support.

 3

1. Introduction

A number of studies show [Lubars93; McGraw97; Standish95] that systems fail due to an

inadequate or insufficient understanding of the requirements they seek to address. Further,

the amount of effort needed to fix these systems has been found to be very high

[Johnson95]. To correct this situation, it is necessary to address the issue of requirements

elicitation, validation, and representation in a relatively more focussed manner. The

expectation is that as a result of this, more acceptable systems will be developed in the

future. The field of requirements engineering has emerged to meet this expectation.

The traditional way of engineering information systems is through conceptual modelling

which produces a specification of the system to be developed. This specification

concentrates on what the system should do, that is, on its functionality. Such a

specification acts as a prescription for system construction.

Of the assumptions on which conceptual modelling is based, we find three very important

ones :

 System requirements are highly stable, i.e., they do not change with time. As a

consequence the conceptualised system is itself stable.

 System requirements are given. Users have just to be questioned about their

requirements. Thus, the interesting problem is that of specifying the system to meet

these requirements. System analysts are the right persons to do it.

 Validation of system requirements can be done with reference to system

functionality. In other words, the conceptual schema is the appropriate support for

communicating, negotiating and reaching an agreement with users and system

stakeholders.

 4

Today, it is becoming clear that these assumptions do not hold any longer. Due to

economic pressure and emergence of new technologies, organisations change much

faster than before. As a consequence, expectations from information systems also change

much faster which, in turn, implies that requirements are no longer stable [Harker93].

Understanding and recording the effect of business changes on requirements is

considered by Lubars et al [Lubars93] as an issue which has not been solved yet. It is

also known that requirements change even as the system is being developed. This causes

considerable problems during development as reported by Curtis et al [Curtis88]. Since

requirements change, it is no longer possible to treat them as given. Rather, it is

necessary to determine new requirements for legacy systems and to carry requirements

models through the entire systems life cycle. Further the central role of system analysts

is taken over by a consortium of stakeholders who bring their specific view points on

what the system should do [Finkelstein90]. Finally, requirements validation must now be

rooted in organisational change rather than in system functionality : if requirements

models are to be validated then, this validation must be with reference to organisational

needs rather than system functionality. It is only then that computer based systems will

be able to adapt to changing organisational needs.

In tackling these problems, the area of requirements engineering tries to go beyond the

functionality based view of conceptual modelling. We highlight here two dimensions

along which this attempt is made :

 Requirements engineering extends the ‘what is done by the system’ approach with the

‘why is the system like this’ view. This why question is answered in terms of

organisational objectives and their impact on information systems supporting the

organisation. In other words, information systems are seen as fulfilling a certain

purpose in an organisation and requirements engineering helps in the conceptualisation

 5

of these purposeful systems. This has two implications (a) elicitation and validation of

the requirements of a system is done with respect to their purpose in organisations and

(b) only organisationally purposeful systems are conceptualised.

 Requirements engineering does not deal with the functionality of a system. Rather, it

assumes that the potential users of the system provide useful and realistic view points

about the system to be developed. Therefore, a detailed exploration of the various ways

in which the system might be used and the activities it shall carry out is performed.

This can be done, for example, by looking at typical interactions that are expected to

occur with the system. This exploration leads to the identification of ‘normal’ and

‘exceptional’ activities whose integration models the full system behaviour. In this

sense, the determination of what the system must do is an interesting question in

requirements engineering.

To deliver the foregoing, an appropriate way of doing requirements engineering must be

found and supported by computer based environments. First, changing requirements

imply that the assumptions made, the decisions taken, and the alternatives explored must

all be recorded and be made available for future use. Second, since requirements

engineering is a complex task advice/guidance on which activities are appropriate in

given situations as well as on how these activities are to be performed must be provided.

Finally, considerable freedom in deciding which activity is to be done next must be made

available to the requirements engineer.

The foregoing indicates that there are three interesting aspects of requirements

engineering, namely, conceptualisation of purposeful systems, modelling of system usage,

and the process support needed for doing requirements engineering. We will highlight

these in the rest of this paper. The attempt will be to show that these three aspects

represent a basic departure from conceptual modelling.

 6

In the next section we review the area of conceptual modelling. Thereafter, we turn our

attention to requirements engineering and consider separately the three issues of

conceptualising purposeful systems, modelling system usage and the process support.

2. Conceptual Modelling

Traditionally information system engineering has made the assumption that an

information system captures some excerpt of world history and hence has concentrated on

modelling information about the Universe of Discourse [Olle88]. Thus conceptual

modelling can be treated as the first phase of the two-phase organisation of the

information system life-cycle shown in Figure 1. It aims at abstracting the specification of

the required information system i.e. the conceptual schema, from an analysis of the

relevant aspects of the Universe of Discourse about which the user community needs

information [Dubois89]. The succeeding phase, that of system engineering, uses the

conceptual schema to design and implement a working system which is verified against

the conceptual schema.

Design

Correction

Domain knowledge
acquisition and modelling

Validation

CONCEPTUAL MODELLING

SYSTEM ENGINEERING

CONCEPTUAL
SCHEMA

INTERNAL
SCHEMA

Universe of
Discourse

Figure 1. Two-phase organisation of system life-cycle

 7

2.1 Classification framework of conceptual models

The information systems community has developed a large number of conceptual models

for representing conceptual schemata. This variety has arisen because of the need to

capture as many aspects of real world semantics as possible. Given this plethora of

models, it has been found necessary to develop frameworks for classifying and

understanding these. One framework which classifies models based on the perspective

adopted to view the Universe of Discourse was developed by [Olle88]. It organises

models into the classes of process-oriented, data-oriented, and behaviour-oriented

models. In Figure 2, this framework has been shown as defining a three-dimensional

space within which conceptual models can be positioned.

Data

E/R

NIAM

DADES

CIAM

ERAE

MERISE

SSADM

SADT

IE Process

PETRI Nets

Cartesian
approaches

Behaviour

Business Class

REMORA

TEMPORA

SART

Systemic approaches
"state oriented"

Systemic approaches
"change oriented"

Framework of understandinhg

(Olle et al - Addison Wesley)

Object oriented
approaches

Figure 2 : The three dimensional framework for classifying conceptual models

The three dimensional framework highlights the fact that information systems can be

looked upon in three different ways. When seen as process-oriented, an information

system is a function in an organisation which returns some information. When seen as

data-oriented, information systems are viewed as mirroring the information contents of

organisations and it is expected that the information system would be a supplier of this

information. Finally, in the behavioural perspective, an information system is an artefact

which handles interesting events that occur in the organisation by performing one or more

 8

functions. These functions modify the information contents of the information system

which are again available for manipulation through events.

These different views naturally lend themselves to specific kinds of treatment. Thus,

when the information system is viewed as a function in the Universe of Discourse, then

during analysis, the components of this function are discovered. This is because the

function may be very complex and needs to be broken down into its functional elements

to understand it better. If any of the functional components are themselves complex then,

they are decomposed recursively till simple, well understood functions are reached.

Clearly, this results in a hierarchy of functions rooted in the original function. Whereas

this hierarchy identifies the functional components of the information system function it

does not establish an inter-relationship between these components, i.e., which function

receives data from which function and sends data to which one is not articulated. This is

done by using conceptual models for building data flow diagrams.

It can be seen that the process-oriented perspective views information systems as

processors of information. In contrast, the data oriented approach looks at an information

system as mirroring the information contents of the real world, as a storehouse of

information. Since information is to be kept about real life things, an identification of all

these relevant ‘things’ coupled with their abstraction as information carrying entities is

carried out. The abstracted entities and their inter-relationships are then represented as a

conceptual schema. As the mirrored world changes, so the information system must

reflect these changes. Therefore the information system is seen as a data manager,

maintaining and delivering information at all times.

Finally, in the behavioural perspective, the attempt is to identify the interesting events that

occur in the real world, the information affected by their occurrence and the functions that

 9

cause this effect to be felt. For this, three things are done (a) Real events are abstracted

into information bearing events, (b) Real world things are abstracted (as in the data

perspective) into information bearing entities and relationships, and (c) Functions to be

invoked to carry out the effect of the event are identified and associated with it. It can be

seen that the behavioural view promotes a transaction management view of an

information system.

Over the years, the usefulness of having three completely different perspectives with little

integration in them has come to be questioned. Two distinct trends towards integration

emerged. The first was the development of object-oriented conceptual models, the

majority of which integrated together the process and data-oriented perspectives, though

some conceptual models that also integrated the behavioural one were developed

[Brunet90], [Desfray94], [Martin92]. The second was a trend towards ‘loosely connected’

conceptual models which consisted of a set of conceptual models, each according to a

different perspective. Therefore, the Universe of Discourse was conceptualised as

individual but connected conceptual schemata. This inter-connection was seen in the

Yourdon approach [Yourdon89] in the mid-eighties which loosely connected the data

flow, ER modelling and state transition diagram techniques. It was also seen later in OMT

[Rumbaugh91] which integrated an object-oriented model with data flow diagrams and

event modelling.

2.2 Conceptual modelling process

The conceptual modelling community emphasised the product aspects of systems at the

expense of the process employed to deliver the product. Thus, the structure of the

conceptual schema, its completeness, and consistency etc. was more important than how

it was developed. Early process models were activity based. They looked upon the

process as consisting of a set of activities which could be decomposed into simpler ones

 10

and which were linearly ordered. Every successive activity was to be performed after the

completion of the previous one. Such process models are known to be restrictive

[Wynekoop93] because they assume

(a) that it is possible to pre-define the development path that can be taken through the

activities of a process model. Thus, they restrict the creativity of the developer in

choosing a path specific to a given situation.

(b) that each conceptual schema is built afresh and therefore there is no need to keep track

of the processes that built them.

(c) the ‘upon completion’ rule which prohibits movement to an activity later in the order

or backtracking to one earlier in the order.

(d) that the relationship between an activity and the product built by it was not

interesting.

Later, a number of other more flexible process models were built. Yet, by and large,

conceptual modelling continued to follow the activity based approach to process models

i.e. the Waterfall model [Royce70].

3. Requirements Engineering Models

In the view of requirements engineering being proposed here, we consider that

requirements come from two sources, users and the domain environment. The first source

provides informal statements of goals and users’ intentions expressed in natural language.

The second source provides requirements reflecting real world facts and constraints on the

designed system implied by laws of physics independently of any user’s need or wish.

Hence requirements may be divided into two sub-types :

1. user-defined requirements which arise from people in the organisation and reflect

their goals, intentions and wishes,

2. domain-imposed requirements which are facts of nature and reflect domain laws.

 11

This implies that the Universe of Discourse has to be partitioned into two, the usage

world and the subject world [Jarke93]. The usage world describes the tasks, procedures,

interactions etc. performed by agents and how systems are used to do work. It can be

looked upon as containing the objectives that are to be met in the organisation and which

are achieved by the activities carried out by agents. Therefore it describes the activity of

agents and how this activity leads to useful work.

The second part of the Universe of Discourse, the subject world, contains knowledge of

the real world domain about which the proposed system has to provide information. It

contains real world objects which are to be represented in the conceptual schema.

There is a third world, the system world which is the world of system specifications in

which the requirements arising from the two worlds must be addressed. The system world

holds the modelled entities, processes, and events of the subject and usage worlds as well

as the mapping from these conceptual specifications to the design and implementation

levels of the software system.

All these worlds are interrelated as shown in Figure 3. User-defined requirements (sub-

type 1 above) are captured by the intentional relationship and the usage fit relationship.

Domain-imposed requirements (sub-type 2 above) are captured by the domain genericity

relationship.

 12

Subject

World

System

World
Usage

World

Usage fit relationship

Intentional relationship

Domain genericity relationship

Representation relationship

Universe of
Discourse

Figure 3. The relationships between the usage, system and subject worlds

Finally, it will be noticed that there is a representation relationship between the subject

world and the system world which relates the domain to its representation in the system.

This relationship has been the only focus of conceptual modelling whereas requirements

engineering highlights the importance of the three other relationships, namely the

intentional, usage fit and domain genericity relationships. All three relationships address

the ‘why’ question and therefore provide the rationale for system development.

3.1 Relationships between the usage world and the system world

The usage world consists of individuals, social groups and organisational settings in

which the system is intended to function. The individual, pragmatic relationship with the

system world is provided by the usage fit relationship of Figure 3 whereas the social,

semiotic relationship is provided by the intentional relationship.

 The usage world provides the rationale for building a system. The purpose of developing

an information system is to be found outside the system itself, in the enterprise, or in

other words, in the context in which the system will function. The social relationship

between the usage and system world addresses the issue of the system purpose and relates

the system to the goals and objectives of the organisation. This relationship explains why

 13

the system is developed. Modelling this establishes the conceptual link between the

envisaged system and its changing environment. This suggests an augmentation of

conceptual modelling to deal with the description of the context in which the system will

function. In the area of requirements engineering, goal-driven approaches have been

developed which directly model organisational objectives and relate them to system

functions. These approaches address the semiotic, social link between the usage and the

system world.

As brought above, the usage world is the world of the system users who will individually

work with the system to meet the objectives assigned to them by the organisation.

Additionally, each of them has his/her own view point and requirements regarding the

system to be constructed. Taking these into account helps in the construction of relatively

more acceptable systems. This suggests another augmentation of conceptual modelling, to

include the role of individuals thereby enabling the derivation of system functionality

from the integration of users’ view points. In requirements engineering, the areas of

scenario modelling and use case development take this into account.

Goal driven approaches model organisational objectives so as to relate them to the

functions of the system. In this sense, they aim at the conceptualisation of purposeful

systems only. They contribute to the interpretation of requirements before they are

understood and before they are transformed into system function specifications. Thus

they support conceptualising purposeful systems. Scenario based approaches, by

focussing on the users’ view points, help in modelling purposeful system usage from

which useful system functions can be derived. Scenarios provide dynamic meaning to

goals whereas goals provide the intentional setting within which scenarios find meaning.

3.1.1 Goal driven approaches

 14

The broader view of a requirements specification that we advocate here is one that goes

beyond the classical conceptual schema describing system functionality. It includes

enterprise modelling which represents the why part of system requirements. This part

complements the what part provided by conceptual modelling.

Enterprise modelling has been developed for example, in the F3 project [Bubenko94a],

[Bubenko94b] to provide a set of models for understanding the requirements and bridging

the gap between ill-defined problems and application situations as well as to define

requirements of information systems formally and precisely. The requirements

specification is represented as a structured description of five interrelated sub-models (see

Figure 4) which provide the context within which requirements are elicited. Each sub-

model represents a particular concern or view in requirements acquisition, and these sub-

models help in separating the different concerns. The sub-models are not developed in a

linear, sequential manner. Although the process usually starts with an objectives model

and progresses through actor and activity models to information systems requirements this

is not always the case. For instance, given a legacy system the activity and concept

models may be developed first by reverse engineering previous designs.

The objectives sub-model describes the why component of a requirements specification. It

is a graph with goals, problems, opportunities and weaknesses as nodes connected

through relationships of the type ‘motivates’.

The concept sub-model is used to define the Universe of Discourse that concerns

requirements engineers. It may serve as a dictionary of user and customer defined

concepts.

 15

 The actors sub-model is used to define the actors in the domain and their relationships

with activities and objectives. Actors may be individuals, groups, roles, organisational

units, systems, etc. Actors are related to goals in the objectives sub-model and therefore

represent stakeholders who are responsible for achieving goals through activities

described in the activities sub-model.

The activities sub-model describes the processes and tasks of the enterprise. Components

in this sub-model are created to achieve goals in the objectives sub-model, referring to

components of the concepts sub-model, and resources required to carry out these activities

described in the actors sub-model.

The information system requirements sub-model is meant to be derived from the other

models. It includes both functional and non functional requirements. The former typically

indicate needs for establishing objects, defining operations and services (in Object

Oriented terms) or functions (in top-down decomposition such as Structured Systems

Analysis). The latter are related to the environment, performance and quality of the

required system.

Objectives Model

Concept Model Activities and Usage Model Actors Model

Information System Requirements Model

motivates
motivates

motivates
motivates

motivates

concerns concerns

concerns

1 2

1 "deals-with"

2 "performed by"

Figure 4. The sub-models of the F3 approach

 16

Enterprise modelling offers a set of interrelated models, each constructed with a set of

predefined components types and relationships to address the ‘why’ question and

understand where the ‘what’ requirements come from. The semantic links from the set of

interrelated sub-models and the information system requirements model are established

for reflecting the rationale, the motivation, for designing a specific information system.

Enterprise modelling was further refined in the EKD method to support change

management [Loucopoulos98; Rolland97b; Kardasis98; Rolland98b]. In the KAOS

approach [Dardenne91], [Dardenne93], the emphasis is on supporting formal refinement

of high level goals into system constraints. Although generic models are advocated, goal

modelling and refinement have supplied simple guidance via heuristics[van

Lamsweerde95]. The I* approach [Yu94a, b, c] creates models of the environment of the

system that emphasise agents and their relationships. Their strategic dependency and

rationale models allow tracing of dependencies between agents, goals and tasks and

support reasoning to identify trade-offs between functional requirements and non

functional requirements[Mylopoulos92].

Although goal modelling has proved to be useful for specifying purposeful systems,

practical experience shows that there are still a number of difficulties. First, it is often

assumed that systems are constructed with some goals in mind. However, in reality goals

are not given and therefore the question as to where they originate from acquires

importance. In addition, enterprise goals which initiate the goal discovery process do not

reflect the actual situation but an idealised one. Therefore, proceeding from this may lead

to ineffective requirements. Eliminating uninteresting and spurious goals is difficult

[Potts97]. Additionally, the application of goal reduction methods [Dardenne93] to

discover the components goals of a goal, is not as straight-forward as literature suggests.

Finally it seems to be difficult to deal with the fuzzy concept of a goal. This led to some

 17

formalisation of the notion of a goal [Prat97; Rolland97a]. Yet, domain experts need to

discover the goals of real systems.

3.1.2 Scenario based approaches

Independently of goal modelling, an alternative approach to RE, the scenario-based

approach [Jacobso95],, has been developed. By capturing examples, scenes, narrative

descriptions of contexts, use cases and illustrations of agent behaviours, scenarios have

proved useful in requirements elicitation in a number of ways : to elicit requirements in

envisioned situations [Potts 94], to help in the discovery of exceptional cases, to derive

conceptual object-oriented models, to understand needs through scenario prototyping and

animation, to reason about design decisions, to create context for design [Kyng95] and

so on. The underlying reason for the popularity of scenario-based approaches seems to

be that people react to descriptions of real happenings and real things. This reaction

helps in clarifying requirements expected of systems. Thus, the scenario school argues,

that typical scenarios are easier to get in the first place than goals. Goals can be made

explicit only after deeper understanding of the system has been gained.

Scenarios have been developed [Rolland98c] for different purposes with different

contents, expressed in different levels of abstraction and with different notations.

In so far as their purpose is concerned, scenarios can be descriptive, explanatory or

exploratory. Descriptive scenarios capture requirements by enabling the analyst and

users to walk through a process and understand its operations, actors, the events

triggering the process etc. Thus, descriptive scenarios aid in the clarification of how a

process performs, who are the involved parties and how the process is activated as well

as the conditions under which it is activated. Explanatory scenarios raise issues and

provide rationale for these issues. They identify why something happens in the real

 18

world, what leads to it, what are its causes, what are commonly occurring events which

require handling etc. Through this the attempt of explanatory scenarios is to describe the

desirable features of the system to be developed. Finally, exploratory scenarios are

useful when different possible solutions exist for satisfying given system requirements.

These solutions are to be examined and evaluated to arrive at the right solution. Such

scenarios establish a direct link between requirements and desired solutions.

As mentioned above, scenarios have different contents. This can be behavioural

information identifying the actions, activities, events carried out in the usage world; a

description of the objects of the subject world together with their attributes; events and

event histories; organisational information like the structure of the company, the groups,

departments and agents found in it etc.; stakeholder information including the

characteristics of people, their views and aspirations [Nardi92]. However, by and large

scenarios concentrate on the functional features required of a system.

Finally, scenarios have been expressed at three different levels of abstraction, instance,

type and mixed. In the former case, a scenario uses specific names or events with real

argument values. These scenarios describe particular instances of use which can form the

basis for discussion of what happens, why and how. Type scenarios do not use individual

entities but entity types. Thus they do not refer to Smith but to customers. Each

execution of a type scenario is an instance scenario. Finally, mixed scenarios are those

that have some parts at the instance level and others at the type level.

Scenarios have been expressed in different notations ranging from the informal, semi-

formal to the formal. Informal scenarios use natural language, videos, story descriptions

etc. and are valuable in those cases where the user community is unwilling/unable to deal

with formal notation. Semi-formal scenarios use a structured notation like tables and

 19

scenario scripts in capturing real activities. Finally formal scenarios are expressed in

modelling languages based on regular grammars or state-charts. They are useful to run as

simulations to present a vision of what the future system will look like and to gauge user

reactions to it.

3.1.3 Coupling goals and scenarios

In order to overcome some of the deficiencies and limitations of goal-driven and

scenario-based approaches used in isolation, some proposals have been made recently to

couple goals and scenarios together. Goals have been considered as contextual

properties of use cases and as a means to structure use cases. The goal scenario

combination has been used to operationalise goals, to check whether or not the current

system usage captured through multimedia scenarios fulfils its expected goals, to infer

goals specifications from operational scenarios and to discover new goals through

scenario analysis.

As an example of an approach which combines goal modelling and scenario authoring

consider the CREWS-L’Ecritoire approach [Rolland97a; Rolland98a] developed within

the CREWS ESPRIT project. CREWS-L’Ecritoire uses a bi-directional coupling

allowing movement from goals to scenarios and vice versa. The complete solution is in

two parts : when a goal is discovered, a scenario can be authored for it and once a

scenario has been authored, it is analysed to yield goals. By exploiting the goal-scenario

relationship in the reverse direction, i.e. from scenario to goals, the approach proactively

guides the requirements elicitation process. In this process, goal discovery and scenario

authoring are complementary steps and goals are incrementally discovered by repeating

the goal-discovery, scenario-authoring cycle. In order to give some insights into the

approach, we first present some of the key concepts and terminology of the CREWS-

l’Ecritoire approach and then provide a brief overview of its process.

 20

(a) Concepts and terminology

 A Requirement Chunk (RC) is a pair <G, Sc> where G is a goal and Sc is a scenario.

Since a goal is intentional and a scenario is operational in nature, a requirement chunk

is a possible way of achieving the goal.

 A goal is defined as "something that some stakeholder hopes to achieve in the future"

[Plihon98]. It is expressed [Prat97] as a clause with a main verb and several

parameters, where each parameter plays a different role with respect to the verb. An

example of a goal expressed in this structure is the following :

Provide verb (efficiently) qual (electricity) tar (from PPC producer) so (to our non eligible

customer) ben (using the PPC network) means (in a normal way) manner

 A scenario is "a possible behaviour limited to a set of purposeful interactions taking

place among several agents". It is composed of one or more actions, an action being

an interaction from one agent to another. The combination of actions in a scenario

describes a unique path. A scenario is characterised by initial and final states. An

initial state attached to a scenario defines a precondition for the scenario to be

triggered. A final state defines a state reached at the end of the scenario. We

distinguish between normal and exceptional scenarios. The former leads to the

achievement of its associated goal whereas the latter fails in goal achievement.

 21

 Requirement chunks classification and abstraction levels : Three levels of

abstraction called contextual, functional, and physical are available.. The contextual

level identifies the services that a system should provide to an organisation and their

rationale. The functional level focuses on the interactions between the system and its

users to achieve the needed services. Finally, the physical level deals with the actual

performance of the interactions. Each level corresponds to a type of requirement

chunk.

 Relationships between requirement chunks: There are three types of relationships

among requirement chunks namely, the composition, alternative, and refinement

relationships. The first two of these lead to a horizontal AND/OR structure between

RCs. AND relationships among RCs link together those chunks that require each

other to define a completely functioning system. RCs related through OR

relationships represent alternative ways of fulfilling the same goal. The third type of

relationship relates requirement chunks at different levels of abstraction. The

refinement relationship establishes a vertical link between requirement chunks.

 22

(b) The requirements elicitation process

The CREWS-L’Ecritoire process aims at discovering/eliciting requirements through a bi-

directional coupling of goals and scenarios allowing movement from goals to scenarios

and vice-versa. As each goal is discovered, a scenario is authored for it. In this sense the

goal-scenario coupling is exploited in the forward direction from goals to scenarios.

Once a scenario has been authored, it is analysed to yield goals. This leads to goal

discovery by moving along the goal-scenario relationship in the reverse direction.

The exact sequence of steps of the process is as follows :

1. Initial Goal Identification

repeat

2. Goal Analysis

3. Scenario Authoring

4. Goal Elicitation Through Scenario Analysis

until all goals have been elicited.

Each of the three steps of the cycle is supported by mechanisms to guide the execution of

the step.

The guidance mechanism for goal analysis is based on a linguistic analysis of goal

statements. It helps in reformulating a narrative goal statement as a goal template

(introduced in the previous section). The mechanism for scenario authoring combines

style/content guidelines and linguistic devices. The former advise authors on how to

write scenarios whereas the latter provide semi-automatic help to check, correct,

conceptualise, and complete a scenario. Finally, the three different goal discovery

strategies for goal elicitation introduced earlier are used.

 23

3.2 The domain genericity relationship between the subject and system worlds

Traditionally the focus in the representation relationship (see Figure 3) has been on

objects, events, operations, etc., i.e. on the functional aspects of the information system.

Non-functional quality criteria such as confidentiality, performance, accuracy and

timeliness of information can also be attached to this representation relationship.

However. methodologies of today rarely take this into account.

There is another modelling concern captured through the domain genericity relationship,

the role and impact of domain knowledge [Jackson94]. Since many new applications

have the same requirements as earlier ones, one possibility is to create generic domain

models as templates for requirements of certain classes of applications. This facilitates

reuse in requirements engineering by providing sets of predefined generic requirements

for developing system requirements specification.

 Dependencies between systems and their domain environments have been analysed in

detail by [Jackson 94; Jackson93]. They formalise event dependencies between the

system and its environment that are inherent to the laws of physics e.g. obligations for

the required system in avionics and other real-time applications.

 The separate consideration of the subject world allows the development of domain

ontologies which consider typical classes of object and activity abstractions as reusable

modelling patterns which can significantly reduce the requirements engineering effort. A

model library for the subject world has been developed for example, in the NATURE

project [Sutcliffe94]. A model is a problem abstraction which defines in generic terms the

structure and the behaviour of the problem space. It is a unit of abstraction that aggregates

 24

objects linked by a purpose. The concepts used to define object models are shown in

Figure 5.

has

link

link

isa isa
isa

to/

from
to/

from changes

has

undertakes

triggers
enablesattain

object

structure

object

key

object
agentstate

semantic

relations

state transition

object

property

goal state stative

condition
event

Figure 5. Meta-schema for domain modelling

Objects : have properties and states.

Structure objects : model containment of objects for example a library contains books.

State transitions :model behaviour of objects and enable goal state to be achieved.

Events : model initiating ‘triggers’ and time points.

Stative conditions: are tests on objects’ states.

Goal states : describe a required state that should be satisfied.

Semantic relationships: specify constraints between objects, state transitions and states.

Object models are structured in a class hierarchy. Models at different levels of abstraction

are distinguished using different types of knowledge. Object structure and purpose are the

most important constructs at higher levels because they discriminate effectively between

different problem classes. The top level in the hierarchy is defined by state transitions,

agents, states and semantic relations. Lower level object models are specialised by adding

 25

further knowledge such as goal states, events, conditions and object properties. The

highest levels of the object class hierarchy are illustrated in Figure 6.

Object

 Containment

object

Returning

object

Management

object

Hiring

Object

Placement

object

Allocation

...

object

composition
f inancial object

exchange

object

sensing

object

manipulation

objet structurel

agent

objet clé

transition d'état

Figure 6. Hierarchy of object class models

The library is used in the NATURE toolset by the matcher to identify the models relevant

for the application at hand.

4. Requirements engineering process support

Since conceptual modelling largely ignored the development process, methods for

conceptual modelling are a maze of steps, guidelines, checklists, heuristics etc. It was

assumed that the process of development was linear, Cartesian in nature. Therefore, it was

quite usual to base methods and tools on process models like the Waterfall model

[Royce70].

In contrast, requirements engineering has explicitly considered the issue of the process

support to be provided. Two important issues arise :

 26

1. How can attention be channelled to deal with the real productive tasks of requirements

engineering? In other words, it is necessary to guide the requirements engineering process

to concentrate on discovering goals, scenarios etc.

2. How can one learn from past practice? That is, if some decisions were taken in a given

situation in the past then how can one benefit from experience with that? Thus it is

necessary to keep a trace of past decisions.

These two aspects of the requirements engineering process, namely guidance and tracing

must be actively supported by computer assisted tools.

4.1 Guidance

Some experience in guidance exists in software engineering where guidance was

classified as active or passive [Dowson94]. The former was focussed on ensuring that the

development process employed was an instance of the process model and consequently,

guidance was directed towards process model enforcement. The latter was concerned with

an identification of what could be done next in the development process. In [Feiler93]

passive guidance has been defined as the generation and subsequent presentation of the

set of legal steps that were available at any moment in the development process. One out

of these could then be selected as the task to be done next.

The software engineering view is that active guidance should be provided. Thus, guidance

cannot be provided without an adequate process model. Existing process models do not

seem adequate to requirements engineering as they prescribe a predefined plan of actions.

Activity-oriented process models [Royce70] come from an analogy with problem-solving

and provide a frame for manual management of projects. This linear view is inadequate

for methods which support backtracking, reuse of previous designs, and parallel

engineering. Product-oriented process models [Humphrey89; Finkelstein90;

 27

Franckson91] represent the development process through the evolution of the product.

They permit design tracing in terms of the transformations performed and the resulting

products. Finally, decision-oriented models integrate more deeply the semantics attached

to evolutionary aspects. The notion of design decision facilitates understanding of the

designer's intention, and better reuse of results [Potts89] but the flexibility and

situatedness of requirements engineering processes is not adequately handled in existing

decision-oriented models.

The importance of situatedness in process modelling is also acknowledged by the

software engineering community where it was found that departures from the process

model occurred in actual practice. A concerted effort was put in to allow process models

to respond to these departures. One approach was to assume prescriptive models and then,

modify them to accommodate real processes. This modification could be achieved in two

ways. First the extent of deviations from the prescription that could be allowed was

modelled as constraints. Any actual deviation that satisfied the constraints was therefore

manageable and the process enactment mechanism could handle it. This way of handling

deviations took the prescriptive approach to its logical conclusion: it prescribed the

deviations allowed in a prescription. The second way of handling deviations was to allow

changes to be made in the prescription as and when they are needed. Thus, a level of

dynamicity is superimposed on the basic prescription.

In contrast to this, the requirements engineering community recognised that the core of

their task was the generation and exploration of alternatives from which the right one is

selected for the situation at hand. This can be seen in the IBIS process model [Potts89]

where a number of alternatives for resolving an issue were generated. This process model

is at a very high level of abstraction and had to be buttoned down to real methods and

tools. The contextual model [Rolland91; Rolland94; Rolland95; Pohl96] attempted to do

 28

this. A context was defined here as the application of an intention to a given requirements

engineering situation. It organised requirements engineering methods as a set of contexts

of three kinds, executable, plan, and choice contexts respectively. A Choice context

groups together all possible alternative ways of meeting its intention. These alternatives

were themselves contexts thus leading to a hierarchy of alternatives. A plan context is a

collection of simpler contexts such that their execution, in the various possible orders

prescribed in the plan context meets its intention. Finally, an executable context is one

which can be directly executed to meet its intention (and is atomic in this sense). It can be

seen that the contextual model attempted to reconcile process prescription with alternative

generation, the former through plan contexts and the latter through choice contexts.

Another attempt to root the notion of alternatives in methods was made in the decisional

approach [Prakash97]. There were decisions of three types, atomic, complex and abstract

related to each other by two different kinds of dependencies. The first of these identified

which decisions can be performed after a given one whereas the second one identified

those that must be performed after it, though not necessarily immediately. Recognising

the crucial role played by the product situation, the interest was in generating the set of

decisions that were applicable to a given product situation. Prescriptive capability was

provided through the notion of complex decisions which could be built out of simpler

decisions whose order of execution was prescribed. Finally, abstract decisions could be

built as abstractions and provided high level abstract choices for application engineers.

Experience with the contextual and decisional models showed that a key discriminant

factor in real processes is the product situation. This situation has a strong bearing in

selecting the task best suited to handle it and also the strategy to be adopted in carrying

out this task. These strategies need to be reflected in the process model so that the right

one can be dynamically chosen. A recent attempt to model the strategic dimension of the

 29

requirements engineering process through a set of strategies to select tasks adapted to

situations was made in [Rolland99] and [Ralyte99]. The process model is represented as a

labelled directed graph called a map. The map uses two fundamental notions, intention

and strategy. An intention captures in it the notion of a task that the requirements engineer

intends to perform whereas the strategy is the manner in which the intention can be

achieved. The nodes of the map are intentions whereas its edges are labelled with

strategies. The directed nature of the map identifies which intention can be done after a

given one. The only way in which a process can be built is dynamically, through the use

of guidelines for selection among alternatives. Only after the intention and the strategy

have been decided is there a need for a guideline to achieve the intention. There are three

guidelines associated with the map :

- intention selection guidelines for determining all succeeding intentions of a given one,

- strategy selection guidelines for determining the strategies from which one is selected,

- intention achievement guidelines for defining the way in which an intention can be

achieved. Thereafter, the enactment mechanism is invoked to actually carry out the tasks.

It can thus be seen that the requirements engineering community has made a conscious

effort towards developing guidance to meet its two most basic needs :

(a) generating the set of alternatives applicable to a given product situation and

(b) reducing the amount of prescription to only those parts of the process where it is

essential.

4.2 Tracing

In the requirements engineering community there is no longer the question whether

traceability is a useful thing or not. Capturing and maintaining traces is seen as an

essential activity to be performed during requirements engineering and standards such as

[DoD-2167A; IEE-830] mandate that requirements traceability be practiced. A

 30

comprehensive overview of possible usage of trace information and the expected benefits

can be found in [Gotel94], [Ramesh93a] and [Pohl96]. These reports indicate that

requirement traceability is a vital component in implementing a quality system, essential

for consistent change integration, leads to less errors during system development, plays an

important role in contract situations, and improves system acceptance.

Process traceability can be divided into three parts [Pohl96] :

 Process execution traceability, i.e. the recording of data that enables the

reassembly of the sequence of steps of a process.

 Product evolution traceability, i.e. the recording of data that enables you to see

how the product has evolved during the process.

 Traceability of the relationships between process execution and product

evolution.

The pivotal goal of process traceability is to enable tracing of the requirements produced

during the RE process. On one hand, traceability from the requirements specification

through design to implementation and vice-versa is needed to understand the rationale of

the implemented system. On the other hand, the process leading to the requirements

specification must be traceable to understand the rationale for the requirements

themselves. The former is referred to as post- traceability whereas the latter is called pre-

traceability [IEEE-830].

Product traceability is available in some methods like Class/Relation, OOSE and rAdar.

Post-traceability is supported by some commercial tools like RT from Teledyne Brown

Engineering, RMT from Marconi Systems Technology , and RDD100 from Ascent Logic.

Pre-traceability has been investigated only recently [Gotel94; Kaindl93; Pohl96;

Ramesh93b; Ramesh95].

 31

An interesting framework for requirements pre-traceability was provided by Pohl

[Pohl94] who described the requirements engineering process in a three dimensional

space (see Figure 7). The framework assumes that there are three major facets of the RE

process, namely modelling the requirements in a more complete manner, modelling with

more formality, and more consensus among stakeholders. These three facets lead to a

three dimensions framework in which the process of requirements engineering can be

traced :

 -The complexity of the individual/cognitive aspect of the RE process leads to the

specification dimension which describes the degree of completeness of the requirements

specification.

 -The social usage aspect leads to the agreement dimension which describes to

what degree the members of the RE team agree on the requirements specification.

 -The system aspect leads to the representation dimension which describes how

requirements are technically described, e.g. their degree of formal semantics.

Specification

Agreement

Representation
informal formal

opaque

complete

pers
ona

l

view
s

co
mmon

view

semi-formal

initial

input

desired

result

Process
chunks

Figure 7. The three dimensions of the RE process.

 32

As shown in Figure 7 the trace of the requirements engineering process is modelled as a

path within the three dimensional space starting from an initial incomplete, informal

specification representative of individual viewpoints and ending with the desired output

which is a complete, fully agreed and formally described specification of the intended

system.

Capturing the RE process trace and thereby establishing requirements pre-traceability

means recording information along each of the three dimensions, on the relationships

between the three kinds of information and relating those to actual process performance.

4.3 Computer tool support

Conceptual modelling as part of system development is facilitated by the use of

automated support in the form of CASE tools. A wide variety of CASE tools and CASE

environments called Integrated CASE (ICASE) or Integrated Project Support

Environment (IPSE) have been built to support specific methods. It has been pointed out

[Norman92] that CASE tools have been successful in automating many routine tasks of

system development. Wijers [Wijers91] says that though the possible list of things that

CASE tools can do is quite large, they have been essentially successful in providing

documentation and verification support. Today’s tools therefore have excellent facilities

for the editing and maintenance of graphical specifications but lack many functional

features projected in CASE architectures like that of Bubenko [Bubenko92]. Some of

these are to give support to distributed co-operative work, supporting integration in

CASE, guiding the process of application development, incorporating reusable

specification components etc. Huang [Huang98] has also suggested some possible

features for the next generation of CASE tools like process modelling, cross-platform

portability, learning, standardisation, and access through the Internet.

 33

Traditionally, each method came with its own CASE tool. Application engineers were

expected to select the method they wished to follow and used the associated CASE tool. If

their application required even minor modifications in the methods/tools they had selected

then it was not possible to make these changes. Thus, CASE technology was basically

resistant to change.

To sum up, tool support has been lacking in two main directions :

(a) Providing process support

(b) Adapting to the needs of specific systems.

This motivated the approach shown in Figure 8 which presents an architecture for process

oriented RE support. The architecture is repository based. The repository extends the one

advocated in Information Resource Dictionary Framework Standard [IRDS90]. Even

though both consist of three levels the difference is that whereas IRDS deals with levels

of product description, the repository deals with levels of product and process

descriptions [Brinkkemper90].

 34

Figure 8. Repository based and process-integrated environment support

The environment is composed of two sub-environments, the application engineering

environment in which the process is guided, executed, and traced, and the method

engineering environment in which the process is defined and improved. These two

environments use the process repository which contains the information necessary to

provide the intended functionality.

Thus, it can be seen that the architecture of Figure 8 provides process support to

application engineers and, additionally, establishes a link between application and method

engineering through the repository.

Tool support for requirements engineering is clearly a complex task. From the point of

view of application engineering, it involves a number of different problems such as

guidance, tracing, repository structuring and management, enactment mechanisms,

efficient interpretation/execution of process modelling languages, configuration

management, view integration, and co-operative development. The application

engineering environment needs to support an exploratory process in such a way as to

 35

automate all routine, repetitive tasks so that attention can be devoted to exploring

alternatives in elaborating the usage world. Additionally, it must help in bringing together

the different stakeholders so that the final requirements can be arrived at in a collaborative

manner. Finally, the environment must aid in the visualisation of the future system. Only

a few of these functions have been implemented, for example, in prototypes such as

PRO-ART [Pohl94b] to support pre-traceability, MENTOR [SiSaid96] which is a generic

tool in the sense that it can function both as a method engineering tool and as a CASE tool

depending upon the nature of the process model, PRIME-CREWS [Haumer98] which

offers a whiteboard editor for creating fine-grained traceability between goal models and

multimedia artefacts, SAVRE [Sutcliffe98] which guides in the generation of

requirements to deal with system exceptions and the CREWS-L’Ecritoire [Tawbi98] RE

environment which has been built to provide guidance features.

Over the last decade, method engineering has arisen as a separate field of study in itself.

A number of CASE shells have been defined which consist of two parts, the Computer

Assisted Method Engineering (CAME) and CASE generator part [Martiin94]. A method

is engineered by appropriate instantiation of the meta-model used in the CAME part. The

CASE part uses this method to define the application engineering environment. Early

CAME parts were organised around product meta-models and MetaEdit [Kelly96] is an

example of this. Efforts have been made to include process aspects in CAME using

activity meta-models. When these are instantiated then the activities, tasks etc. performed

by methods are also defined for the CAME tool and Meta-Edit + [Kelly96], is an example

of that. More recently, a meta-model has been defined in terms of method components. In

[Harmsen93] there are two kinds of components called fragments, namely product and

process fragments whereas chunks in [Rolland96] realise a tight process and product

coupling. Method engineering is seen as a process of assembling together a method from

 36

its different fragments [Harmsen93; Plihon98; Ralyte99]. From the point of view of

method engineering, tools must support the

- selection of situated methods i.e. methods meeting some contingency factors

- creation of new methods rapidly when a completely new situation occurs,

- modification of existing methods to handle minor changes in methods, and

- assembly of situated methods from off the shelf method components to gain from past

experience.

A feedback mechanism that allows application engineers to influence method definition

and tool construction.

5. Conclusion

The thrust areas in requirements engineering are :

- Embedding of systems in their larger usage context, and

- Change management

The former is made possible by stepping back from merely anticipating the functionality

that a system must provide (as done in conceptual modelling) to the determination of this

functionality in a systematic manner. This is done by identifying the aims and objectives

of different stakeholders and the activities they carry out to meet these objectives. This

stakeholder driven approach leads to better change management capabilities than found in

conceptual modelling. This is because the RE product keeps track of the conceptual link

between objectives, activities and system requirements.

As a consequence of the shift to objectives and activities performed to meet them, almost

all aspects of information systems engineering get affected. There is a new range of

product models to directly represent these. The engineering processes involved are less

prescriptive thereby supporting higher creativity and place an emphasis on learning from

past experience. The supporting tools are directed on one hand, towards automation of

 37

routine tasks and towards providing direct guidance and support for discovering

objectives and activities and on the other hand, towards process tracing in order to benefit

from past experience. Guidance and tracing support needs to be provided in as transparent

a way as possible. An environment is needed that provides a judicious mix of automated

and semi-automated tools that perform routine, humdrum tasks while leaving important

decision-making tasks to be done by the requirements engineer.

6. References

Brinkkemper S., (1990), Formalisation of Information Systems Modelling , Ph.D. thesis, University of

Nijmegen, Thesis Publishers, Amsterdam.

Brunet J., Cauvet C., Lasoudris L(1990), Why using Events in a High-level Specification, in Proceedings of

the International Conference on Entity-Relationship Modelling, ER90, Lausanne, Switzerland.

Bubenko J.A., and Wangler B. (1992) Research Directions in Conceptual Specification development in

Conceptual Modelling, Databases, and CASE,Loucopoulos P., and Zicari R. (eds.), 389 – 412, Wiley.

Bubenko J. A., Marite Kirikova (1994) Worlds in Requirements Acquisition an Modelling , 4th European -

Japanese Seminar on Information Modelling and Knowledge Bases, Kista, Sweden, Kangassalo and

Wangler (Eds.), IOS (pub).

Bubenko J., Rolland C., Loucopoulos P., De Antonnellis V. (1994) Facilitating Fuzzy to Formal

Requirements Modelling, Proc. Int. Conf. on Requirements Engineering (ICRE), Colorado Springs, US.

Curtis B., Krasner H. & Iscoe N. (1988) A Field Study of the Software Design Process for Large Systems,

Comm. ACM Vol 31,No11, 1268-1287.

Dardenne, A., Fickas, S., van Lamsweerde, A.(1991) Goal-directed concept acquisition in requirements

elicitation, Proc. 6th IEEE Workshop System Specification and Design0 , Como, Italy, 14-21.

Dardenne, A., A. v. Laamsweerde and . Fickas S. (1993) Goal Directed Requirements Acquisition, Science

of Computer Programming, 20 (1-2), pp3-50.

Desfray, P. (1994) Object Engineering, the Fourth Dimension, Addison-Wesley/Masson,.

DoD-2667A Military Standard (1988) Defence System Software Development, Department of Defence.

Dowson M., Fernstrom C. (1994) Towards requirements for Enactment Mechanisms, Proc. European

Workshop on Software Process Technology.

 38

Dubois E., Hagelstein J., Rifaut A. (1989) Formal Requirements Engineering with ERAE, Philips Journal of

Research, Vol 43, No 4.

Feiler P.H. and Humphrey W.S. (1993) Software Process Development and Enactment: Concepts and

Definitions, Proceedings of the. Second Intl. Conf. On Software Process.

Finkelstein A., Kramer J., Goedicke M. (1990) ViewPoint Oriented Software Development, Proc. Conf Le

Génie Logiciel et ses Applications, Toulouse, p 337-351.

Franckson M., Peugeot C. (1991) Specification of the Object and Process Modeling Language , ESF Report

n° D122-OPML-1. 0.

Gotel O., Finkelstein A. (1994) Modelling the Contribution Structure Underlying Requirements, in Proc.

First Int. Workshop on Requirements Engineering : Foundation of Software Quality, Utrech, Netherlands.

Harker S.D.P., Eason K.D. & Dobson J.E. (1993) The Change and Evolution of Requirements as a

Challenge to the Practice of Software Engineering, IEEE Symposium on Requirements Engineering, RE93,

San Diego, CA, 266-272.

F. Harmsen, S. Brinkkemper S. (1993) Computer Aided Method Engineering based on existing Meta-Case

technology, Proc. of the fourth Workshop on the Next Generation of CASE tools, (NGCT93), Paris, France.

Haumer P., Pohl K., Weidenhaupt K. (1998) Requirements Elicitation and Validation with Real World

Scenes, to appear in IEEE Transactions on Software Engineering, Vol. 24, No. 12.

Huang R. (1998) Making Active CASE TOOLs – Towards the Next Generation of CASE Tools, Software

Engineering Notes, 23, 1, 47 - 50.

Humphrey W.S., Kellner M.I.(1989) Software Process Modeling: Principles of Entity Process Models,

Proc. 11th Int. Conf. on Software Engineering.

IEEE-830 (1984) Guide to Software Requirements Specification, ANSI/IEEE Std 830.

Information Resource Dictionary System (1990) Framework, ISO/IEC International Standard.

 Jackson M., Zave P.(1993) Domain descriptions, IEEE symposium on requirements Engineering, IEEE

Computer Society press, 56-64.

Jackson M. (1994) Problems, Methods and Specialisation. Special Issue of the SE Journal on Software

Engineering in the Year 2001.

 Jacobson I. (1995) The use case construct in object-oriented software Engineering. In Scenario-based

design: envisioning work and technology in system development, John M. Carroll (ed.), John Wiley, 309-

336.

 39

Jarke, M., Pohl, K. (1993) Establishing visions in context: towards a model of requirements processes.

Proc. 12th Intl. Conf. Information Systems, Orlando.

Johnson J. (1995) Chaos : the Dollar Drain of IT project Failures. Application Development Trends,

pp.41-47.

Kardasis P., Loucopoulos P. (1998) Aligning Legacy Information Systems to Business Processes.

Proceedings of the 10
th

 Conference on Advanced Information Systems Engineering, CAiSE98. Pisa, Italy.

Kelly S., Lyyttinen K., Rossi M. (1996) Meta-Edit+ : a fully configurable, multi-user and multi-tool CASE

and CAME environment, Proceedings of the CAISE96 Conference, Springer Verlag.

Loucopoulos, P., Kavakli, V., Prekas, N., Dimitromanolaki, I. Yilmazturk,C., Rolland, C., Grosz, G.,

Nurcan, S., Beis, D., and Vgontzas, G. (1998) The ELEKTRA project : Enterprise Knowledge Modelling

for change in the distribution unit of Public Power Corporation, 2nd IMACS International, Conference on

Circuits, Systems and Computers (IMACS-CSC98), Athens, Greece, pp. 352-357.

Lubars M., Potts C., Richer C. (1993) A review of the state of the practice in requirements modeling,. Proc.

IEEE Symp. Requirements Engineering, San Diego.

Martin J., Odell J. (1992) Object Oriented Analysis &Design, Prentice Hall, Englewoods Cliffs, NJ07632.

Marttiin P.(1994) Methodology Engineering in CASE shells : Design Issue and current Practice, PhD thesis,

Computer science and information systems reports, Technical report TR-4.

McGraw K., Harbison K. (1997)User Centered Requirements, The Scenario-Based Engineering Process.

Lawrence Erlbaum Associates Publishers.

 Mylopoulos J., Chung, L., Nixon, B. (1992) Representing and using non functional requirements: a

process-oriented approach, IEEE Trans. Software Eng. Vol 18, N 6.

Nardi B. A. (1992) The Use of Scenarios in Design, SIGCHI Bulletin, 24(4).

Norman R. and Forte G.(eds.) (1992) CASE in the 90’s, Special section of the CACM.

Olle, T.W., Hagelstein, J., MacDonald, I.G., Rolland, C., Sol, H.G., Van Assche, F.J.M., Verrijn-Stuart,

A.A. (1988) Information Systems Methodologies: A Framework for Understanding, Addison-Wesley.

Plihon: V., Ralyté J., Benjamen A., Maiden N.A.M., Sutcliffe A., Dubois E., Heymans P. (1998) A reuse-

oriented approach for the construction of scenario based methods. Proceedings of the International

Software Process Associations 5
th

 International Conference on Software Process (ICSP’98), Chicago.

Pohl, K. (1994) The Three Dimensions of Requirements Engineering: a framework and its application,

Information Systems Vol 19, N 3, pp 243-258.

 40

Pohl K. (1996) Process Centered Requirements Engineering, J. Wiley and Sons Ltd.

Potts C. (1989) A Generic Model for Representing Design Methods, Proc. 11th Int. Conf. on Software

Engineering.

Potts C. (1997) Fitness for use : the system quality that matters most. Proceedings of the Third

International Workshop on Requirements Engineering: Foundations of Software Quality REFSQ’97 ,

Barcelona, pp. 15-28.

 Prakash N. (1997) Towards A Formal Definition of Methods, The Requirements Engineering Journal, 23 -

50.

Prat N. (1997) Goal formalisation and classification for requirements engineering. Proceedings of the

Third International Workshop on Requirements Engineering: Foundations of Software Quality REFSQ’97,

Barcelona, pp. 145-156.

Ralyte J., Rolland C., Plihon V. (1999) Proceedings of the 11
th

 Intl. Conf. On Advanced Information

Systems Engineering (CAISE99), Springer Verlag, 1999.

Ramesh B.(1993) A Model of Requirements Traceability for Systems Development, Technical Report,

Naval Postgraduate School, Monterey, CA.

Ramesh, B., Edwards, M. (1993) Issues in the Development of a Requirements Traceability model, Proc.

IEEE Symp. on Requirements Engineering, IEEE Computer Society Press, San Diego, Ca.

Ramesh, B., Powers T., Stubbs C. and Edwards, M. (1995) Implementing Requirements Traceability : A

Case Study, in Proceedings of the 2
nd

 Symposium on Requirements Engineering (RE’95), pp89-95, UK.

Rolland C., Cauvet C. (1991) ALECSI : An Expert System for Requirements Engineering, Proc. 3th Int.

Conf. on Advanced Information Systems Engineering (CAISE'91), Springer Verlag.

Rolland C., Prakash N. (1994) A Contextual Approach for the Requirements Engineering Process, Proc. Int.

IEEE Conf. on Software Engineering and Knowledge Engineering (SEKE94), Riga.

 Rolland C., Souveyet C., Moreno M. (1995) An Approach for Defining Ways-of-Working , Information

Systems Journal, Vol. 20, No 4, pp337-359.

Rolland C., Ben Achour C. (1997) Guiding the construction of textual use case specifications. Data &

Knowledge Engineering Journal Vol. 25 N° 1, pp. 125-160.

Rolland C., Nurcan S., Grosz G. (1997) A way of working for change processes in International Research

Symposium '97 - Effective Organisations, Dorset, UK, pp.201-204

 41

 Rolland C., Souveyet C Ben Achour., C. (1998) Guiding Goal Modelling using Scenarios, IEEE

Transactions on Software Engineering, Special Issue on Scenario Management, Vol. 24, No. 12, 1055-

1071.

Rolland C., Loucopoulos P., Kavakli V., Nurcan S.(1998) Intention based modelling of organisational

change, to appear

Rolland C., Ben Achour C., Cauvet C., Ralyté J., Sutcliffe A., Maiden N.A.M., Jarke M., Haumer P., Pohl

K., Dubois E., Heymans P. (1998) A Proposal for a Scenario Classification Framework. Requirements

Engineering Journal, Vol; 3, No. 1, pp. 23-47.

Rolland C., Prakash N., Benjamen A. (1999) A Multi-model View of Process Modelling, The

Requirements Engineering Journal, (to appear).

Royce W. W. (1970) Managing the Development of Large Software Systems, Proc. IEEE WESCON 08.

Rumbaugh J., Blaha M., Premerlani W., Eddy F., and Lorensen W.(1991) Object-oriented modelling and

design. Prentice Hall.

Si-Said S., Rolland C., Grosz G. (1996) MENTOR : A Computer Aided Requirements Engineering

Environment, in Proc 8th Int. Conf. on Advanced Information Systems Engineering (CAISE'96), Springer

Verlag.

The Standish Group (1995) Chaos. Standish Group Internal Report,

http://www.standishgroup.com/chaos.html.

Sutcliffe A.G., Maiden N.A.M. (1994) A theory of domain knowledge for requirements engineering, Nature

Report Deliverable D-D-2.

Sutcliffe A.G., Maiden N.A.M., Minocha S , Manuel D. (1998) Supporting scenario-based requirements

engineering, IEEE transactions on Software Engineering, special issue on Scenario Management, Vol 24,

Nb 12, pp 1072-1088.

 42

Tawbi M., Souveyet C., Rolland C. (1998) L’ECRITOIRE a tool to support a goal-scenario based

approach to requirements engineering, Information and Software Technology Journal (under

communication).

Van Lamsweerde A., Dairmont R., Massonet P. (1995) Goal Directed Elaboration of Requirements for a

Meeting Scheduler : Problems and Lessons Learnt, in Proc. Of RE’95 – 2
nd

 Int. Symp. On Requirements

Engineering, York, pp 194 –204.

Wijers G.M. (1991) Modeling Support in Information Systems development, PhD. Thesis, Thesis

Publishers, Amsterdam.

 Wynekoop J. D., Russo N. L. (1993) System Development methodologies: unanswered questions and the

research-practice gap,, Proc. of 14th ICIS (eds. J. I. DeGross, R. P. Bostrom, D. Robey) pp. 181-190.

Yourdon E.E (1989) Modern structured analysis, Prentice Hall, 1989.

Yu E. S. K, Mylopoulos J. (1994) Understanding Why in Software Process, Modelling, Analysis, and

Desig, Proc. of the 16th International Conference on Software Engineering , Sorrento (Italy).

Yu E. S. K, Mylopoulos J. (1994) From ER to AR_ modelling strategic Actor Relationships for Business

Process Reengineering. Proc. of the 13th International Conference on the Entity-Relationship Approach,

Manchester, UK.

Yu E. S. K, Mylopoulos J. (1994) Towards Modelling Strategic Actor Relationships for Information

Systems Development- with Examples from Business Process Reengineering . Proc. of the 4th Workshop

on Information Technologies and Systems, Vancouver, Canada.

