
HAL Id: hal-00707031
https://hal.science/hal-00707031v2

Submitted on 24 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Stokes phenomenon of a family of
multi-perturbed level-one meromorphic linear

differential systems
Pascal Remy

To cite this version:
Pascal Remy. On the Stokes phenomenon of a family of multi-perturbed level-one meromorphic
linear differential systems. Journal of Dynamical and Control Systems, 2013, 19 (4), pp.575-592.
�10.1007/s10883-013-9196-1�. �hal-00707031v2�

https://hal.science/hal-00707031v2
https://hal.archives-ouvertes.fr


On the Stokes phenomenon of a family of
multi-perturbed level-one meromorphic linear

differential systems

P. Remy
6 rue Chantal Mauduit

F-78 420 Carrières-sur-Seine
email: pascal.remy07@orange.fr

Abstract

Given a level-one meromorphic linear differential system, we in-
vestigate the behavior of its Stokes-Ramis matrices under the action
of a regular holomorphic perturbation. In particular, we prove that
the Stokes-Ramis matrices of the given system can be expressed as
limits of convenient product of the perturbed ones. Our approach is
based on Écalle’s method by regular perturbation and majorant series.
No assumption of genericity is made.
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Introduction

All along the article, we are given a linear differential system (in short, a
differential system or a system)

(A) x2
dY

dx
= A(x)Y , A(x) ∈Mn(C{x}), A(0) 6= 0

of dimension n ≥ 2 with meromorphic coefficients of order 2 at the origin
0 ∈ C. Under the assumption of “single level equal to 1”, system (A) admits
a formal fundamental solution Ỹ (x) = F̃ (x)xLeQ(1/x) where
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• F̃ (x) ∈Mn(C[[x]][x−1]) is an invertible formal meromorphic matrix,

• L =
J⊕

j=1

(λjInj + Jnj) where J is an integer ≥ 2, Inj is the identity

matrix of size nj and where

Jnj =





0 if nj = 1




0 1 · · · 0
...

. . .
. . .

...
...

. . . 1
0 · · · · · · 0




if nj ≥ 2

is an irreductible Jordan block of size nj,

• Q

(
1

x

)
=

J⊕

j=1

(
−
aj
x

)
Inj where the aj ∈ C are not equal to a same a.

Furthermore, to simplify calculations below, we suppose that the following
normalizations of Ỹ (x) hold:

(N1) F̃ (x) ∈Mn(C[[x]]) is a formal power series in x satisfying F̃ (0) = In,

(N2) the eigenvalues λj of L satisfy 0 ≤ Re(λj) < 1 for all j = 1, ..., J ,

(N3) a1 = λ1 = 0.

Recall that such conditions can always be fulfilled by means of a jauge
transformation of the form Y 7−→ T (x)x−λ1ea1/xY where T (x) has expli-
cit computable polynomial entries in x and 1/x. Moreover, such a gauge
transformation does not affect the Stokes phenomenon of system (A).
Conditions (N1) and (N2) guarantee the unicity of F̃ (x) as formal series

solution of the homological system associated with system (A) (cf. [1]).
Condition (N3) is for notational convenience.
Observe that normalizations above implies that the matrix A(x) of system

(A) reads as

(0.1) A(x) =

J⊕

j=1

(
ajInj + xLj

)
+B(x)
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with Lj := λjInj + Jnj the j-th Jordan block of L and B(x) analytic at the
origin 0 ∈ C; moreover, the assumption “system (A) has the unique level
one” is equivalent to the condition

there exists j ∈ {1, ..., J} such that aj 6= 0 .

Observe also that, all over the article, no restrictive assumption is made
except the assumption that the given system (A) has the unique level one.
In particular, we never assume that the formal monodromy L is diagonal nor
the Stokes values aj are distinct.

The Stokes phenomenon of system (A) stems from the fact that the sums
of F̃ (x) on each side of a same singular direction (or anti-Stokes direction)
of system (A) are not analytic continuations from each other in general; this
defect of analyticity is quantified by the Stokes-Ramis matrices (definition
1).
The aim of this paper is to study the behavior of these matrices under

the action of a holomorphic perturbation acting on the Stokes values aj 6= 0.
In particular, we prove that they are limits of convenient products of the
Stokes-Ramis matrices of the perturbed systems.

The organization of the paper is as follows: in section 1, we recall for the
convenience of the reader some definitions about the summation theory. In
section 2, we introduce a regular perturbation of system (A) of the form

(Aε) x2
dY

dx
= Aε(x)Y

with

Aε(x) =
J⊕

j=1

(
aεjInj + xLj

)
+B(x) , A1(x) = A(x)

where ε is a holomorphic multi-parameter acting on the Stokes values aj’s
(compare with (0.1)) and lying in a polydisc centered at the unit 1 := (1, ..., 1)
of the C-vector space Cp for a convenient p ≥ 1. Doing so, the perturbation
acts on the anti-Stokes directions of initial system (A) and changes them into
anti-Stokes directions of systems (Aε). Then, we first describe precisely the
geometry of the perturbed ones and select some Stokes matrices1 which are

1In the whole paper, we call Stokes matrices all the matrices providing the transition
between any two asymptotic solutions whose domains of definition overlap. The name
“Stokes-Ramis matrix” is reserved, according to the custom initiated by J.-P. Ramis ([4])
in the spirit of Stokes’ work, to the matrices providing the transition between the sums
on each side of a same anti-Stokes direction. Thereby, a Stokes-Ramis matrix is a Stokes
Ramis, but the converse is false in general. Nevertheless, all Stokes matrices are finite
products of convenient Stokes-Ramis matrices.
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proved to depend holomorphically on the parameter ε and to converge to the
Stokes-Ramis matrices of initial system (A) when ε goes to 1 (theorem 1).
The proof of this result, which is essentially based on an adequate variant
of the proof of summable-resurgence theorem following Écalle’s method by
regular perturbation and majorant series displayed by M. Loday-Richaud
and the author in [3], is developed in section 3.

1 Some definitions and notations

1.1 Stokes values and anti-Stokes directions

Split the matrix F̃ (x) =
[
F̃ •;1(x) · · · F̃ •;J(x)

]
into J column-blocks fitting

the Jordan structure of L (hence, the size of F̃ •;k(x) is n× nk for all k).

Let Ω := {aj , j = 1, ..., J} denote the set of Stokes values of system (A).
The directions determined by the elements of Ω∗ := Ω\{0} from 0 are called
anti-Stokes directions associated with F̃ •;1(x).
The anti-Stokes directions associated with the k-th column-block F̃ •;k(x)

of F̃ (x) are given by the nonzero elements of Ω − ak (to normalize the k-
th column-block, one has to multiply by eak/x); the anti-Stokes directions
of system (A), i.e., associated with the full matrix F̃ (x), are given by the
nonzero elements of Ω := {aj−ak , j, k = 1, ..., J}. Recall that the elements
of Ω are the Stokes values of the homological system associated with system
(A).

1.2 Summation, Stokes phenomenon and Stokes-Ramis

matrices

• Given a non anti-Stokes direction θ ∈ R/2πZ of system (A) and a choice of
an argument of θ, say its principal determination θ? ∈]−2π, 0] 2, we consider
the sum of Ỹ in the direction θ given by

Yθ(x) = s1;θ(F̃ )(x)Y0,θ?(x)

where s1;θ(F̃ )(x) is the uniquely determined 1-sum (or Borel-Laplace sum)
of F̃ (x) at θ and where Y0,θ?(x) is the actual analytic function Y0,θ?(x) :=
xLeQ(1/x) defined by the choice arg(x) close to θ? (denoted below arg(x) ' θ?).

2Any choice is convenient. However, to be compatible, on the Riemann sphere, with
the usual choice 0 ≤ arg(z = 1/x) < 2π of the principal determination at infinity, we
suggest to choose −2π < arg(x) ≤ 0 as principal determination about 0.



5

Recall that s1;θ(F̃ ) is an analytic function defined and 1-Gevrey asymp-
totic to F̃ on a germ of sector bisected by θ and opening larger than π.
Recall also that s1;θ(F̃ )(x) is given by the Borel-Laplace integral

∫ ∞eiθ

0

F̂ (ξ)e−ξ/xdξ

where F̂ (ξ) denotes the Borel transform of F̃ (x).

• When θ ∈ R/2πZ is an anti-Stokes direction of system (A), we consider
the two lateral sums s1;θ−(F̃ ) and s1;θ+(F̃ ) respectively obtained as analytic
continuations of s1;θ−η(F̃ ) and s1;θ+η(F̃ ) to a germ of half-plane bisected by
θ. Note that such analytic continuations exist without ambiguity when η > 0
is small enough.
We denote by Yθ− and Yθ+ the sums of Ỹ respectively defined for arg(x) '

θ? by Yθ−(x) := s1;θ−(F̃ )(x)Y0,θ?(x) and Yθ+(x) := s1;θ+(F̃ )(x)Y0,θ?(x).
The Stokes phenomenon of system (A) stems from the fact that the sums

s1;θ−(F̃ ) and s1;θ+(F̃ ) of F̃ are not analytic continuations from each other in
general. This defect of analyticity is quantified by the collection of Stokes-
Ramis automorphisms

Stθ? : Yθ+ 7−→ Yθ−

for all the anti-Stokes directions θ ∈ R/2πZ of system (A).
The Stokes-Ramis matrices are defined as matrix representations of the

Stθ?’s in GLn(C).

Definition 1.1 (Stokes-Ramis matrices)

One calls Stokes-Ramis matrix associated with Ỹ in the direction θ the matrix
of Stθ? in the basis Yθ+. We still denote it Stθ?.

Note that the matrix Stθ? is uniquely determined by the relation

Yθ−(x) = Yθ+(x)Stθ? for arg(x) ' θ? .

2 Setting the problem

We denote below by

• D(α, ρ) := {x ∈ C ; |x− α| < ρ} the open disc in C with midpoint
α ∈ C and radius ρ > 0,
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• D(α, ρ) := {x ∈ C ; |x− α| ≤ ρ} the closed disc in C with midpoint
α ∈ C and radius ρ > 0,

• Σθ,η := {x ∈ C∗ ; |arg(x)− θ| < η/2} the open sector in C∗ with vertex
0, bisected by θ ∈ R/2πZ and opening η > 0,

• Σθ,η := {x ∈ C∗ ; |arg(x)− θ| ≤ η/2} the closure of Σθ,η in C∗ (hence,
we refer Σθ,η as a closed sector).

2.1 A multi-perturbed system

In addition to notations above, we denote in this section by ω1, ..., ωp with
p ≥ 1 the nonzero Stokes values of system (A). Hence,

Ω = {ω0 := 0} ∪ {ωk , k = 1, ..., p}

and
Ω = {ω0 := 0} ∪ {ωk − ω` , k, ` = 0, ..., p and k 6= `}.

Note that ωk − ω` 6= 0 for all k 6= `.

According to normalizations (N1)−(N3) of Ỹ (x) (cf. page 2), the matrix
A(x) of system (A) reads

A(x) =

J⊕

j=1

(
ajInj + xLj

)
+B(x)

where aj = ωk for a certain k ∈ {0, ..., p}, Lj := λjInj + Jnj denotes the j-th
Jordan block of the matrix L of exponents of formal monodromy and where
B(x) is analytic at the origin 0 ∈ C.

From now, we are given

(1) a parameter ε := (ε1, ..., εp) in a polydisc Dp := D(1, ρ1)× ...×D(1, ρp)
of Cp; conditions on the ρk’s are precised below,

(2) the regularly multi-perturbed system

(Aε) x2
dY

dx
= Aε(x)Y

where

Aε(x) =
J⊕

j=1

(
aεjInj + xLj

)
+B(x)
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with

aεj =

{
0 if aj = ω0 = 0
ωkεk if aj = ωk and k ∈ {1, ..., p}

.

Note that, for ε = 1 := (1, ..., 1) the unit of Cp, we have A1 ≡ A and systems
(A1) and (A) coincide. Note also that

ωkεk ∈ D(ωk, |ωk| ρk) for all k = 1, ..., p.

Hence, under the two conditions

(C1) 0 /∈ D(ωk, |ωk| ρk) for all k = 1, ..., p,

(C2) D(ωk, |ωk| ρk) ∩D(ω`, |ω`| ρ`) = ∅ for all k, ` = 1, ..., p, k 6= `,

which are always satisfied as soon as the ρk’s are small enough, system (Aε)
has, for all ε ∈ Dp, the unique level 1 and has for formal fundamental solution
the matrix Ỹ ε(x) = F̃ ε(x)xLeQ

ε(1/x) where

• F̃ ε(x) ∈Mn(C[[x]]) is a power series in x verifying F̃ ε(0) = In,

• L is the matrix of exponents of formal monodromy of system (A),

• Qε (1/x) =
⊕J

j=1

(
−aεj/x

)
Inj .

Note that, like systems (Aε) and (A), the two formal fundamental solutions
Ỹ ε(x) and Ỹ (x) coincide for ε = 1. Note also that Ỹ ε(x) has same normal-
izations as Ỹ (x) for all ε ∈ Dp.

We shall now give some basic geometric properties of the Stokes values
and the anti-Stokes directions of systems (Aε).

2.2 Action of the perturbation on the Stokes values,
singular discs

For any ε ∈ Dp, we denote by

• Ωε the set of Stokes values of system (Aε),

• Ωε the set of Stokes values of the homological system associated with
(Aε).

By construction, Ωε (resp. Ωε) is deduced from Ω (resp. Ω) by replacing
the Stokes values ωk, k = 1, ..., p (resp. ωk − ω`, k, ` = 0, ..., p and k 6= `) by
the perturbed Stokes values ωkεk (resp. ωkεk − ω`ε`). Hence,
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• Ωε = {0} ∪ {ωkεk , k = 1, ..., p},

• Ωε = {0} ∪ {ωkεk − ω`ε` , k, ` = 0, ..., p and k 6= `}; we set ε0 := 1.

Note that, due to conditions (C1) and (C2), ωkεk − ω`ε` 6= 0 for all k 6= `.

We denote also by

• Ω(Dp) :=
⋃

ε∈Dp

Ωε the set of all the Stokes values of all systems (Aε)

when ε runs in Dp,

• Ω(Dp) :=
⋃

ε∈Dp

Ω
ε the set of all the Stokes values of all the homological

systems associated with all systems (Aε) when ε runs in Dp.

The sets Ω(Dp) and Ω(Dp) are the respective “images” of Ω and Ω under
the action of the perturbation in ε. More precisely,

• Ω(Dp) = {0}∪

(
p⋃

k=1

D(ωk, |ωk| ρk)

)
,

• Ω(Dp) = {0}∪

(
p⋃

k,`=0
k 6=`

D(ωk − ω`, |ωk| ρk + |ω`| ρ`)

)
; we set ρ0 := 1.

Note that Ω ⊂ Ω implies Ω(Dp) ⊂ Ω(Dp). Note also that, unlike to Ω(Dp),
some discs of Ω(Dp) may overlap.

By construction, the disc Dωk−ω` := D(ωk−ω`, |ωk| ρk+ |ω`| ρ`) is formed,
for any k 6= `, by all the points ωkεk−ω`ε` ∈ Ω(Dp) issuing from the nonzero
Stokes value ωk − ω` ∈ Ω under the action of the perturbation. This brings
us to the following definition:

Definition 2.1 (Singular disc of Ω(Dp))
Let ω := ωk−ω` be a nonzero Stokes value of Ω. Then, the disc Dω := Dωk−ω`

is called singular disc of Ω(Dp) associated with ω.

Remark 2.2 Observe that, due to conditions (C1) and (C2), none of the
closed singular disc Dω (= the closure of Dω in C) contains 0.

Remark 2.3 Relations above between initial Stokes values and perturbed
Stokes values have a translation in terms of anti-Stokes directions: let θ ∈
R/2πZ be an anti-Stokes direction of initial system (A); then, its “image”
by the perturbation is the set of all the anti-Stokes directions of all systems
(Aε) given by all the points of all the singular discs of Ω(Dp) centered on θ.

Remark 2 will be precised in lemma 1 below.
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2.3 Action of the perturbation on the anti-Stokes dir-

ections, singular sectors

In addition to previous notations, we also denote by

• Θ the set of anti-Stokes directions of initial system (A),

• Ωθ the set of nonzero Stokes values of Ω with argument θ ∈ R/2πZ.

Obviously, θ ∈ Θ if and only if Ωθ 6= ∅. For any θ ∈ Θ, we consider

• Ωθ(Dp) :=
⋃

ω∈Ωθ

Dω the set of all the singular discs Dω of Ω(Dp) associ-

ated with all the Stokes values ω ∈ Ωθ, i.e., the set of all the singular
discs of Ω(Dp) centered on θ.

Figure 1 - A set Ωθ(Dp)

Since all the discs Dω with ω ∈ Ωθ are symmetrical about θ, we also consider

• η(θ) the minimal opening of sectors Σθ,η containing Ωθ(Dp).

Figure 2 - A sector Σθ,η(θ)
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By construction, the directions determined by the points of Σθ,η(θ) are
the anti-Stokes directions of systems (Aε) determined by all the points of
Ωθ(Dp). Thereby, remark 2 leads us to the following lemma.

Lemma 2.4 (Action of the perturbation on θ ∈ Θ)
Let θ ∈ Θ be an anti-Stokes direction of initial system (A).
Then, the “image” of θ by the perturbation is the set DΣθ,η(θ) of all the
directions determined by the points of Σθ,η(θ).

Before stating the main result of the article (see theorem 1 below), let
us make some remarks about sectors Σθ,η(θ). First, their openings η(θ) only
depend on the radius of the singular discs Dω associated with ω ∈ Ωθ. In
particular, the η(θ)’s tend to 0 when the ρk’s go to 0. Second, the size of
the η(θ)’s will play a fundamental role in theorem 1 (see section 2.4 below).
Henceforth, we suppose that the radius ρk’s are chosen small enough so that,
in addition to conditions (C1) and (C2) above, the following conditions would
be satisfied:

(C3) Σθ,η(θ) ∩ Σθ′,η(θ′) = ∅ for all θ, θ′ ∈ Θ, θ 6= θ′,

(C4) for all θ ∈ Θ, η(θ) <
π

2
,

(C5) for all θ ∈ Θ, the principal determination θ? of θ and the principal
determination (θ − η(θ)/2)? of θ − η(θ)/2 satisfy

−2π < (θ − η(θ)/2)? < θ? ≤ 0

Remark 2.5 Let DΣθ,η(θ) denote the set of all the directions determined by
all the points of the closed sector Σθ,η(θ). Condition (C3) above tells us that
DΣθ,η(θ) contains no other anti-Stokes directions of systems (Aε), ε running
in Dp, except those issuing from θ under the action of the perturbation. In
particular, since systems (A) and (Aε) coincide for ε = 1, the set DΣθ,η(θ)
just contains the direction θ as anti-Stokes directions of system (A).

2.4 Main result

As before, we indicate by

• Θ the set of anti-Stokes directions of initial system (A);

• DΣθ,η (resp. DΣθ,η) the set of all the directions determined by all the
points of Σθ,η (resp. Σθ,η) for any η > 0.
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Let θ ∈ Θ and DΣθ,η(θ) its “image” by the perturbation (cf. lemma 1).
Under conditions (C3)− (C5) above, there exists η ∈]η(θ), π/2[ such that

1. Σθ,η(θ) $ Σθ,η $ Σθ,π−η,

2. Σθ,η ∩ Σθ′,η(θ′) = ∅ for all θ′ ∈ Θ, θ′ 6= θ,

3. the principal determination (θ − η/2)? of θ − η/2 satisfies

−2π < (θ − η/2)? < (θ − η(θ)/2)? < θ? ≤ 0

Note that point 1. results from the choice η in ]η(θ), π/2[ and that points
2. and 3. hold as soon as η is close enough to η(θ). Note also that point
2. guarantees that the set DΣθ,η contains no other anti-Stokes directions of
systems (Aε), ε running in Dp, except those of DΣθ,η(θ).

Let us now fix ε ∈ Dp and η as above. Then, according to points 1.—
3., directions θ ± η/2 are not anti-Stokes directions of system (Aε) and the
1-sums s1;θ±η/2(F̃ ε) are thus defined and analytic on a same germ of sector
Σθ,π−η. Consequently, the sums

Y εθ±η/2(x) := s1;θ±η/2(F̃
ε)(x)xLeQ

ε(1/x)

are related for arg(x) ∈](θ− η/2)?, (θ− η(θ)/2)?[ (see figure 3 below) by the
relation

(2.1) Y εθ−η/2(x) = Y
ε

θ+η/2(x)S
ε

θ? .

Figure 3 - Sector Σθ,η(θ) and
associated directions
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The matrixSε

θ? ∈ GLn(C) denotes the (perturbed) connection matrix between
Y εθ+η/2 and Y

ε

θ−η/2. It is only determined by identity (2.1) above. Note that
remark 3 and point 2. above imply that Sε

θ? is actually defined as (finite)
product of Stokes-Ramis matrices associated with Ỹ ε in the anti-Stokes dir-
ections of system (Aε) contained in DΣθ,η(θ). Note also that, for ε = 1, we
have

(2.2) Y 1θ±η/2(x) = Yθ±η/2(x) = Yθ±(x) and S
1

θ? ≡ Stθ? .

We are now able to state the main result of the article:

Theorem 2.6 Let θ ∈ Θ be an anti-Stokes direction of initial system (A).
Then,

1. the function ε 7−→ S
ε

θ? is holomorphic on Dp,

2. the Stokes-Ramis matrix Stθ? of initial system (A) is limit of the per-
turbed Stokes matrices Sε

θ?:

(2.3) lim
ε→1
S
ε

θ? = Stθ? .

Before starting the proof of theorem 1, let us make some remarks. First, it
is clear that point 2. is straightforward from point 1. Indeed, we have S1

θ? ≡
Stθ? by definition of the perturbation (see relations (2.2) above). Second,
it seems that identity (2.3) could provide an efficient tool for the effective
calculation of Stokes-Ramis matrices of initial system (A). This “question”,
which is one of our actual directions of research, will be investigated in great
detail in [5].

We now turn to the proof of theorem 1.

3 Proof of theorem 1

As mentioned above, we are left to prove the first point of theorem 1. The
central point of this proof is the study of the 1-sums s1;θ±η/2(F̃ ε)(x) following
the parameter ε. Precisely, we shall show in proposition 2 below that, on
one hand, these sums are defined for all ε ∈ Dp on a same germ Σ of sector

{
x ∈ C∗ ;

(
θ −

η

2

)?
< arg(x) <

(
θ −

η(θ)

2

)?}
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and, on the other hand, they are holomorphic on Dp for all x ∈ Σ. How-
ever, before studying the s1;θ±η/2(F̃ ε)(x)’s, we shall first investigate the
Borel transforms F̂ ε(ξ) of F̃ ε(x) (with respect to x). Recall indeed that
s1;θ±η/2(F̃

ε)(x) and F̂ ε(ξ) are related by the integral formula

∫ ∞ei(θ±η/2)

0

F̂ ε(ξ)e−ξ/xdξ.

Recall also, for the convenience of the reader, that the formal Borel trans-
formation is an isomorphism from theC-differential algebra

(
C[[x]],+, ·, x2 d

dx

)

to theC-differential algebra (δC⊕C[[ξ]],+, ∗, ξ·) that changes ordinary product
· into convolution product ∗ and also changes derivation x2 d

dx
into multiplica-

tion by ξ. It also changes multiplication by 1
x
into derivation d

dξ
. Moreover, if

g(x) ∈ C{x} is an analytic function at the origin 0 ∈ C, then its formal Borel
transform ĝ(ξ) defines an entire function on all C with exponential growth
at infinity.

3.1 Dependence in ε and Borel transform

Recall that Dp denotes the polydisc D(1, ρ1) × ... × D(1, ρp) in Cp where
the radius ρk’s are chosen so that conditions (C1) − (C5) hold. Recall also
that, for any nonzero Stokes value ω ∈ Ω, Dω denotes the singular disc of
Ω(Dp) associated with ω, i.e., the open disc formed by all the Stokes values
of Ω(Dp) issuing from ω under the action of the perturbation.

In this section, we consider a domain V ⊂ C defined by the data of an
open disc centered at 0 ∈ C and an open sector in C with vertex 0 such that

(3.1) V ∩Dω = ∅ for all ω ∈ Ω\{0}

(V and Dω denote respectively the closure of V and Dω in C). Observe that
the existence of such a domain V is ensured by conditions (C1)− (C3) and
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remark 1.

Figure 4 - A domain V and
the singular discs Dω of Ω(Dp)

Our aim is to prove the following result:

Proposition 3.1 Let V be a domain as above.
Then, the function (ξ, ε) 7−→ F̂ ε(ξ) is holomorphic on V ×Dp.

Proposition 1 is proved below by using an adequate variant of the proof
of summable-resurgence theorem following Écalle’s method by regular per-
turbation and majorant series which was given by M. Loday-Richaud and
the author in [3].

Remark 3.2 For all ε ∈ Dp, any of the J column-blocks of F̃ ε(x) associated
with the Jordan structure of L (matrix of exponents of formal monodromy)
can be positionned at the first place by means of a same permutation (hence,
independent of ε) acting on the columns of Ỹ ε(x). Consequently, it is suffi-
cient to prove proposition 1 in restriction to the column-block f̃ ε(x) formed
by the first n1 (= dimension of the first Jordan block of L) columns of F̃ ε(x).

For all ε ∈ Dp, the system

x2
dY

dx
= Aε0(x)Y with Aε0(x) =

J⊕

j=1

(
aεjInj + xLj

)

has for formal fundamental solution the matrix xLeQ
ε(1/x) (recall that Lj :=

λjInj + Jnj denotes the j
th Jordan block of L). Thereby, according to the

normalizations of Ỹ ε(x) (cf. page 7), f̃ ε(x) is uniquely determined by the
first n1 columns of the homological system

x2
dF

dx
= Aε(x)F − FAε0(x)
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associated with system (Aε) jointly with the initial condition f̃ε(0) = In,n1 (=
the first n1 columns of the identity matrix In of size n) (see [1]). Therefrom,
the system

(3.2) x2
df

dx
= Aε(x)f − xfJn1 .

Recall that aε1 = λ1 = 0. Recall also that

Aε(x) =

J⊕

j=1

(
aεjInj + xLj

)
+B(x)

where B(x) is analytic at 0. More precisely, splitting B(x) =
[
Bj;`(x)

]
into

blocks fitting the Jordan structure of L, we have

(3.3) Bj;`(x) =

{
O(x) if aεj 6= a

ε

`

O(x2) if aεj = a
ε

`

.

Notation 3.3 From now on, given a matrix M split into blocks fitting to
the Jordan structure of L, we denote by M j;• the j-th row-block of M . So,
M j;• is a nj × p-matrix when M is a n× p-matrix.

3.1.1 Regular perturbation

Following J. Écalle ([2]), we consider, instead of system (3.2), the regularly
perturbed system

(3.4) x2
df

dx
= Aε(x, α)f − xfJn1

where

Aε(x, α) =
J⊕

j=1

(
aεjInj + xLj

)
+ αB(x).

Like in [3], an identification of equal power in α shows that system (3.4)
admits, for all ε ∈ Dp, a unique formal solution of the form

f̃ ε(x, α) =
∑

m≥0

f̃ εm(x)α
m

satisfying f̃ ε0(x) = In,n1 and f̃
ε

m(x) ∈ Mn,n1(C[[x]]) for all m ≥ 1. More
precisely, the components f̃ ε j;•m (x) ∈ Mnj ,n1(C[[x]]) of f̃

ε

m(x) are uniquely
determined for all m ≥ 1 and j = 1, ..., J as formal solutions of systems

(3.5) x2
df̃ ε j;•m

dx
− aεj f̃

ε j;•
m − xLj f̃

ε j;•
m = Bj;•f̃ εm−1 − xf̃

ε j;•
m Jn1 .
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Relations (3.5) and normalizations (3.3) of B(x) show in particular that

f̃ ε j;•2m−1(x) = O(x
m) and f̃ ε j;•2m =

{
O(xm) if aεj = 0
O(xm+1) if aεj 6= 0

for all m ≥ 1 and j = 1, ..., J .

As a result, the series f̃ ε(x, α) can be rewritten as a series in x with
polynomial coefficients in α. Consequently, for all ε ∈ Dp, f̃ ε(x) = f̃ ε(x, 1)
(by unicity of f̃ ε(x) and f̃ ε(x, 1)) and, for all α, the series f̃ ε(x, α) admits
a formal Borel transform ϕε(ξ, α) with respect to x of the form

ϕε(ξ, α) = δIn,n1 +
∑

m≥1

ϕεm(ξ)α
m

where ϕεm(ξ) ∈ Mn,n1(C[[ξ]]) denotes, for all m ≥ 1, the Borel transform of
f̃ εm(x). In particular, the components ϕ

ε j;•
m (ξ) ∈Mnj ,n1(C[[ξ]]) of ϕ

ε

m(ξ) are
iteratively determined for all m ≥ 1 and j = 1, ..., J as solutions of systems

(3.6) (ξ − aεj )
dϕε j;•m

dξ
− (Lj − Inj)ϕ

ε j;•
m =

d

dξ
(B̂ j;• ∗ ϕεm−1)− ϕ

ε j;•
m Jn1 .

We set ϕε0 := δIn,n1. Note that the Borel transforms B̂
j;• of Bj;• are entire

functions on all C since B is analytic at 0. Note also that normalizations (3.3)
of B(x) imply that the only singularities in C of systems (3.6) when ε runs in
Dp are the Stokes values aεj 6= 0 of Ω(Dp) ⊂ Ω(Dp). Hence, since the domain
V does not meet Ω(Dp)\{0} and since system (3.6) depends holomorphically
on the parameter ε ∈ Dp, the following lemma:

Lemma 3.4 The function (ξ, ε) 7−→ ϕεm(ξ) is holomorphic on V × Dp for
all m ≥ 1.

It remains to prove that the function

(ξ, ε) 7−→ f̂ ε(ξ) = ϕε(ξ, 1) =
∑

m≥1

ϕεm(ξ)

is well-defined and holomorphic on V × Dp. This point is proved below
by using a technique of majorant series satisfying a convenient system. Of
course, there are many possible majorant systems. Here, we make explicit a
possible one.
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3.1.2 A convenient majorant system

Let ν denote the minimal distance between the elements of V and the ele-
ments of Ω(Dp)\{0}. Observe that condition (3.1) implies ν > 0 (see figure
4, page 14).

We consider, for j = 1, ..., J , the regularly perturbed linear system
(3.7)



Cj(g
j;• − Ij;•n,n1) = Jnjg

j;• + gj;•Jn1 − 2I
j;•
n,n1
Jn1 + α

|Bj;•| (x)

x
g

if aj = 0

(ν − x |λj − 1| Inj)g
j;• = xJnjg

j;• + xgj;•Jn1 + α |B
j;•| (x)g

if aj 6= 0

where

• the unknown g is, as previously, a n × n1-matrix split into row-blocks
gj;• fitting the Jordan structure of L,

• |B| (x) denotes the series B(x) in which the coefficients of the powers
of x are replaced by their module,

• the Cj’s are positive constants which are to be adequatly chosen below
(see lemma 3).

Recall that λj denotes the eigenvalue of the jth Jordan block Lj of L.
Observe that the so-defined system depends on the domain V but not on

the parameter ε.

System (3.7) above has already been studied in [3] since it is actually
the majorant system which has been used to prove the summable-resurgence
theorem for level-one linear differential systems. In particular, it has been
shown that its Borel transformed system admits, for α = 1, a solution of the
form

ĝ(ξ) = δIn,n1 +
∑

m≥1

Φm(ξ)

which is entire on all C with exponential growth at infinity. Moreover, for
any m ≥ 1, Φm(ξ) belongs to Mn,n1(R+[[ξ]]) and is also an entire function
on all C with exponential growth at infinity. More precisely, the components
Φj;•m (ξ) ∈ Mnj ,n1(R

+[[ξ]]) of Φm(ξ) are iteratively determined for all m ≥ 1
and j = 1, ..., J as solutions of systems
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• Case aj = 0:

CjΦ
j;•
m = JnjΦ

j;•
m + Φj;•m Jn1 +

d

dξ

(
|̂Bj;•| ∗ Φm−1

)
.

• Case aj 6= 0:

ν
dΦj;•m
dξ

= |λj − 1|Φ
j;•
m + JnjΦ

j;•
m + Φj;•m Jn1 +

d

dξ

(
|̂Bj;•| ∗ Φm−1

)
.

We set Φ0 := δIn,n1.

In addition, one can verify that all the calculations made in [3, section
2.5.5] to prove that system (3.7) was a convenient majorant system can also
be applied in the present case. Indeed, the parameter ε just acts on the
Stokes values aεj in systems (3.6) and condition a

ε

j = 0 (resp. aεj 6= 0) is
equivalent to the condition aj = 0 (resp. aj 6= 0). Therefrom, the following
lemma:

Lemma 3.5 (Majorant series, [3, lemma 2.9])
Let a be a positive constant such that |arg(ξ)| ≤ a for all ξ ∈ V .
Let

Cj =
1− Re(λj)

max
1≤j≤J

exp(2a |Im(λj)|)
.

Then, for all m ≥ 1, ξ ∈ V , ε ∈ Dp and j = 1, ..., J , the following inequalities
hold: ∣∣ϕε j;•m (ξ)

∣∣ ≤ Φj;•m (|ξ|).
In particular, for all ε ∈ Dp, the series

ĝ(|ξ|) =
∑

m≥1

Φm(|ξ|)

is a majorant series of f̂ ε(ξ).

Recall that lemma 3 is proved by applying Grönwall lemma to systems
(3.6) defining the ϕε j;•m ’s and systems above defining the Φj;•m ’s.
Note that the constant K given in [3, lemma 2.9] is equal to 1 in our case.

Indeed, according to the definition of domain V , the “optimal” path γξ from
0 to any ξ ∈ V used in the proof of [3, lemma 2.9] is here the straigth line
[0, ξ].

Before proving proposition 1, let us make some remarks about lemma 3
and calculations above.
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Remark 3.6 Like system (3.7), the function ĝ(ξ) depends on domain V but
not on the parameter ε.

Remark 3.7 Lemma 3 and calculations above imply the following property:
there exist c, k > 0 such that inequality

(3.8)
∣∣∣f̂ ε(ξ)

∣∣∣ ≤ cek|ξ|

holds for all ξ ∈ V and ε ∈ Dp.

Remark 3.8 According to remark 4, property (3.8) can be extended to the
other columns of F̂ ε: there exist C,K > 0 such that inequality

∣∣∣F̂ ε(ξ)
∣∣∣ ≤ CeK|ξ|

holds for all ξ ∈ V and all ε ∈ Dp.

3.1.3 Proof of proposition 1

We shall now prove proposition 1: lemmas 2 and 3 above tell us that the
series

(ξ, ε) 7−→ f̂ ε(ξ) =
∑

m≥1

ϕεm(ξ)

is a series of holomorphic functions on V ×Dp which normally converges on
all the compact sets of V × Dp. Hence, (ξ, ε) 7−→ f̂ ε(ξ) is well-defined and
holomorphic on V × Dp too, which achieves the proof of proposition 1 (cf.
remark 4).

3.2 Dependence in ε and summation

Let us now consider an anti-Stokes direction θ ∈ Θ of initial system (A) and
its associated sector Σθ,η(θ) (cf. section 2.3). Recall that the set DΣθ,η(θ)
of all the directions determined by all the points of Σθ,η(θ) are all the anti-
Stokes directions of all systems (Aε) associated with θ under the action of
the perturbation.

We also consider two directions θ+ η/2 and θ− η/2 as in section 2.4 (cf.
figure 3, page 11). Let V + (resp. V −) be a domain in C satisfying condition
(3.1) above and defined by the data of an open disc centered at 0 ∈ C and
an open sector in C with vertex 0 and bisected by θ + η/2 (resp. θ − η/2).
Note that such domains exist since θ ± η/2 are singular directions for none
of systems (Aε).
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Since V + and V − are domains as in section 3.1, proposition 1 and remark
7 imply the following lemma.

Lemma 3.9

1. Domain V +

(a) For all ξ ∈ V +, the function ε 7−→ F̂ ε(ξ) is holomorphic on Dp.

(b) There exist C+, K+ > 0 such that inequality

∣∣∣F̂ ε(ξ)
∣∣∣ ≤ C+eK+|ξ|

holds for all ξ ∈ V + and all ε ∈ Dp.

2. Domain V −

(a) For all ξ ∈ V −, the function ε 7−→ F̂ ε(ξ) is holomorphic on Dp.

(b) There exist C−, K− > 0 such that inequality

∣∣∣F̂ ε(ξ)
∣∣∣ ≤ C−eK−|ξ|

holds for all ξ ∈ V − and all ε ∈ Dp.

As a result of points 1.(b) and 2.(b), the 1-sums s1;θ+η/2(F̃ ε) and s1;θ−η/2(F̃ ε)
are respectively holomorphic, for all ε ∈ Dp, on sectors

Σθ+η/2

(
1

K+

)
:=

{
x ∈ C∗ ; |x| <

1

K+
and

∣∣∣arg(x)− θ − η
2

∣∣∣ < π

2

}

and

Σθ−η/2

(
1

K−

)
:=

{
x ∈ C∗ ; |x| <

1

K−
and

∣∣∣arg(x)− θ + η
2

∣∣∣ < π

2

}

and so, according to the choice of η (cf. section 2.4), on sector

Σ :=

{
x ∈ C∗ ; |x| < min

(
1

K−
,
1

K+

)
and

(
θ −

η

2

)?
< arg(x) <

(
θ −

η(θ)

2

)?}
.

Observe that Σ does not depend on the parameter ε.

This leads us to the following result which is the central point of the proof
of theorem 1.



21

Proposition 3.10 For all x ∈ Σ, the functions

ε 7−→ s1;θ+η/2(F̃
ε)(x) and ε 7−→ s1;θ−η/2(F̃

ε)(x)

are holomorphic on Dp.

Proof. ? Fix x ∈ Σ. For all ε ∈ Dp, the 1-sum s1;θ+η/2(F̃
ε)(x) is given by

the Borel-Laplace integral

s1;θ+η/2(F̃
ε)(x) =

∫ ∞ei(θ+η/2)

0

F̂ ε(ξ)e−ξ/xdξ =

∫ +∞

0

Ĝε

+(ξ)dξ

where
Ĝε

+(ξ) := F̂
ε(ξei(θ+η/2))e−ξ exp(i(θ+η/2))/x.

Since ξei(θ+η/2) ∈ V + for all ξ ≥ 0, we can apply lemma 4 to Ĝε

+(ξ):

− for all ξ ≥ 0, the function ε 7−→ Ĝε

+(ξ) is holomorphic on Dp,

− for all ξ ≥ 0 and all ε ∈ Dp,
∣∣∣Ĝε

+(ξ)
∣∣∣ ≤

∣∣∣F̂ ε(ξei(θ+η/2))
∣∣∣ e−ξRe(exp(i(θ+η/2))/x)

≤ C+e−ξ(Re(exp(i(θ+η/2))/x)−K
+) :=M+(ξ).

Note that M+ does not depend on ε. Note also that the choice “x ∈ Σ”
implies that ξ 7−→M+(ξ) is integrable on [0,+∞[. Then, Lebesgues domin-
ated convergence theorem applies and the function ε 7−→ s1;θ+η/2(F̃

ε)(x) is
holomorphic on Dp.

? The holomorphy of ε 7−→ s1;θ−η/2(F̃
ε)(x) is proved in a similar way.

3.3 Proof of theorem 1, point 1

Let us fix x ∈ Σ. Recall (cf. page 11) that the perturbed Stokes matrices
S
ε

θ? are uniquely determined, for all ε ∈ Dp, by the relation

(2.1) Y εθ−η/2(x) = Y
ε

θ+η/2(x)S
ε

θ?

where
Y εθ±η/2(x) = s1;θ±η/2(F̃

ε)(x)xLeQ
ε(1/x).

Obviously, the function ε 7−→ Qε(1/x) is holomorphic on Dp. Con-
sequently, proposition 2 above implies that the functions ε 7−→ Y εθ±η/2(x)
are also holomorphic on Dp.
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On the other hand, for any ε ∈ Dp, the matrices Y εθ±η/2 are formal fun-
damental solutions of system (Aε). Thus, Y εθ±η/2(x) 6= 0 for all ε ∈ Dp and
ε 7−→ Y εθ±η/2(x)

−1 is still holomorphic on Dp.

Theorem 1 follows since identity (2.1) implies

S
ε

θ? = Y
ε

θ+η/2(x)
−1Y εθ−η/2(x)

for all ε ∈ Dp.
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