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Abstract

Given a level-one meromorphic linear differential system, we in-
vestigate the behavior of its Stokes-Ramis matrices under the action
of a regular holomorphic perturbation. In particular, we prove that
the Stokes-Ramis matrices of the given system can be expressed as
limits of convenient product of the perturbed ones. Our approach is
based on Ecalle’s method by regular perturbation and majorant series.
No assumption of genericity is made.
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Introduction

All along the article, we are given a linear differential system (in short, a
differential system or a system)

,dY
(A) v = Alx)Y | A(z) € M,(C{x}), A(0) #0

x

of dimension n > 2 with meromorphic coefficients of order 2 at the origin
0 € C. Under the assumption 0£ “single Nlevel equal to 17, system (A) admits
a formal fundamental solution Y (z) = F(x)x*e?(/*) where



e ['(x) € M,(C[[z]][z™"]) is an invertible formal meromorphic matrix,

J
@ (Ajln; + Jp,) where J is an integer > 2, I,,; is the identity
7j=1

matrix of size n; and where

(0 lf’I’L]:l
0 1 0
oy =
: o1
L [0 -+ o0

is an irreductible Jordan block of size n;,

J
1 .
e () <;> = @ (—%ﬂ) I,,; where the a; € C are not equal to a same a.

Furthermore, to simplify calculations below, we suppose that the following
normalizations of Y (x) hold:

(N1) F(z) € M,(C[[z]]) is a formal power series in z satisfying F/(0) = I,,,
(N2) the eigenvalues \; of L satisfy 0 < Re(\;) < 1forall j =1,....J,
(N?)) a; = )\1 = 0.

Recall that such conditions can always be fulfilled by means of a jauge
transformation of the form Y +—— T(x)z *e™/*Y where T(z) has expli-
cit computable polynomial entries in z and 1/x. Moreover, such a gauge
transformation does not affect the Stokes phenomenon of system (A).

Conditions (N1) and (N2) guarantee the unicity of F(x) as formal series
solution of the homological system associated with system (A) (¢f. [1]).
Condition (N3) is for notational convenience.

Observe that normalizations above implies that the matrix A(z) of system

(A) reads as

(0.1) @ a;I,,, +xL;) + B(z)



with L; := Ajl,, + J,, the j-th Jordan block of L and B(x) analytic at the
origin 0 € C; moreover, the assumption “system (A) has the unique level
one” is equivalent to the condition

there exists j € {1,..., J} such that a; # 0

Observe also that, all over the article, no restrictive assumption is made
except the assumption that the given system (A) has the unique level one.
In particular, we never assume that the formal monodromy L is diagonal nor
the Stokes values a; are distinct.

The Stokes phenomenon of system (A) stems from the fact that the sums
of F(z) on each side of a same singular direction (or anti-Stokes direction)
of system (A) are not analytic continuations from each other in general; this
defect of analyticity is quantified by the Stokes-Ramis matrices (definition
1).

The aim of this paper is to study the behavior of these matrices under
the action of a holomorphic perturbation acting on the Stokes values a; # 0.
In particular, we prove that they are limits of convenient products of the
Stokes-Ramis matrices of the perturbed systems.

The organization of the paper is as follows: in section 1, we recall for the
convenience of the reader some definitions about the summation theory. In
section 2, we introduce a regular perturbation of system (A) of the form

(A®) xQCfl—i/ = A%(2)Y
with J
Af(z) = @ (a1, +2L;) + B(z) , A(z) = A(z)

where € is a holomorphic multi-parameter acting on the Stokes values a;’s
(compare with (0.1)) and lying in a polydisc centered at the unit 1 := (1,...,1)
of the C-vector space C? for a convenient p > 1. Doing so, the perturbation
acts on the anti-Stokes directions of initial system (A) and changes them into
anti-Stokes directions of systems (A€). Then, we first describe precisely the
geometry of the perturbed ones and select some Stokes matrices’ which are

'In the whole paper, we call Stokes matrices all the matrices providing the transition
between any two asymptotic solutions whose domains of definition overlap. The name
“Stokes-Ramis matriz” is reserved, according to the custom initiated by J.-P. Ramis ([4])
in the spirit of Stokes’ work, to the matrices providing the transition between the sums
on each side of a same anti-Stokes direction. Thereby, a Stokes-Ramis matrix is a Stokes
Ramis, but the converse is false in general. Nevertheless, all Stokes matrices are finite
products of convenient Stokes-Ramis matrices.



proved to depend holomorphically on the parameter € and to converge to the
Stokes-Ramis matrices of initial system (A) when € goes to 1 (theorem 1).
The proof of this result, which is essentially based on an adequate variant
of the proof of summable-resurgence theorem following Ecalle’s method by
regular perturbation and majorant series displayed by M. Loday-Richaud
and the author in [3], is developed in section 3.

1 Some definitions and notations

1.1 Stokes values and anti-Stokes directions
Split the matrix F(z) = F*Y(z) .- F*/(z)| into J column-blocks fitting

the Jordan structure of L (hence, the size of F'**(z) is n x ny for all k).

Let Q :={a;, j =1,...,J} denote the set of Stokes values of system (A).
The directions determined by the elements of Q* := Q\{0} from 0 are called
anti-Stokes directions associated with F*'(z).

The anti-Stokes directions associated with the k-th column-block F k()
of F(z) are given by the nonzero elements of © — a; (to normalize the k-
th column-block, one has to multiply by e®/®); the anti-Stokes directions
of system (A), i.e., associated with the full matrix F (x), are given by the
nonzero elements of Q := {a; —ay , j,k =1,...,J}. Recall that the elements
of € are the Stokes values of the homological system associated with system

(A).

1.2 Summation, Stokes phenomenon and Stokes-Ramis
matrices

e Given a non anti-Stokes direction § € R/27Z of system (A) and a choice of
an argument of #, say its principal determination 0* €] — 2, 0] ?, we consider
the sum of Y in the direction 6 given by

Yo(2) = s10(F) () Y00+ ()

where 31;9(}?)@) is the uniquely determined 1-sum (or Borel-Laplace sum)

of F'(z) at # and where Yj+(x) is the actual analytic function Ypg«(x) :=
xFe?1/?) defined by the choice arg(x) close to §* (denoted below arg(x) ~ 6*).

2Any choice is convenient. However, to be compatible, on the Riemann sphere, with
the usual choice 0 < arg(z = 1/x) < 27 of the principal determination at infinity, we
suggest to choose —271 < arg(z) < 0 as principal determination about 0.



Recall that Sl;g(ﬁ ) is an analytic function defined and 1-Gevrey asymp-

totic to F' on a germ of sector bisected by # and opening larger than 7.
Recall also that s1,9(F')(z) is given by the Borel-Laplace integral

ocoett
| F@e e
0
where F(€) denotes the Borel transform of F(z).

e When 0 € R/277Z is an anti-Stokes direction of system (A), we consider

the two lateral sums s;.9- (F) and s1.9+ (F') respectively obtained as analytic
continuations of 81;9,7](}; ) and sl;gﬂ,(ﬁ ) to a germ of half-plane bisected by
. Note that such analytic continuations exist without ambiguity when n > 0
is small enough. B

We denote by Y- and Yp+ the sums of Y respectively defined for arg(z) ~
0* by Yy-(x) := s10- (F)(2)Yo,0+ (2) and Yy+ () := 51,9+ (F)(x) Yo 0+ (2).

The Stokes phenomenon of system (A) stems from the fact that the sums
1.0 (F) and S1.0+ (F) of F are not analytic continuations from each other in
general. This defect of analyticity is quantified by the collection of Stokes-
Ramis automorphisms

Ste* . Yb+ — Yb*

for all the anti-Stokes directions § € R/27Z of system (A).
The Stokes-Ramis matrices are defined as matrix representations of the
Ste*’S in GLH(C)

Definition 1.1 (Stokes-Ramis matrices)

One calls Stokes-Ramis matriz associated with Y in the direction 0 the matriz
of Stg« in the basis Yy+. We still denote it Sty«.

Note that the matrix Sty- is uniquely determined by the relation

Yy-(z) = Yy (2)Stys for arg(x) ~ 6*

2 Setting the problem

We denote below by

e D(a,p) :={x € C; |r—a| < p} the open disc in C with midpoint
a € C and radius p > 0,



e D(a,p) :=={z € C; |z —a| < p} the closed disc in C with midpoint
a € C and radius p > 0,

o ¥y, :={x e C*; |arg(x) — 0] < n/2} the open sector in C* with vertex
0, bisected by 6 € R/27Z and opening 1 > 0,

° Yy, = {z € C; |arg(x) — 6] < n/2} the closure of ¥y, in C* (hence,

we refer Yy, as a closed sector).

2.1 A multi-perturbed system

In addition to notations above, we denote in this section by wy, ...,w, with
p > 1 the nonzero Stokes values of system (A). Hence,

= {wo = O} U {U)k 5 k= 177p}

and
Q={w =0} U{wy —wy, k,0=0,....,pand k # (}.

Note that wy, — wy # 0 for all k # /.

According to normalizations (N1)— (N3) of Y () (cf. page 2), the matrix
A(x) of system (A) reads

ajl +zL;) + B(z)

H@&

where a; = w; for a certain k € {0, ..., p}, L; := A1, + J,; denotes the j-th
Jordan block of the matrix L of exponents of formal monodromy and where
B(x) is analytic at the origin 0 € C.

From now, we are given

(1) a parameter € := (1, ...,&,) in a polydisc D, := D(1, p1) x ... X D(1, p,)
of CP; conditions on the p;’s are precised below,

(2) the regularly multi-perturbed system

dY

(4°) i

= A%(2)Y

where

@&

(aS1y, + L) + B(x)

Jj=1



with
e _J O ifa; =wy=0
4 = WEER if a; =wy, and k € {1,...,p}

Note that, for e = 1 := (1,...,1) the unit of C?, we have A' = A and systems
(A1) and (A) coincide. Note also that

wrek € D(wy, |wi| pr) forall k=1,.. p.
Hence, under the two conditions
(C1) 0 ¢ D(wy, |wk|pr) for all k =1, ..., p,
(C2) D(wp, |wk| pr) N D(wy, |we| pe) =0 for all k, £ =1,....p, k # ¢,

which are always satisfied as soon as the p;’s are small enough, system (A¢)
has, for all € € Dy, the unique level 1 and has for formal fundamental solution
the matrix Y ¢(z) = F¢(z)a"e?"(/?) where

° ﬁs(:t) € M, (C[[z]]) is a power series in x verifying ﬁe(()) = 1,,

e [ is the matrix of exponents of formal monodromy of system (A),

e Q°(1/z) = @}]:1 (_a]e;/l.) In;.

Note that, like systems (A€) and (A), the two formal fundamental solutions
Y¢(z) and Y (z) coincide for € = 1. Note also that Y ¢(x) has same normal-
izations as Y'(x) for all € € D,,.

We shall now give some basic geometric properties of the Stokes values
and the anti-Stokes directions of systems (A¢).

2.2 Action of the perturbation on the Stokes values,
singular discs

For any € € D,, we denote by
e ¢ the set of Stokes values of system (A€),

e F the set of Stokes values of the homological system associated with
(4°).

By construction, ¢ (resp. €2°) is deduced from Q (resp. Q) by replacing
the Stokes values wy, k= 1,....,p (resp. wy —wy, k, £ =0, ...,p and k # ¢) by
the perturbed Stokes values wyey (resp. wrer — weey). Hence,



o ()F = {0} U {wkéfk , k= 17 ~-~7p}7

o O° = {0} U{wier —weer , k, € =0,...,pand k # (}; we set g := 1.
Note that, due to conditions (C'1) and (C2), wxer — weep # 0 for all k # £.

We denote also by
o Q(D,) = U Q¢ the set of all the Stokes values of all systems (A¢)

e€Dy
when € runs in D,,

o QO(D,) := U QF the set of all the Stokes values of all the homological

ecD,
systems associated with all systems (A®) when e runs in D,.

The sets Q(D,) and Q(D,) are the respective “images” of {2 and Q under
the action of the perturbation in €. More precisely,

d Q(Dp) = {O}U (UD(wkv |wk’ pk))v

k=1

p
o Q(D,) = {O}U( U D(wk — we, [wk| pr + |we| Pz)>; we set po 1= 1.

k,0=0
kAL

Note that 2 C Q implies (D,) C Q(D,). Note also that, unlike to Q(D,),
some discs of Q(D,) may overlap.

By construction, the disc D,,, _, := D(wy, —we, |wi| pr + |we| pe) is formed,
for any k # ¢, by all the points wye;, —wee, € (D,) issuing from the nonzero
Stokes value wy, — wy € € under the action of the perturbation. This brings
us to the following definition:

Definition 2.1 (Singular disc of Q(D,))
Let w := wy—wy be a nonzero Stokes value of 2. Then, the disc D, := D, _,,,
is called singular disc of Q(D,) associated with w.

Remark 2.2 Observe that, due to conditions (C1) and (C2), none of the
closed singular disc D,, (= the closure of D,, in C) contains 0.

Remark 2.3 Relations above between initial Stokes wvalues and perturbed
Stokes values have a translation in terms of anti-Stokes directions: let 6 €
R/277Z be an anti-Stokes direction of initial system (A); then, its “image”
by the perturbation is the set of all the anti-Stokes directions of all systems
(A®) given by all the points of all the singular discs of (D,) centered on 6.

Remark 2 will be precised in lemma 1 below.



2.3 Action of the perturbation on the anti-Stokes dir-
ections, singular sectors

In addition to previous notations, we also denote by

e O the set of anti-Stokes directions of initial system (A),

e g the set of nonzero Stokes values of Q with argument 6 € R/277Z.
Obviously, 6 € © if and only if Qy # (). For any § € ©, we consider

o (D) := U D,, the set of all the singular discs D,, of (D,,) associ-

weRy
ated with all the Stokes values w € €2y, i.e., the set of all the singular

discs of ©(D,) centered on 6.

Figure 1 - A set Q4(D,)

Since all the discs D, with w € €2y are symmetrical about 6, we also consider

e 7)(#) the minimal opening of sectors ¥y, containing Qy(D,).

0+ n(6)/2
0 0
6 —n(6)/2

Figure 2 - A sector Xy, )
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By construction, the directions determined by the points of ¥, are
the anti-Stokes directions of systems (A®) determined by all the points of
Qy(D,). Thereby, remark 2 leads us to the following lemma.

Lemma 2.4 (Action of the perturbation on ¢ € O)

Let 0 € © be an anti-Stokes direction of initial system (A).

Then, the “image” of 0 by the perturbation is the set DXg ) of all the
directions determined by the points of Y, o).

Before stating the main result of the article (see theorem 1 below), let
us make some remarks about sectors Yy, ). First, their openings 7(¢) only
depend on the radius of the singular discs D, associated with w € Q4. In
particular, the n(f)’s tend to 0 when the p;’s go to 0. Second, the size of
the n(6)’s will play a fundamental role in theorem 1 (see section 2.4 below).
Henceforth, we suppose that the radius p,’s are chosen small enough so that,
in addition to conditions (C'1) and (C2) above, the following conditions would
be satisfied:

(03) igm(g) ﬂiglm(gf) = () for all 0,0 €0,0 #+ 0,

(C4) forall 6 € ©, 9(0) < .

(C5) for all § € ©, the principal determination 6* of # and the principal
determination (6 — 7(6)/2)* of 6§ — n(0)/2 satisfy

o < (0 —n(0)/2)" < 6" <0

Remark 2.5 Let Digw(g) denote the set of all the directions determined by
all the points of the closed sector igm(g). Condition (C3) above tells us that
Digm(g) contains no other anti-Stokes directions of systems (A€), € running
in D,, except those issuing from 6 under the action of the perturbation. In
particular, since systems (A) and (A€) coincide for € = 1, the set Dg,, )
just contains the direction 6 as anti-Stokes directions of system (A).

2.4 Main result

As before, we indicate by
e O the set of anti-Stokes directions of initial system (A);

e DYy, (resp. DYy,) the set of all the directions determined by all the
points of 3y, (resp. ¥g,) for any n > 0.
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Let 0 € © and DXy, its “image” by the perturbation (c¢f. lemma 1).
Under conditions (C3) — (C5) above, there exists n €]n(#), 7/2] such that

1. Xg0) ; 2om ; 20,m—n»

2. oy N Sp ey =0 forall 0 € ©, 0" + 0,

3. the principal determination (6 — 7/2)* of 6 — 1/2 satisfies
=2 < (0 —n/2)" <(@—n)/2)" <0 <0

Note that point 1. results from the choice 7 in |n(6),7/2[ and that points
2. and 3. hold as soon as 7 is close enough to 7(f). Note also that point
2. guarantees that the set DY, contains no other anti-Stokes directions of
systems (A®), € running in D, except those of DXy, ).

Let us now fix € € D, and n as above. Then, according to points 1.—
3., directions 6 4 1/2 are not anti-Stokes directions of system (A€) and the
1-sums s1,94, /g(ﬁe) are thus defined and analytic on a same germ of sector
Yo.x—n. Consequently, the sums

Y(fin/z(:v) = 51;9in/2(F€)(x)33

are related for arg(z) €](0 —n/2)*, (0 —n(0)/2)*[ (see figure 3 below) by the
relation

(21) )/QE—n/Q(x) = Y49E:|-77/2('r> ;*

L ,Q=(1/)

6+ (mr—mn)/2

0+n/2

0+ n(6)/2

0-n(6)/2
~ arg(z)
6—n/2

0—(m—m)/2

Figure 3 - Sector ¥y ) and
associated directions
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The matrix &§. € G L, (C) denotes the (perturbed) connection matriz between
Yii, e and Y7 o, It is only determined by identity (2.1) above. Note that
remark 3 and point 2. above imply that &5, is actually defined as (finite)
product of Stokes-Ramis matrices associated with Y € in the anti-Stokes dir-
ections of system (A®) contained in D3y, ). Note also that, for e = 1, we

have

(2.2) Y;}in/Q(x) = Ypuiyo(x) = Yo (z) and &f. = Sto

We are now able to state the main result of the article:

Theorem 2.6 Let 0 € © be an anti-Stokes direction of initial system (A).
Then,

1. the function € — &g, 1is holomorphic on D,,

2. the Stokes-Ramis matrix Stg- of initial system (A) is limit of the per-
turbed Stokes matrices &, :

(2.3) lim &g, = Sty-

e—1

Before starting the proof of theorem 1, let us make some remarks. First, it
is clear that point 2. is straightforward from point 1. Indeed, we have &}, =
Stg« by definition of the perturbation (see relations (2.2) above). Second,
it seems that identity (2.3) could provide an efficient tool for the effective
calculation of Stokes-Ramis matrices of initial system (A). This “question”,
which is one of our actual directions of research, will be investigated in great
detail in [5].

We now turn to the proof of theorem 1.

3 Proof of theorem 1

As mentioned above, we are left to prove the first point of theorem 1. The
central point of this proof is the study of the 1-sums sy,94,/2(F¢)(x) following
the parameter €. Precisely, we shall show in proposition 2 below that, on
one hand, these sums are defined for all € € D, on a same germ X of sector

{m eC; (9- g) < arg(z) < (9— @)}
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and, on the other hand, they are holomorphic on D, for all z € ¥. How-

ever, before studying the s1,91,/2(F ¢)(x)’s, we shall first investigate the
Borel transforms F ¢(¢) of F'¢(x) (with respect to x). Recall indeed that
S1,04n/2(F¢)(x) and F'¢(€) are related by the integral formula

coei(0£1/2)

[ Fegea
0

Recall also, for the convenience of the reader, that the formal Borel trans-

formation is an isomorphism from the C-differential algebra (C[[z]], +, -, 22 L)

to the C-differential algebra (6CHC[[{]], +, *, {) that changes ordinary product
- into convolution product * and also changes derivation m2% into multiplica-
tion by &. It also changes multiplication by % into derivation d%. Moreover, if
g(x) € C{x} is an analytic function at the origin 0 € C, then its formal Borel
transform g(¢) defines an entire function on all C with exponential growth

at infinity.

3.1 Dependence in € and Borel transform

Recall that D, denotes the polydisc D(1,p1) x ... x D(1,p,) in CP where
the radius py’s are chosen so that conditions (C'1) — (C5) hold. Recall also
that, for any nonzero Stokes value w € €2, D,, denotes the singular disc of
Q(D,) associated with w, i.e., the open disc formed by all the Stokes values
of Q(D,) issuing from w under the action of the perturbation.

In this section, we consider a domain V' C C defined by the data of an
open disc centered at 0 € C and an open sector in C with vertex 0 such that

(3.1) VND,=0 forallwe Q\{0}

(V and D,, denote respectively the closure of V and D, in C). Observe that
the existence of such a domain V' is ensured by conditions (C'1) — (C3) and
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remark 1.

Figure 4 - A domain V and
the singular discs D,, of (D,)

Our aim is to prove the following result:

Proposition 3.1 Let V' be a domain as above.
Then, the function (§,€) — F¢(&) is holomorphic on V' x D,,.

Proposition 1 is proved below by using an adequate variant of the proof
of summable-resurgence theorem following Ecalle’s method by regular per-
turbation and majorant series which was given by M. Loday-Richaud and
the author in [3].

Remark 3.2 For all e € D,, any of the .J column-blocks of F*(z) associated
with the Jordan structure of L (matrix of exponents of formal monodromy)
can be positionned at the first place by means of a same permutation (hence,

independent of &) acting on the columns of Y (). Consequently, it is suffi-
cient to prove proposition 1 in restriction to the column-block f¢(z) formed
by the first n; (= dimension of the first Jordan block of L) columns of F'¢(x).

For all € € D, the system

LY

x dx:A()Y with  Af(z) =

EInJ + mL

II@&

has for formal fundamental solution the matrix z%¢?°(*/#) (vecall that L, :=
Ajln; + Jn; denotes the 4™ Jordan block of L). Thereby, according to the

normahzatlons of V¢ () (cf. page 7), f ¢(x) is uniquely determined by the
first n, columns of the homological system

o dF R R
x %—A( x)F — FAG(x)



15

associated with system (A¢) jointly with the initial condition f£(0) = Lin, (=
the first n; columns of the identity matrix I,, of size n) (see [1]). Therefrom,
the system

(3.2) xgj—i = As(x)f —xfJy,

Recall that af = A\ = 0. Recall also that

(aS1y, + xL;) + B(x)

II@&

where B(z) is analytic at 0. More precisely, splitting B(z) = [B#*(z)] into
blocks fitting the Jordan structure of L, we have

(3.3) B (z) = { 85;2) g gjz 7: Zg

Notation 3.3 From now on, given a matrix M split into blocks fitting to
the Jordan structure of L, we denote by M7* the j-th row-block of M. So,
M7 is a n; X p-matrix when M is a n x p-matrix.

3.1.1 Regular perturbation

Following J. Ecalle ([2]), we consider, instead of system (3.2), the regularly
perturbed system

(3.4) x2% = A%(x,)f —xfdn,

where

(aS1,, + xL;) + aB(x).

II@%

Like in [3], an identification of equal power in « shows that system (3.4)
admits, for all € € D), a unique formal solution of the form

@)=Y fal(2)a
m>0
satisfying f&(z) = Lun, and f€(z) € M, (C[[z]]) for all m > 1. More
precisely, the components f¢7*(z) € M, ,,(C[[z]]) of f&,(x) are uniquely
determined for all m > 1 and j =1, ..., J as formal solutions of systems

fsjo

(3.5) S

—aSfeIt —xLfe i = BitfE | —afe i,
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Relations (3.5) and normalizations (3.3) of B(x) show in particular that

O(z™) if a5 =0

Fe je _ m re jo _
omo1(7) = O(2™) and { O(merl) if aje; £0

2m
forallm>1and j=1,.., J.

As a result, the series fs(x, «) can be rewritten as a series in x with
polynomial coefficients in «. Consequently, for all € € D,, f““(m) = fe(x, 1)
(by unicity of f5(z) and f¢(z,1)) and, for all a, the series f¢(z, ) admits
a formal Borel transform ¢°(&, ) with respect to z of the form

(&, ) = 0L p, + Z P (&)™
m>1
where ©% (€) € M, ,, (C[[£]]) denotes, for all m > 1, the Borel transform of

f&.(z). In particular, the components ¢2,7*(§) € M, ,, (C[[]]) of 5, () are
iteratively determined for all m > 1 and j = 1, ..., J as solutions of systems

€ d(pfnj;. € j;® d Dije € € ji®
(3.6) (- a’j)d—é — (Lj — L) 5, = d_g(B * Pr1) = Py

We set ¢S := 61, ,,,. Note that the Borel transforms B7** of B#*® are entire
functions on all C since B is analytic at 0. Note also that normalizations (3.3)
of B(x) imply that the only singularities in C of systems (3.6) when € runs in
D, are the Stokes values a$ # 0 of (D)) C £2(D,). Hence, since the domain
V' does not meet 2(D,)\{0} and since system (3.6) depends holomorphically
on the parameter € € D,, the following lemma:

Lemma 3.4 The function (§,€) — ¢%, (§) is holomorphic on V x D, for
allm>1.

It remains to prove that the function

(&) — [2() = ¢5(&,1) = )¢5 (6)

m>1

is well-defined and holomorphic on V' x D,. This point is proved below
by using a technique of majorant series satisfying a convenient system. Of
course, there are many possible majorant systems. Here, we make explicit a
possible one.
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3.1.2 A convenient majorant system

Let v denote the minimal distance between the elements of V' and the ele-
ments of (D,)\{0}. Observe that condition (3.1) implies v > 0 (see figure
4, page 14).

We consider, for j =1, ..., J, the regularly perturbed linear system
(3.7)

( ) ) ) ) ) Bie| (x
Oj(g]’. _ ]%:;Ll) — Jnjg],. + g],OJnl o 2]%::Lljn1 4 Oé| m| ( )g
if CLj =0
(v =2 |Xj = 1| In))g"* = wJn, g7 + g7 Jn, + | BT (2)g
\ lf CLj ?é 0

where

e the unknown g is, as previously, a n X ni-matrix split into row-blocks
g’* fitting the Jordan structure of L,

e |B|(z) denotes the series B(z) in which the coefficients of the powers
of = are replaced by their module,

e the C;’s are positive constants which are to be adequatly chosen below
(see lemma 3).

Recall that ); denotes the eigenvalue of the j™ Jordan block L; of L.
Observe that the so-defined system depends on the domain V' but not on
the parameter €.

System (3.7) above has already been studied in [3] since it is actually
the majorant system which has been used to prove the summable-resurgence
theorem for level-one linear differential systems. In particular, it has been
shown that its Borel transformed system admits, for a = 1, a solution of the

form
9(&) = 0Inpn, + Z ®,,(¢)

m>1

which is entire on all C with exponential growth at infinity. Moreover, for
any m > 1, ®,,(€) belongs to M, ,, (R*[[¢]]) and is also an entire function
on all C with exponential growth at infinity. More precisely, the components
DI*(€) € My, py (RT[[E]]) of @, (€) are iteratively determined for all m > 1
and j = 1,..., J as solutions of systems
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e Case a; = 0:
‘ . d
qu)w Jn]qﬂ, +(I)]7 Jm 4+ — (|B] |*c1)m 1)

e Case a; # 0:

dq)j;o
dg
We set &g := 01, ,,.

14

d
= A = 1@+ T, B+ BT, (|Bﬂ € Dp).

In addition, one can verify that all the calculations made in [3, section
2.5.5] to prove that system (3.7) was a convenient majorant system can also
be applied in the present case. Indeed, the parameter € just acts on the
Stokes values af in systems (3.6) and condition a5 = 0 (resp. af # 0) is
equivalent to the condition a; = 0 (resp. a; # 0). Therefrom, the following
lemma:

Lemma 3.5 (Majorant series, [3, lemma 2.9])
Let a be a positive constant such that |arg(§)| < a for all € V.
Let
1-— RG(A])
max exp(2a [Im(4;)))
Then, forallm >1,£ € V,e €D, andj =1, ..., J, the following inequalities
hold:

C; =

0570 ()] < 5 (l€]).

In particular, for all € € D,, the series

g(leh) =D Pm(lE])

m>1
is a majorant series of fe(f)

Recall that lemma 3 is proved by applying Gronwall lemma to systems
(3.6) defining the ¢ 7*’s and systems above defining the ®J:*’s.

Note that the constant K given in [3, lemma 2.9] is equal to 1 in our case.
Indeed, according to the definition of domain V', the “optimal” path -, from
0 to any £ € V used in the proof of [3, lemma 2.9] is here the straigth line

[0,¢].

Before proving proposition 1, let us make some remarks about lemma 3
and calculations above.



19

Remark 3.6 Like system (3.7), the function g(§) depends on domain V' but
not on the parameter .

Remark 3.7 Lemma 3 and calculations above imply the following property:
there exist ¢, k > 0 such that inequality

(3.8) Fe(©)] < et
holds for all £ € V and € € D,.

Remark 3.8 According to remark 4, property (3.8) can be extended to the
other columns of F'¢: there exist C, K > 0 such that inequality

|[P(e)] < ceme

holds for all £ € V and all € € D,

3.1.3 Proof of proposition 1

We shall now prove proposition 1: lemmas 2 and 3 above tell us that the

(€8) — [5(&) =D 5 (6)

m>1
is a series of holomorphic functions on V' x D, which normally converges on
all the compact sets of V' x D,. Hence, ({,€) — fs(f) is well-defined and
holomorphic on V' x D, too, which achieves the proof of proposition 1 (cf.
remark 4).

3.2 Dependence in € and summation

Let us now consider an anti-Stokes direction 6 € © of initial system (A) and
its associated sector Xy ) (cf. section 2.3). Recall that the set DX 10)
of all the directions determined by all the points of X, ) are all the anti-
Stokes directions of all systems (A€) associated with 6 under the action of
the perturbation.

We also consider two directions 6 +7/2 and 6 — /2 as in section 2.4 (cf.
figure 3, page 11). Let V't (resp. V) be a domain in C satisfying condition
(3.1) above and defined by the data of an open disc centered at 0 € C and
an open sector in C with vertex 0 and bisected by 6 + n/2 (resp. 0 —n/2).
Note that such domains exist since 6 + 1/2 are singular directions for none
of systems (A®).
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Since V' and V'~ are domains as in section 3.1, proposition 1 and remark
7 imply the following lemma.

Lemma 3.9
1. Domain VT

(a) For all £ € V'*, the function € — ]3":(5) is holomorphic on D,.
(b) There exist C*, Kt > 0 such that inequality

Feg| < 0

holds for all § € VT and all € € D,,.
2. Domain V—

(a) For all € € V=, the function € — F¢(€) is holomorphic on D,.
(b) There exist C—, K~ > 0 such that inequality

NG
holds for all £ € V= and all € € D,,.

As aresult of points 1.(b) and 2.(b), the 1-sums 51;9+n/2(ﬁ5) and 51;9_77/2(155)
are respectively holomorphic, for all € € D,, on sectors

1 . 1 T
Y94n/2 <F) = {x eC; |zl < KT and ‘arg(x) -0 — g’ < 5}

and

1 1
S (=) = {r e € ol < g and fnete) -0+ 3| < 5}

and so, according to the choice of 1 (¢f. section 2.4), on sector

Y= {x € C*; |z| < min (KL,%) and (9 — g>* < arg(x) < (9 — @)*} .

Observe that ¥ does not depend on the parameter .

This leads us to the following result which is the central point of the proof
of theorem 1.
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Proposition 3.10 For all x € %, the functions

€ — S1;040/2(F %) (1) and € — s1,9_y2(F¢) ()

are holomorphic on D,.

Proof. « Fix € ¥. For all € € D), the 1-sum sy,94,,/2(F¢)(x) is given by
the Borel-Laplace integral

N soci041/2) too
s101ay2(FE)() = /0 Pee)etde = /0 G (¢)de

where R ~ | |
G(§) = Fe(gei0tn/2))e—€explil0+n/2)/x

Since £e9+1/2) € V+ for all € > 0, we can apply lemma 4 to @i(f)
— for all £ > 0, the function € — G % (€) is holomorphic on D,,
— for all £ > 0 and all € € D,,
‘@i(ﬁ)’ < ’ Fe(e6i0+1/D)| o€ Re(exp(i(0-+n/2))/2)
< O e ERelesp(GO-4n/2)/1)-K*) . 1p (¢

Note that M, does not depend on €. Note also that the choice “r € 7
implies that £ — M, (&) is integrable on [0, +oo[. Then, Lebesgues domin-
ated convergence theorem applies and the function € — s394, /2(}7’ “)(z) is
holomorphic on D,

* The holomorphy of € —— s1,9_,/2(F¢)(x) is proved in a similar way. m

3.3 Proof of theorem 1, point 1

Let us fix x € ¥. Recall (¢f. page 11) that the perturbed Stokes matrices
g~ are uniquely determined, for all € € D, by the relation

(2.1) Yo oo(1) = Y () S5

where )
Yty o(@) = S1ipan2(F®)(x)2te? 1),

Obviously, the function € —— @Q°(1/z) is holomorphic on D,. Con-
sequently, proposition 2 above implies that the functions € —— Y, /z(x)
are also holomorphic on D,,.
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On the other hand, for any € € D,, the matrices Yesin /o are formal fun-

damental solutions of system (A%). Thus, Y7 ,(z) # 0 for all € € D, and
e Yy, »(2)7" is still holomorphic on D,,.

Theorem 1 follows since identity (2.1) implies

3* = Yv@i—n/Z (x)ilyvee—n/Q(x)

for all € € D,,.
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