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We investigate the estimation of the integral of the square of a multidimensional unknown function f under mild assumptions on the model allowing dependence on the observations. We develop an adaptive estimator based on a plug-in approach and wavelet projections. Taking the mean absolute error and assuming that f has a certain degree of smoothness, we prove that our estimator attains a sharp rate of convergence. Applications are given for the biased density model, the nonparametric regression model and a GARCH-type model under some mixing dependence conditions (α-mixing or βmixing). A simulation study considering nonparametric regression models with dependent observations illustrates the usefulness of the proposed estimator.

Introduction

Let d be a positive integer, (Ω, A, P) be a probability space, Z be a random variable vector on R d , f : [0, 1] d → R be an unknown squared integrable function related to Z (as a density 1 function, a regression function,. . . ) and Q f be the quadratic functional:

Q f = [0,1] d f 2 (x)dx.
(1.1)

We aim to estimate Q f from n identical distributed observations Z 1 , . . . , Z n of Z.

When d = 1 and Z 1 , . . . , Z n are independent, this problem has been addressed in many papers for a wide variety of models under various settings. See, e.g., [START_REF] Bickel | Estimating integrated squared density derivatives: Sharp best order of convergence estimates[END_REF], [START_REF] Donoho | Minimax quadratic estimation of a quadratic functional[END_REF], [START_REF] Kerkyacharian | Estimating nonquadratic functionals of a density using haar wavelets[END_REF], [START_REF] Gayraud | Wavelet methods to estimate an integrated quadratic functional: Adaptivity and asymptotic law[END_REF], Prakasa [START_REF] Rao | Estimation of the integrated squared density derivatives by wavelets[END_REF], Johnstone (2001a,b), [START_REF] Delaigle | Estimation of integrated squared density derivatives from a contaminated sample[END_REF], [START_REF] Laurent | Adaptive estimation of a quadratic functional of a density by model selection[END_REF], Cai andLow (2005, 2006), [START_REF] Giné | A Simple Adaptive Estimator of the Integrated Square of a Density[END_REF], [START_REF] Petsa | Adaptive quadratic functional estimation of a weighted density by model selection[END_REF] and [START_REF] Butucea | Quadratic functional estimation in inverse problems[END_REF]. The multidimensional case has been considered by [START_REF] Barbedor | Analyse en composantes indépendantes par ondelettes[END_REF] for the density model. When d = 1 and Z 1 , . . . , Z n are dependent, the estimation of Q f has been investigated by [START_REF] Hosseinioun | Wavelet-based estimators of the integrated squared density derivatives for mixing sequences[END_REF] for the density model and by [START_REF] Butucea | Adaptive estimation of linear functionals in the convolution model and applications[END_REF] for the density deconvolution model. A common feature is that when f has a certain degree of smoothness the parametric rate of convergence "1/ √ n" is achievable.

The main contribution of this paper is to present new theoretical results in a general multidimensional nonparametric setting. "General" in the sense that it includes a wide variety of models with possible dependent Z 1 , . . . , Z n . In the first part, we develop a simple adaptive estimator for Q f based on a plug-in approach and wavelet methodology. We refer to, e.g., [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF] and [START_REF] Vidakovic | Statistical Modeling by Wavelets[END_REF] for detailed discussions on the performances of wavelet estimators and some of their advantages over traditional methods. The asymptotic performances of our estimator are evaluated under the mean absolute error (MAE) over a wide range of function class for f . Under mild assumptions on Z 1 , . . . , Z n , we prove that it attains a sharp rate of convergence (which can be 1/ √ n in some situations).

Then we apply our general result to three different models under mixing dependence conditions. To be more specific, we consider the biased density model with α-mixing observations, the nonparametric regression model with α-mixing observations and a GARCH-type model with β-mixing observations. These mixing dependence structures are reasonably weak and particularly interesting in the considered nonparametric models thanks to their numerous applications in dynamic economic systems and financial time series. See, e.g., [START_REF] White | Nonlinear Regression with Dependent Observations[END_REF], [START_REF] Härdle | Applied Nonparametric Regression[END_REF] and [START_REF] Doukhan | Mixing. Properties and Examples[END_REF]. Let us mention that, to the best of our knowledge, the obtained results are new for these statistical frameworks. Finally, a small simulation study is provided in the context of nonparametric regression models with dependent observations illustrating the usefulness of the proposed estimator in finite sample situations.

The rest of the paper is organized as follows. In Section 2, we present some preliminaries on wavelets. In Section 3 we describe our wavelet estimator and study its asymptotic properties. Applications are given in Section 4. Section 5 is devoted to a simulation study. Finally, the proofs are postponed to Section 6.

Preliminaries on wavelets

In this section, we briefly present the wavelet tensor-product bases on [0, 1] d and the considered function space in term of wavelet coefficients.

Wavelet tensor-product bases on [0, 1] d

For the purpose of this paper, we use a compactly supported wavelet-tensor product basis on [0, 1] d based on the Daubechies wavelets.

Let N be a positive integer, φ be "father" Daubechies-type wavelet and ψ be a "mother" Daubechies-type wavelet of the family db2N . In particular, mention that φ and ψ have compact supports (see [START_REF] Mallat | A wavelet tour of signal processing[END_REF]).

For any x = (x 1 , . . . , x d ) ∈ [0, 1] d , we consider 2 d functions as follows:

• A scale function Φ defined by Φ(x) = d v=1 φ(x v ), • 2 d -1 wavelet functions (Ψ u ) u∈{1,...,2 d -1} defined by Ψ u (x) =              ψ(x u ) d v=1 v =u φ(x v ) when u ∈ {1, . . . , d}, v∈Au ψ(x v ) v ∈Au φ(x v ) when u ∈ {d + 1, . . . , 2 d -1},
where (A u ) u∈{d+1,...,2 d -1} forms the set of all the non void subsets of {1, . . . , d} of cardinal superior or equal to 2.

For any integer j and any k = (k 1 , . . . , k d ), we set

Φ j,k (x) = 2 jd/2 Φ(2 j x 1 -k 1 , . . . , 2 j x d -k d ), for any u ∈ {1, . . . , 2 d -1}, Ψ j,k,u (x) = 2 jd/2 Ψ u (2 j x 1 -k 1 , . . . , 2 j x d -k d ).
We set D j = {0, . . . , 2 j -1} d . Then, with an appropriate treatment at the boundaries, there exists an integer τ such that the system

S = {Φ τ,k , k ∈ D τ ; (Ψ j,k,u ) u∈{1,...,2 d -1} , j ∈ N -{0, . . . , τ -1}, k ∈ D j } forms an orthonormal basis of L 2 ([0, 1] d ) = {h : [0, 1] d → R; [0,1] d h 2 (x)dx < ∞}. A function h ∈ L 2 ([0, 1] d
) can be expressed via S as wavelet series as

h(x) = k∈Dτ α τ,k Φ τ,k (x) + 2 d -1 u=1 ∞ j=τ k∈D j β j,k,u Ψ j,k,u (x), x ∈ [0, 1] d , (2.1)
where

α j,k = [0,1] d h(x)Φ j,k (x)dx, β j,k,u = [0,1] d h(x)Ψ j,k,u (x)dx. (2.2)
The feature of (2.1) is to provide a set of wavelet approximation coefficients, i.e., {α τ,k ; k ∈ D τ }, and wavelet detail coefficients, i.e., {β j,k,u ; j ≥ τ, k ∈ D j , u ∈ {1, . . . , 2 d -1}}.

For further details about wavelet bases, we refer to [START_REF] Meyer | Wavelets and Operators[END_REF], [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF] and [START_REF] Mallat | A wavelet tour of signal processing[END_REF].

Function space

As usual in nonparametric estimation, we shall assume that f has a certain degree of smoothness. In this study, it is characterized by the set of functions L s (M ) defined by

L s (M ) =    h ∈ L 2 ([0, 1] d ); (2.2) satisfies k∈Dτ α 2 τ,k + sup j≥τ 2 2js 2 d -1 u=1 k∈D j β 2 j,k,u ≤ M    ,
where s > 0 and M > 0.

Under suitable assumptions on s, L s (M ) corresponds to the so-called Besov ball B s 2,∞ (M ). It includes a wide variety of functions. A simple example in the case d = 1 is the following: let h ∈ L 2 ([0, 1] d such that its derivatives exist and are continuous up to order ℓ with ℓ ∈ {0, . . . , N -1}, and there exists a constant C > 0 satisfying |h (ℓ) (x) -h (ℓ) (y)| ≤ C|x -y| ω , (x, y) ∈ [0, 1] 2 , ω ∈ (0, 1). Then there exists a constant C > 0 such that |β j,k,1 | ≤ C2 -j(ω+ℓ+1/2) for any j ≥ τ and k ∈ D j . Hence h ∈ L s (M ) with s = ω + ℓ. Further details about such function spaces can be found in, e.g., [START_REF] Devore | Interpolation of Besov spaces[END_REF], [START_REF] Meyer | Wavelets and Operators[END_REF], [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF] and [START_REF] Mallat | A wavelet tour of signal processing[END_REF].

3 Estimator and result

Estimator

Let τ be the integer mentioned in Section 2. Let us expand f as (2.1). Thanks to the orthonormality of the wavelet basis S, we can express Q f as

Q f = k∈Dτ α 2 τ,k + 2 d -1 u=1 ∞ j=τ k∈D j β 2 j,k,u , (3.1) 
where

α j,k = [0,1] d f (x)Φ j,k (x)dx, β j,k,u = [0,1] d f (x)Ψ j,k,u (x)dx.
In view of (3.1), using the plug-in approach, we consider the following wavelet-based estimator:

Q = k∈Dτ α2 τ,k + 2 d -1 u=1 j * j=τ k∈D j β2 j,k,u , (3.2) 
where ατ,k and βj,k denote two estimators of α τ,k and β j,k respectively and j * denotes a positive integer. We formulate the following assumption. From Z 1 , . . . , Z n , we suppose that we are able to construct ατ,k and βj,k satisfying: for any integer j ≥ τ and k ∈ D j , there exist a positive sequence (w n ) n∈N * with lim n→∞ w n = 0, a real number δ ≥ 0 and a constant C > 0 such that

E (α τ,k -α τ,k ) 2 ≤ Cw n , E ( βj,k,u -β j,k,u ) 2 ≤ C2 jδd w n . (3.3)
We then consider the integer j * satisfying

w -1/(2d(1+δ)) n < 2 j * +1 ≤ 2w -1/(2d(1+δ)) n . (3.4)
Note that, contrary to the wavelet-based estimators constructed from a U -statistics (see, e.g., [START_REF] Kerkyacharian | Estimating nonquadratic functionals of a density using haar wavelets[END_REF], Prakasa [START_REF] Rao | Estimation of the integrated squared density derivatives by wavelets[END_REF] and [START_REF] Barbedor | Analyse en composantes indépendantes par ondelettes[END_REF]), Q is not an unbiased estimator of Q f . However,

• one can prove that, if ατ,k and βτ,k,u are unbiased estimators of α τ,k and β τ,k,u respectively, under (3.3) and (3.4), Q is asymptotically unbiased,

• the simplicity of its construction offers a certain flexibility on the nature of the considered model; if we are able to construct wavelet coefficient estimators satisfying (3.3) (whatever the dependence structure of the observations), assuming that f has a certain degree of smoothness, we can prove good asymptotic results for Q (see Theorem 3.1 below and the applications in Section 4).

Result

Theorem 3.1 below investigates the performances of Q under the MAE for f ∈ L s (M ).

Theorem 3.1 Let us consider the general nonparametric setting described in Section 1.

Let Q f be (1.1) and Q be (3.2) under (3.3) and (3.4). Suppose that f ∈ L s (M ) with M > 0 and s > (1 + δ)d/2. Then there exists a constant C > 0 such that E(| Q -Q f |) ≤ C √ w n .
Theorem 3.1 shows that, under mild assumptions on the model, our estimator attains the rate of convergence √ w n (which can be the optimal one in the minimax sense, see Remark Model. Let d be a positive integer, (Z t ) t∈Z be a strictly stationary random sequence defined on the probability space ([0, 1] d , B([0, 1] d ), P). The density of Z 1 is given by

g(x) = w(x)f (x) µ , x ∈ [0, 1] d ,
where w denotes a known positive function and µ is the unknown normalization parameter:

µ = [0,1] d w(x)f (x)dx. Our goal is to estimate the quadratic functional Q f (1.1) from Z 1 , . . . , Z n .
When Z 1 , . . . , Z n are independent and d = 1, this problem has been studied by [START_REF] Petsa | Adaptive quadratic functional estimation of a weighted density by model selection[END_REF]. Further details about the weighted density estimation problem can be found in, e.g., [START_REF] Efromovich | Density estimation for biased data[END_REF], [START_REF] Brunel | Nonparametric density estimation in presence of bias and censoring[END_REF] and the references therein.

The rest of study is devoted to the estimation of Q f in the α-mixing case. Definitions. For j ∈ Z, define the σ-fields

F Z -∞,j = σ(Z k , k ≤ j), F Z j,∞ = σ(Z k , k ≥ j).
For any m ∈ Z, we define the m-th α-mixing coefficient of (Z t ) t∈Z by

α m = sup (A,B)∈F Z -∞,0 ×F Z m,∞ |P(A ∩ B) -P(A)P(B)| . (4.1)
We say that (Z t ) t∈Z is α-mixing if and only if lim m→∞ α m = 0. Full details on the α-mixing dependence can be found in, e.g., [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF], [START_REF] Doukhan | Mixing. Properties and Examples[END_REF], [START_REF] Carrasco | Mixing and moment properties of various GARCH and stochastic volatility models[END_REF] and [START_REF] Fryzlewicz | Mixing properties of ARCH and time-varying ARCH processes[END_REF]. Assumptions. We formulate the following assumptions.

• There exist two constants c > 0 and C > 0 such that

c ≤ inf x∈[0,1] d w(x), sup x∈[0,1] d w(x) ≤ C. (4.2) • There exists a constant C > 0 such that sup x∈[0,1] d f (x) ≤ C. (4.3)
• For any m ∈ {1, . . . , n}, let g (Z 0 ,Zm) be the density of (Z 0 , Z m ). There exists a constant

C > 0 such that sup m∈{1,...,n} sup (x,y)∈[0,1] 2d |g (Z 0 ,Zm) (x, y) -g(x)g(y)| ≤ C. ( 4 

.4)

• There exist two constants C > 0 and q > 1 such that the m-th α-mixing coefficient (4.1) of (Z t ) t∈Z satisfies n m=1 m q α q m ≤ C. (4.5)

Result. Proposition 4.1 below explores the performances of Q (3.2) with a suitable choice of αj,k and βj,k,u under the MAE for f ∈ L s (M ).

Proposition 4.1 Let us consider the biased density model framework described above under (4.2), (4.3), (4.4) and (4.5).

Let Q f be (1.1), Q be (3.2) with ατ,k = μ n n i=1 Φ τ,k (Z i ) w(Z i ) , βj,k,u = μ n n i=1 Ψ j,k,u (Z i ) w(Z i ) , μ = 1 n n i=1 1 w(Z i ) -1 (4.6) and j * such that n 1/(2d) < 2 j * +1 ≤ 2n 1/(2d) . Suppose that f ∈ L s (M ) with M > 0 and s > d/2. Then there exists a constant C > 0 such that E(| Q -Q f |) ≤ C 1 √ n .
The proof of Proposition 4.1 is based on an adaptation of (Chesneau, 2011, Proposition 6.2) to the multidimensional case showing that the wavelet coefficients estimators (4.6) satisfy (3.3) with w n = 1/n and δ = 0, and Theorem 3.1. For this reason, the details are omitted.

Remark 4.1 Let us mention that 1/ √ n is the optimal rate of convergence in the minimax sense for the standard density estimation problem (i.e. with w(x) = 1) in the i.i.d. case and for f ∈ L s (M ) with s > d/2. See, e.g., (Tsybakov, 2004, Section 2.7.4.).

Regression model

Model. Let d be a positive integer, (Z t ) t∈Z be a strictly stationary bivariate random sequence defined on the probability space (R

× [0, 1] d , B(R × [0, 1] d ), P) where Z t = (Y t , X t ), Y t = f (X t ) + ξ t , t ∈ Z, (4.7) (X t
) t∈Z is a stationary random process with a known density g : R d → [0, ∞), (ξ t ) t∈Z is a stationary random process with E(ξ 1 ) = 0 and E(ξ 4 1 ) < ∞, and f : [0, 1] d → R is an unknown regression function. Moreover, it is understood that ξ t is independent of X t , for any t ∈ Z. Our goal is to estimate the quadratic functional Q f (1.1) from Z 1 , . . . , Z n . We consider the α-mixing dependence. This kind of dependence is particularly interesting for nonparametric regression models thanks to its applications in dynamic economic systems and financial time series (see, e.g., [START_REF] Härdle | Applied Nonparametric Regression[END_REF], [START_REF] White | Nonlinear Regression with Dependent Observations[END_REF] and the references therein). Assumptions. We formulate the following assumptions.

• There exists a constant C > 0 such that sup

x∈[0,1] d |f (x)| ≤ C.
(4.8)

• There exists a constant c > 0 such that inf

x∈[0,1] d g(x) ≥ c. ( 4 

.9)

• There exist two constants a > 0 and b > 0 such that the m-th α-mixing coefficient (4.1) of (Z t ) t∈Z satisfies

α m ≤ ae -bm . (4.10)
This corresponds to the so-called strong exponentially mixing case.

Result. Proposition 4.2 below investigates the performances of Q (3.2) with a suitable choice of αj,k and βj,k,u under the MAE for f ∈ L s (M ).

Proposition 4.2 Let us consider the regression model framework described above under (4.8), (4.9) and (4.10).

Let Q f be (1.1), Q be (3.2) with ατ,k = 1 n n i=1 Y i g(X i ) Φ τ,k (X i ), βj,k,u = 1 n n i=1 Y i g(X i ) Ψ j,k,u (X i ) (4.11)
and j * such that n ln n

1/(2d) < 2 j * +1 ≤ 2 n ln n 1/(2d) . Suppose that f ∈ L s (M ) with M > 0 and s > d/2. Then there exists a constant C > 0 such that E(| Q -Q f |) ≤ C ln n n .
Note that, in comparison to the corresponding optimal rate of convergence in the minimax sense for the i.i.d. case i.e. 1/ √ n, we pay an extra logarithmic term. We explain this term by the mild assumptions made on our nonparametric regression model (remark that no "Castellana-Leadbetter-type condition" (as (4.4)) is done on (Z t ) t∈Z ).

Remark 4.2 Other types of nonparametric regression models with dependent observations can be considered. For instance, one can considered (4.7) with X 1 , . . . , X n i.i.d. (or deterministic) and (ξ t ) t∈Z a α-mixing process. In this setting, using similar arguments to [START_REF] Liang | Asymptotic normality of wavelet estimator in heteroscedastic model with α-mixing error[END_REF], one can also apply Theorem 3.1.

GARCH model

Model. Let (Z t ) t∈Z be a strictly stationary random sequence defined on the probability space ([0, 1], B([0, 1]), P) where

Z t = X t ξ t , t ∈ Z, (4.12) 
(ξ t ) t∈Z is a strictly stationary random sequence, the density of ξ 1 is known and is denotes by g, and (X t ) t∈Z is a strictly stationary random sequence, the density of X 1 is unknown ans is denoted by f . Moreover, it is understood that ξ t is independent of X t , for any t ∈ Z.

Our goal is to estimate the quadratic functional Q f (1.1) from Z 1 , . . . , Z n . We focus our attention on the β-mixing dependence.

The model (4.12) belongs to the family of GARCH-type models. Financial applications related to (4.12) can be found in [START_REF] Carrasco | Mixing and moment properties of various GARCH and stochastic volatility models[END_REF]. Definitions. For any m ∈ Z, we define the m-th β-mixing coefficient of (Z t ) t∈Z by

β m = 1 2 sup ((A i ) i∈I ,(B i ) i∈J )∈F Z -∞,0 ×F Z m,∞ i∈I j∈J |P(A i ∩ B j ) -P(A i )P(B j )| , (4.13)
where the supremum is taken over all finite partitions (A i ) i∈I and (B j ) j∈J of Ω, which are respectively F Z -∞,0 and F Z m,∞ measurable. We say that (Z t ) t∈Z is β-mixing if and only if lim m→∞ β m = 0. Full details can be found in, e.g., [START_REF] Doukhan | Mixing. Properties and Examples[END_REF], [START_REF] Viennet | Inequalities for absolutely regular processes: application to density estimation[END_REF] and [START_REF] Carrasco | Mixing and moment properties of various GARCH and stochastic volatility models[END_REF]. Assumptions. We formulate the following assumptions.

• There exists an integer ν ≥ 1 such that, for any i ∈ {1, . . . , n},

ξ i = ν r=1 U r,i , (4.14) 
where U 1,i , . . . , U ν,i are ν i.i.d. random variables with U 1,1 ∼ U([0, 1]).

• There exists a constant C > 0 such that sup

x∈[0,1] f (x) ≤ C. ( 4 

.15)

• There exists a constant C > 0 such that the m-th β-mixing coefficient (4.13) of (Z 

h ∈ C ℓ ([0, 1]), T (h)(x) = (xh(x)) ′ , T ℓ (h)(x) = T (T ℓ-1 (h))(x), x ∈ [0, 1], Q be (3.2) with d = 1, ατ,k = 1 n n i=1 T ν (φ j,k )(Z i ), βj,k,1 = 1 n n i=1 T ν (ψ j,k,1 )(Z i ) (4.17)
and j * such that n 1/(2(1+2ν)) < 2 j * +1 ≤ 2n 1/(2(1+2ν)) .

Suppose that f ∈ L s (M ) with M > 0 and s > (1 + 2ν)/2. Then there exists a constant

C > 0 such that E(| Q -Q f |) ≤ C 1 √ n .
The proof of Proposition 4.3 is based on (Chesneau and Doosti, 2012, Proposition 5.2) showing that the wavelet coefficients estimators (4.17) satisfy (3.3) with w n = 1/n and δ = 2ν, and Theorem 3.1. For this reason, the details are omitted.

A simulation study

In this section, we examine the finite-sample performance of the proposed wavelet estimator by a short simulation study in the context of Section 4.2.

The one dimensional case

We consider the nonparametric regression model where X i = i/n, f : [0, 1] → R is an unknown regression function and (ξ t ) t∈Z is an AR(1)process, i.e.,

Y i = f (X i ) + ξ i , i ∈ 
ξ t = αξ t-1 + ǫ t ,
where (ǫ t ) t∈Z is a sequence of i.i.d. random variables drawn from a zero-mean normal distribution with variance σ 2 ǫ . Let us mention that Y 1 , . . . , Y n are dependent and (ξ t ) t∈Z is strictly stationary and strongly mixing for |α| < 1 (see [START_REF] Doukhan | Mixing. Properties and Examples[END_REF]). We aim to estimate

Q f (1.1) from Y 1 , . . . , Y n .
Two regression functions ("Wave" and "Time Shifted Sine", initially introduced in Marron et al. (1998)) were used (see Figure 1(a) and Figure 2(a)). They are defined by 1. Wave:

f 1 (x) = 0.5 + 0.2 cos(4πx) + 0.1 cos(24πx).

2. Time Shifted Sine: first define the transformation h(x) = (1 -cos(πx))/2, then The primary level τ = 0 and the Symmlet wavelet with 6 vanishing moments were used throughout all experiments. All simulations were carried out using Matlab.

f 2 (x) = 0.3 sin 3π h(h(h(h(x)))) + x + 0.5.
Figure 1(c) and Figure 2(c) show the results of the basic wavelet linear estimator from 100 replications of n = 1024 samples, with σ ǫ = 0.2 and α = 0.2. Using the empirical wavelet coefficient estimators of f u (see Figure 1(c) and Figure 2

(c)) in Qu (3.2) (estimator for Q fu (1.1)) for any u ∈ {1, 2}, we obtain Q1 ≈ 0.2749, Q2 ≈ 0.2938, M AE( Q1 ) = 0.0105, M AE( Q2 ) = 0.0106.
Then, the MAE of our estimation procedure is analyzed with sample size 512, 1024 and 2048. Table 1 gives the MAE calculated by taking an average of the absolute errors based on 100 replications. Furthermore, we study the influence of the variance σ ǫ (ranging from 0.04 to 1) of the noise and of the parameter α (ranging from 0.05 to 0.5) in the AR(1) process on the estimator. Table 1 shows that increasing the variance of the noise and/or α in the AR(1) process increases the MAE. Moreover, as expected, the MAE is decreasing as the sample size increases. 

The two-dimensional case

We conclude the simulation results by a two-dimensional example. We consider the (twodimensional) nonparametric regression model

Y i,j = f (X 1,i , X 2,j ) + ξ i,j , (i, j) ∈ {1, . . . , n * } 2 ,
where X 1,i = i/n * , X 2,j = j/n * , f : [0, 1] 2 → R is an unknown regression function and ξ i,j = ξ 1,i + ξ 2,j , (ξ 1,t ) t∈Z and (ξ 2,t ) t∈Z are two independent AR(1)-processes given by

ξ u,t = α u ξ u,t-1 + ǫ u,t , u ∈ {1, 2},
(ǫ 1,t ) t∈Z and (ǫ 2,t ) t∈Z are two sequences of i.i.d. random variables drawn from a zero-mean normal distribution with variance σ 2 ǫ 1 and σ 2 ǫ 2 respectively. We aim to estimate Q f (1.1) from the n = n 2 * random variables Y 1,1 , . . . , Y n * ,n * . Two regression functions were used. They are defined by 1.

f 1 (x, y) = 0.5 + 0.2 cos(4πx) + 0.1 cos(24πx) + 0.2 cos(4πy). In Table 2 the MAE of the estimation procedure in the two-dimensional case is analyzed. As in the unidimensional case, it is obvious that simultaneously increasing the variances σ 2 as the sample size n increases. Moreover, we can see that increasing the two parameters α 1 and α 2 also increases the MAE but in a significantly lower fashion. However in association with very high level of noise (i.e., σ ǫ 1 = σ ǫ 2 = 1), the quadratic functional become rather difficult to estimate. 

α 1 = α 2 = 0.05 σ ǫ 1 = σ ǫ 2 = 0.04 σ ǫ 1 = σ ǫ 2 = 0.2 σ ǫ 1 = σ ǫ 2 =
α 1 = α 2 = 0.2 σ ǫ 1 = σ ǫ 2 = 0.04 σ ǫ 1 = σ ǫ 2 = 0.2 σ ǫ 1 = σ ǫ 2 =
α 1 = α 2 = 0.5 σ ǫ 1 = σ ǫ 2 = 0.04 σ ǫ 1 = σ ǫ 2 = 0.2 σ ǫ 1 = σ ǫ 2 =

Proofs

In this section, C denotes any constant that does not depend on j, k and n. Its value may change from one term to another and may depend on φ and ψ.

Proof of Theorem 3.1. It follows from (3.1), (3.2) and the triangular inequality that

E(| Q -Q f |) ≤ A 1 + A 2 + A 3 , (6.1) 
where

A 1 = k∈Dτ E(| α2 τ,k -α 2 τ,k |), A 2 = 2 d -1 u=1 j * j=τ k∈D j E(| β2 j,k,u -β 2 j,k,u |)
and

A 3 = 2 d -1 u=1 ∞ j=j * +1 k∈D j β 2 j,k,u .
Let us now bound A 1 , A 2 and A 3 . Upper bound for A 1 . We have

α2 τ,k -α 2 τ,k = (α τ,k -α τ,k ) 2 + 2α τ,k (α τ,k -α τ,k ).
Owing to the triangular inequality, the Cauchy-Schwarz inequality and (3.3), we obtain

E(| α2 τ,k -α 2 τ,k |) ≤ E((α τ,k -α τ,k ) 2 ) + 2|α τ,k | E((α τ,k -α τ,k ) 2 ) ≤ C(w n + √ w n ) ≤ C √ w n .
Therefore, since Card(D τ ) is constant,

A 1 ≤ C √ w n . (6.2)
Upper bound for A 2 . Again, we can write

β2 j,k,u -β 2 j,k,u = ( βj,k,u -β j,k,u ) 2 + 2β j,k,u ( βj,k,u -β j,k,u ).
The triangular inequality, the Cauchy-Schwarz inequality and (3.3) lead to

E(| β2 j,k,u -β 2 j,k,u |) ≤ E(( βj,k,u -β j,k,u ) 2 ) + 2|β j,k,u | E(( βj,k,u -β j,k,u ) 2 ) ≤ C(2 jδd w n + |β j,k,u |2 jδd/2 √ w n ).
Using the Cauchy-schwarz inequality, Card(D j ) = 2 jd , f ∈ L s (M ) with s > (1 + δ)d/2 and (3.4), we obtain

A 2 ≤ C   w n j * j=τ 2 j(1+δ)d + √ w n 2 d -1 u=1 j * j=τ 2 jδd/2 k∈D j |β j,k,u |   ≤ C   wn j * j=τ 2 j(1+δ)d + √ w n j * j=τ 2 j(1+δ)d/2 2 d -1 u=1 k∈D j β 2 j,k,u    ≤ C   w n 2 j * (1+δ)d + √ w n ∞ j=τ 2 -j(s-(1+δ)d/2)   ≤ C √ w n . (6.3) Upper bound for A 3 . The assumption f ∈ L s (M ) with s > (1 + δ)d/2 and (3.4) yield A 3 ≤ C ∞ j=j * +1 2 -2js ≤ C2 -2j * s ≤ C2 -j * (1+δ)d ≤ C √ w n . (6.4) 
Putting (6.1), (6.2), (6.3) and (6.4) together, we obtain

E(| Q -Q f |) ≤ C √ w n .
Theorem 3.1 is proved.

Proof of Proposition 4.2. First of all, in order to apply Theorem 3.1, let us prove that the wavelet coefficient estimators (4.11) satisfy the assumption (3.3).

Observe that, thanks to the independence between ξ 1 and X 1 and E(ξ 1 ) = 0, we have E( βj,k,u ) = E f (X 1 ) g(X 1 ) Ψ j,k,u (X 1 ) =

[0,1] d f (x) g(x) Ψ j,k,u (x)g(x)dx = [0,1] d f (x)Ψ j,k,u (x)dx = β j,k,u .
Therefore, since (Z t ) t∈Z is a stationary process, a standard covariance decomposition yields E ( βj,k,u -

β j,k,u ) 2 = 1 n 2 V n i=1 Y i g(X i ) Ψ j,k,u (X i ) ≤ T 1 + T 2 ,
where

T 1 = 1 n V Y 1 g(X 1 ) Ψ j,k,u (X 1 )
and

T 2 = 2 n n-1 m=1
Cov Y m+1 g(X m+1 ) Ψ j,k,u (X m+1 ), Y 1 g(X 1 ) Ψ j,k,u (X 1 ) .

In order to bound T 1 and T 2 , we will need the following moments result. Using again the independence between ξ 1 and X 1 , E(ξ 4 1 ) < ∞, (4.8), (4.9), applying the change of variables y = 2 j xk and using the fact that Ψ is compactly supported, we have for any ν ∈ {2, 4}, E Y 1 g(X 1 ) Ψ j,k,u (X 1 )

ν ≤ C C ν + E(ξ ν 1 ) c v-1 E 1 g(X 1 ) (Ψ j,k,u (X 1 )) ν = C [0,1] d 1 g(x)
(Ψ j,k,u (x)) ν g(x)dx = C (Ψ u (x)) ν dx ≤ C2 jd(ν-2)/2 . (6.5)

It follows from (6.5) with ν = 2 that

T 1 ≤ 1 n E Y 1 g(X 1 ) Ψ j,k,u (X 1 ) 2 ≤ C 1 n .
Let us now study the upper bound for T 2 . Let [r ln n] be the integer part of r ln n where r = 1/b. We have Cov Y m+1 g(X m+1 ) Ψ j,k,u (X m+1 ), Y 1 g(X 1 ) Ψ j,k,u (X 1 ) .

T 2 = T 2,1 + T 2,
The Cauchy-Schwarz inequality and (6.5) with ν = 2 yield Cov Y m+1 g(X m+1 ) Ψ j,k,u (X m+1 ), Y 1 g(X 1 ) Ψ j,k,u (X 1 ) ≤ E Y 1 g(X 1 ) Ψ j,k,u (X 1 ) 2 ≤ C.

Hence

T 2,1 ≤ C ln n n .

By the Davydov inequality (see [START_REF] Davydov | The invariance principle for stationary processes[END_REF]), (4.10), again (6.5) with ν = 4 and 2 jd ≤ n, we obtain

T 2,2 ≤ 10a 1/2 1 n E Y 1 g(X 1 )
Ψ j,k,u (X 1 ) Combining the inequalities above, we obtain E ( βj,k,u -β j,k,u ) 2 ≤ C ln n n .

This inequality holds for αj,k instead of βj,k,u and α j,k instead of β j,k,u . Therefore the assumption (3.3) is satisfied with w n = ln n/n and δ = 0. Theorem 3.1 yields the desired result.

  Since lim n→∞ w n = 0, Theorem 3.1 implies the consistency of Q. Remark 3.2 The construction of Q does not depend on the smoothness parameter s of f ; Q is adaptive. Remark 3.3 In our study we have supposed that the support of f satisfies supp(f ) = [0, 1] d only for the sake of simplicity in exposition. Theorem 3.1 can be extended for any compactly supported function f provided to an adaptation of the wavelet basis. Remark 3.4 In our multidimensional and general nonparametric framework, the construction of an adaptive estimator attaining the rate √ w n for f ∈ L s (M ) with M > 0 and all s > 0 (without restriction as s > (1 + δ)d/2) raises new significant technical difficulties. This needs further investigations that we leave for a future work. I what follows, we show examples of applications of Theorem 3.1 to three nonparametric problems: the biased density model, the nonparametric regression model and a GARCHtype model, under various dependent structures. The presented results are new in the considered frameworks. 4 Applications of Theorem 3.1 4.1 Biased density model

Figure 1 :

 1 Figure 1: (a) Wave theoretical regression function f 1 . (b) Noisy observations. (c) Typical reconstructions from 100 Monte-Carlo simulations with n = 1024 with the basic wavelet linear estimator (solid) and theoretical regression function f 1 (dashed). (d)-(f) Original/Noisy/Estimated wavelet coefficients from a single simulation.

Figure 2 :

 2 Figure 2: (a) Time Shifted Sine theoretical regression function f 2 . (b) Noisy observations. (c) Typical reconstructions from 100 Monte-Carlo simulations with n = 1024 with the basic wavelet linear estimator (solid) and theoretical regression function f 2 (dashed). (d)-(f) Original/Noisy/Estimated wavelet coefficients from a single simulation.

Figure 3 :

 3 Figure 3: (a) Theoretical regression function f 1 . (b) Noisy observations. Typical reconstructions (c) from a single simulation and (d) from 100 Monte-Carlo simulations with n = 256 2 with the basic wavelet linear estimator.

Figure 3

 3 Figure 3(d) and Figure 4(d) give an example of reconstruction with the basic wavelet linear estimator from 100 replications of n = 256 2 samples, with σ ǫ 1 = σ ǫ 2 = 0.2 and α 1 = α 2 = 0.2.In Table2the MAE of the estimation procedure in the two-dimensional case is analyzed. As in the unidimensional case, it is obvious that simultaneously increasing the variances σ 2

  ǫ 2 of the noises of the two AR(1) processes increases the MAE and the MAE decreases

Figure 4 :

 4 Figure 4: (a) Theoretical regression function f 2 . (b) Noisy observations. Typical reconstructions (c) from a single simulation and (d) from 100 Monte-Carlo simulations with n = 256 2 with the basic wavelet linear estimator.

  [0,1] d (Ψ j,k,u (x)) ν dx = C2 jd(ν-2)/2 supp(Ψ)

Table 1 :

 1 100× mean MAE values from 100 replications of sample sizes 512, 1024 and 2048.

						α = 0.05				
			σ ǫ = 0.04			σ ǫ = 0.2			σ ǫ = 1	
	n	512	1024	2048	512	1024	2048	512	1024	2048
	MAE( Q1 ) 0.263 0.166 0.097 0.954 0.825 0.477 14.223 14.066 7.224
	MAE( Q2 ) 0.217 0.135 0.077 1.486 0.984 0.820 14.291 13.892 7.203
						α = 0.2				
			σ ǫ = 0.04			σ ǫ = 0.2			σ ǫ = 1	
	n	512	1024	2048	512	1024	2048	512	1024	2048
	MAE( Q1 ) 0.314 0.197 0.115 1.185 1.055 0.596 19.653 19.472 10.081
	MAE( Q2 ) 0.260 0.163 0.092 1.211 1.061 0.574 19.770 19.266 10.056
						α = 0.5				
			σ ǫ = 0.04			σ ǫ = 0.2			σ ǫ = 1	
	n	512	1024	2048	512	1024	2048	512	1024	2048
	MAE( Q1 ) 1.367 0.843 0.516 8.201 7.976 5.374 46.041 45.576 24.852
	MAE( Q2 ) 1.198 0.781 0.451 8.157 8.079 5.371 46.237 45.237 24.817

Table 2 :

 2 100× mean MAE values from 100 replications of sample sizes 128 2 , 256 2 and 512 2 .
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