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Abstract

We investigate the estimation of the integral of the square of a multidimensional
unknown function f under mild assumptions on the model allowing dependence on
the observations. We develop an adaptive estimator based on a plug-in approach and
wavelet projections. Taking the mean absolute error and assuming that f has a certain
degree of smoothness, we prove that our estimator attains a sharp rate of convergence.
Applications are given for the biased density model, the nonparametric regression model
and a GARCH-type model under some mixing conditions.
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1 Introduction

Let d be a positive integer, (Ω,A,P) be a probability space, Z be a random variable vector
on R

d, f : [0, 1]d → R be an unknown squared integrable function related to Z (as a density
function, a regression function,. . . ) and Qf be the quadratic functional:

Qf =

∫

[0,1]d
f2(x)dx. (1.1)

We aim to estimate Qf from n identical distributed observations Z1, . . . , Zn of Z.
When d = 1 and Z1, . . . , Zn are independent, this problem has been addressed in many

papers for a wide variety of models under various settings. See e.g. Bickel and Ritov (1988),
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Donoho and Nussbaum (1990), Kerkyacharian and Picard (1996), Gayraud and Tribouley
(1999), Prakasa Rao (1999), Johnstone (2001a,b), Delaigle and Gijbels (2002), Laurent
(2005), Cai and Low (2005, 2006), Giné and Nickl (2008) and Petsa and Sapatinas (2010).
The multidimensional case has been considered by Barbedor (2006) for the density model.
When d = 1 and Z1, . . . , Zn are dependent, the estimation of Qf has been investigated by
Hosseinioun et al. (2009) for the density model and by Butucea and Comte (2009) for the
density deconvolution model. A common feature is that when f has a certain degree of
smoothness the parametric rate of convergence 1/

√
n is achievable.

The main contribution of this paper is to present new theoretical results in a general
multidimensional nonparametric setting, including a wide variety of models, with possible
dependent Z1, . . . , Zn. In the first part, we develop a simple adaptive estimator for Qf

based on a plug-in approach and wavelet methodology. We refer to Härdle et al. (1998)
and Vidakovic (1999) for a detailed discussion of the performances of wavelet estimators
and some of their advantages over traditional methods. The asymptotic performances of
our estimator are evaluated under the mean absolute error (MAE) over a wide range of
function class for f . Under mild assumptions on Z1, . . . , Zn, we prove that it attains a
sharp rate of convergence (which can be 1/

√
n in some situations). Then we apply our

general result to three different models under mixing conditions: the biased density model
with α-mixing observations, the nonparametric regression model with α-mixing observations
and a GARCH-type model with β-mixing observations.

The rest of the paper is organized as follows. In Section 2, we present some preliminaries
on wavelets. In Section 3 we describe our wavelet estimator and study its asymptotic
properties. Applications are given in Section 4. Finally, the proofs are postponed to Section
5.

2 Preliminaries on wavelets

2.1 Wavelet tensor-product bases on [0, 1]d

For the purpose of this paper, we use a compactly supported wavelet-tensor product basis
on [0, 1]d based on the Daubechies wavelets.

Let N be a positive integer, φ be ”father” Daubechies-type wavelet and ψ be a ”mother”
Daubechies-type wavelet of the family db2N . In particular, mention that φ and ψ have
compact supports.

For any x = (x1, . . . , xd) ∈ [0, 1]d, we construct 2d functions as follows:

• A scale function:

Φ(x) =
d
∏

v=1

φ(xv),
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• 2d − 1 wavelet functions:

Ψu(x) =



























ψ(xu)

d
∏

v=1
v 6=u

φ(xv) when u ∈ {1, . . . , d},

∏

v∈Au

ψ(xv)
∏

v 6∈Au

φ(xv) when u ∈ {d+ 1, . . . , 2d − 1},

where (Au)u∈{d+1,...,2d−1} forms the set of all the non void subsets of {1, . . . , d} of
cardinal superior or equal to 2.

For any integer j and any k = (k1, . . . , kd), we set

Φj,k(x) = 2jd/2Φ(2jx1 − k1, . . . , 2
jxd − kd),

for any u ∈ {1, . . . , 2d − 1},

Ψj,k,u(x) = 2jd/2Ψu(2
jx1 − k1, . . . , 2

jxd − kd).

We set Dj = {0, . . . , 2j−1}d. Then, with an appropriate treatment at the boundaries, there
exists an integer τ such that the system

S = {Φτ,k,k ∈ Dτ ; (Ψj,k,u)u∈{1,...,2d−1}, j ∈ N− {0, . . . , τ − 1}, k ∈ Dj}

forms an orthonormal basis of L2([0, 1]
d) = {h : [0, 1]d → R;

∫

[0,1]d h
2(x)dx <∞}.

For any integer j∗ such that j∗ ≥ τ , a function h ∈ L2([0, 1]
d) can be expressed via S as

wavelet series as

h(x) =
∑

k∈Dj∗

αj∗,kΦj∗,k(x) +
2d−1
∑

u=1

∞
∑

j=j∗

∑

k∈Dj

βj,k,uΨj,k,u(x), x ∈ [0, 1]d, (2.1)

where

αj,k =

∫

[0,1]d
h(x)Φj,k(x)dx, βj,k,u =

∫

[0,1]d
h(x)Ψj,k,u(x)dx. (2.2)

For further details about wavelet bases, we refer to Meyer (1992), Cohen et al. (1993) and
Mallat (2009).
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2.2 Function space

As usual in nonparametric estimation, we shall assume that f has a certain degree of
smoothness. In this study, it is characterized by the set of functions Ls(M) defined by

Ls(M) =







h ∈ L2([0, 1]
d); (2.2) satisfies

∑

k∈Dτ

α2
τ,k + sup

j≥τ
22js

2d−1
∑

u=1

∑

k∈Dj

β2j,k,u ≤M







,

where s > 0 and M > 0.
Under appropriate assumptions on s, Ls(M) corresponds to the so-called Besov ball

Bs
2,∞(M). Details about such function spaces can be found in e.g. Devore and Popov

(1988), Meyer (1992) and Härdle et al. (1998).

3 Estimator and result

3.1 Estimator

Let τ be the integer mentioned in Section 2. Let us expand f as (2.1). Thanks to the
orthonormality of the wavelet basis S, we can express Qf as

Qf =
∑

k∈Dτ

α2
τ,k +

2d−1
∑

u=1

∞
∑

j=τ

∑

k∈Dj

β2j,k,u, (3.1)

where

αj,k =

∫

[0,1]d
f(x)Φj,k(x)dx, βj,k,u =

∫

[0,1]d
f(x)Ψj,k,u(x)dx.

In view of (3.1), using the plug-in approach, we consider the following wavelet-based esti-
mator:

Q̂ =
∑

k∈Dτ

α̂2
τ,k +

2d−1
∑

u=1

j0
∑

j=τ

∑

k∈Dj

β̂2j,k,u, (3.2)

where α̂τ,k and β̂j,k denote two estimators of ατ,k and βj,k respectively and j0 denotes a
positive integer.

From Z1, . . . , Zn, we suppose that

• we are able to construct α̂τ,k and β̂j,k satisfying: for any integer j ≥ τ and k ∈ Dj ,
there exist a positive sequence (wn)n∈N∗ with limn→∞wn = 0, a real number δ ≥ 0
and a constant C > 0 such that

E
(

(α̂τ,k − ατ,k)
2
)

≤ Cwn, E

(

(β̂j,k,u − βj,k,u)
2
)

≤ C2jδdwn. (3.3)
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• j0 is the integer satisfying

w−1/(2d(1+δ))
n < 2j0+1 ≤ 2w−1/(2d(1+δ))

n , (3.4)

(where wn refers to the one of the previous point).

Note that, contrary to the wavelet-based estimators constructed from a U -statistics (see
e.g. Kerkyacharian and Picard (1996), Prakasa Rao (1999) and Barbedor (2006)), Q̂ is not
an unbiased estimator of Qf .

However,

• one can prove that, if α̂τ,k and β̂τ,k,u are unbiased estimators of ατ,k and βτ,k,u re-

spectively, under (3.3) and (3.4), Q̂ is asymptotically unbiased,

• the simplicity of its construction offers a certain flexibility on the nature of the model;
if we are able to construct wavelet coefficient estimators satisfying (3.3) (whatever the
dependence structure of the observations), assuming that f has a certain degree of
smoothness, we can prove good asymptotic results for Q̂ (see Theorem 3.1 below and
the applications in Section 4).

3.2 Result

Theorem 3.1 below investigates the performances of Q̂ under the MAE for f ∈ Ls(M).

Theorem 3.1 Let us consider the general nonparametric setting described in Section 1.
Let Qf be (1.1) and Q̂ be (3.2) under (3.3) and (3.4). Suppose that f ∈ Ls(M) with M > 0
and s > (1 + δ)d/2. Then there exists a constant C > 0 such that

E(|Q̂−Qf |) ≤ C
√
wn.

Theorem 3.1 shows that, under mild assumptions on the model, our estimator attains the
rate of convergence

√
wn (which can be the optimal one in the minimax sense, see Remark

4.1).

Remark 3.1 Since limn→∞wn = 0, Theorem 3.1 implies the consistency of Q̂.

Remark 3.2 The construction of Q̂ does not depend on the smoothness parameter s; Q̂ is
adaptive.

Remark 3.3 In our multidimensional and general nonparametric framework, the construc-
tion of an adaptive estimator attaining the rate

√
wn for f ∈ Ls(M) with M > 0 and all

s > 0 (without restriction as s > (1 + δ)d/2) raises new significant technical difficulties.
This needs further investigations that we leave for a future work.

The following section shows examples of applications of Theorem 3.1 to three non-
parametric problems: the biased density model, the nonparametric regression model and a
GARCH-type model, under various dependent structures.
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4 Applications of Theorem 3.1

4.1 Biased density model

Model. Let d be a positive integer, (Zt)t∈Z be a strictly stationary random sequence defined
on the probability space ([0, 1]d,B([0, 1]d),P). The density of Z1 is given by

g(x) = µ−1w(x)f(x), x ∈ [0, 1]d,

where w denotes a known positive function and µ is the unknown normalization parameter:
µ =

∫

[0,1]d w(x)f(x)dx. Our goal is to estimate the quadratic functional Qf (1.1) from
Z1, . . . , Zn.

When Z1, . . . , Zn are independent and d = 1, this problem has been studied by Petsa
and Sapatinas (2010). Further details about the weighted density estimation problem can
be found in e.g. Efromovich (2004), Brunel et al. (2009) and the references therein.

The rest of study is devoted to the estimation of Qf in the α-mixing case.
Definitions. For j ∈ Z, define the σ-fields

FZ
−∞,j = σ(Zk, k ≤ j), FZ

j,∞ = σ(Zk, k ≥ j).

For any m ∈ Z, we define the m-th α-mixing coefficient of (Zt)t∈Z by

αm = sup
(A,B)∈FZ

−∞,0×FZ
m,∞

|P(A ∩B)− P(A)P(B)| . (4.1)

Full details on the α-mixing dependence can be found in e.g. Rosenblatt (1956),
Doukhan (1994), Carrasco and Chen (2002) and Fryzlewicz and Subba Rao (2011).

Assumptions. We formulate the following assumptions.

• There exist two constants c > 0 and C > 0 such that

c ≤ inf
x∈[0,1]d

w(x), sup
x∈[0,1]d

w(x) ≤ C. (4.2)

• There exists a constant C > 0 such that

sup
x∈[0,1]d

f(x) ≤ C. (4.3)

• For anym ∈ {1, . . . , n}, let g(Z0,Zm) be the density of (Z0, Zm). There exists a constant
C > 0 such that

sup
m∈{1,...,n}

sup
(x,y)∈[0,1]2d

|g(Z0,Zm)(x,y)− g(x)g(y)| ≤ C. (4.4)
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• There exist two constants C > 0 and q > 1 such that the m-th α-mixing coefficient
(4.1) of (Zt)t∈Z satisfies

n
∑

m=1

mqαq
m ≤ C. (4.5)

Result. Proposition 4.1 below explores the performances of Q̂ (3.2) with a suitable
choice of α̂j,k and β̂j,k,u under the MAE for f ∈ Ls(M).

Proposition 4.1 Let us consider the biased density model framework described above under
(4.2), (4.3), (4.4) and (4.5). Let Qf be (1.1), Q̂ be (3.2) with

α̂τ,k =
µ̂

n

n
∑

i=1

Φτ,k(Zi)

w(Zi)
, β̂j,k,u =

µ̂

n

n
∑

i=1

Ψj,k,u(Zi)

w(Zi)
, µ̂ =

(

1

n

n
∑

i=1

1

w(Zi)

)−1

(4.6)

and j0 such that
n1/(2d) < 2j0+1 ≤ 2n1/(2d).

Suppose that f ∈ Ls(M) with M > 0 and s > d/2. Then there exists a constant C > 0 such
that

E(|Q̂−Qf |) ≤ C
1√
n
.

The proof of Proposition 4.1 is omitted; it is based on an adaptation of (Chesneau, 2011,
Proposition 6.2) to the multidimensional case showing that the wavelet coefficients estima-
tors (4.6) satisfy (3.3) with wn = 1/n and δ = 0, and Theorem 3.1.

Remark 4.1 Let us mention that 1/
√
n is the optimal rate of convergence in the minimax

sense for the standard density estimation problem (i.e. with w(x) = 1) in the i.i.d. case
and for f ∈ Ls(M) with s > d/2. See e.g. (Tsybakov, 2004, Section 2.7.4.).

4.2 Regression model

Model. Let d be a positive integer, (Zt)t∈Z be a strictly stationary bivariate random
sequence defined on the probability space (R× [0, 1]d,B(R× [0, 1]d),P) where Zt = (Yt, Xt),

Yt = f(Xt) + ξt, t ∈ Z,

(Xt)t∈Z is a stationary random process with X1 ∼ U([0, 1]d), (ξt)t∈Z is a stationary random
process with E(ξ1) = 0 and E(ξ41) < ∞, and f : [0, 1]d → R is an unknown regression
function. Moreover, it is understood that ξt is independent of Xt, for any t ∈ Z. Our goal
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is to estimate the quadratic functional Qf (1.1) from Z1, . . . , Zn. We consider the α-mixing
dependence.

Further details about the nonparametric regression estimation problem can be found in
e.g. White and Domowitz (1984), Tsybakov (2004) and the references therein.

Assumptions. We formulate the following assumptions.

• There exists a constant C > 0 such that

sup
x∈[0,1]d

f(x) ≤ C. (4.7)

• There exist two constants a > 0 and b > 0 such that the m-th α-mixing coefficient
(4.1) of (Zt)t∈Z satisfies

αm ≤ ab−m, (4.8)

Result. Proposition 4.2 below investigates the performances of Q̂ (3.2) with a suitable
choice of α̂j,k and β̂j,k,u under the MAE for f ∈ Ls(M).

Proposition 4.2 Let us consider the regression model framework described above under
(4.7) and (4.8). Let Qf be (1.1), Q̂ be (3.2) with

α̂τ,k =
1

n

n
∑

i=1

YiΦτ,k(Xi), β̂j,k,u =
1

n

n
∑

i=1

YiΨj,k,u(Xi) (4.9)

and j0 such that
( n

lnn

)1/(2d)
< 2j0+1 ≤ 2

( n

lnn

)1/(2d)
.

Suppose that f ∈ Ls(M) with M > 0 and s > d/2. Then there exists a constant C > 0 such
that

E(|Q̂−Qf |) ≤ C

√

lnn

n
.

Note that, in comparison to the corresponding optimal rate of convergence in the minimax
sense for the i.i.d. case i.e. 1/

√
n, we pay an extra logarithmic term. We explain this

term by the mild assumptions made on our nonparametric regression model (remark that
no “Castellana-Leadbetter-type condition” (as (4.4)) is done on (Zt)t∈Z).
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4.3 GARCH model

Model. Let (Zt)t∈Z be a strictly stationary random sequence defined on the probability
space ([0, 1],B([0, 1]),P) where

Zt = Xtξt, t ∈ Z, (4.10)

(ξt)t∈Z is a strictly stationary random sequence, the density of ξ1 is known and is denotes
by g, and (Xt)t∈Z is a strictly stationary random sequence, the density of X1 is unknown
ans is denoted by f . Moreover, it is understood that ξt is independent of Xt, for any t ∈ Z.
Our goal is to estimate the quadratic functional Qf (1.1) from Z1, . . . , Zn. We focus our
attention on the β-mixing dependence.

The model (4.10) belongs to the family of GARCH-type models. Financial applications
related to (4.10) can be found in Carrasco and Chen (2002).

Definitions. For any m ∈ Z, we define the m-th β-mixing coefficient of (Zt)t∈Z by

βm =
1

2
sup

((Ai)i∈I ,(Bi)i∈J )∈F
Z
−∞,0×FZ

m,∞

∑

i∈I

∑

j∈J

|P(Ai ∩Bj)− P(Ai)P(Bj)| , (4.11)

where the supremum is taken over all finite partitions (Ai)i∈I and (Bj)j∈J of Ω, which are
respectively FZ

−∞,0 and FZ
m,∞ measurable.

Full details can be found in e.g. Doukhan (1994), Viennet (1997) and Carrasco and
Chen (2002).

Assumptions. We formulate the following assumptions.

• There exists an integer ν ≥ 1 such that, for any i ∈ {1, . . . , n},

ξi =
ν
∏

r=1

Ur,i, (4.12)

where U1,i, . . . , Uν,i are ν i.i.d. random variables with U1,1 ∼ U([0, 1]).

• There exists a constant C > 0 such that

sup
x∈[0,1]

f(x) ≤ C. (4.13)

• There exists a constant C > 0 such that them-th β-mixing coefficient (4.11) of (Zt)t∈Z
satisfies

n
∑

m=1

βm ≤ C. (4.14)
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Result. Proposition 4.3 below evaluates the performances of Q̂ (3.2) with a suitable choice
of α̂j,k and β̂j,k,u under the MAE for f ∈ Ls(M).

Proposition 4.3 Let us consider the GARCH model framework described above under
(4.12), (4.13) and (4.14). Let Qf be (1.1) with d = 1, for any integer ℓ ≥ 1 and any
h ∈ Cℓ([0, 1]),

T (h)(x) = (xh(x))′, Tℓ(h)(x) = T (Tℓ−1(h))(x), x ∈ [0, 1],

Q̂ be (3.2) with d = 1,

α̂τ,k =
1

n

n
∑

i=1

Tν(φj,k)(Zi), β̂j,k,1 =
1

n

n
∑

i=1

Tν(ψj,k,1)(Zi). (4.15)

and j0 such that
n1/(2(1+2ν)) < 2j0+1 ≤ 2n1/(2(1+2ν)).

Suppose that f ∈ Ls(M) with M > 0 and s > (1 + 2ν)d/2. Then there exists a constant
C > 0 such that

E(|Q̂−Qf |) ≤ C
1√
n
.

The proof of Proposition 4.3 is omitted; it is based on (Chesneau and Doosti, 2012, Proposi-
tion 5.2) showing that the wavelet coefficients estimators (4.15) satisfy (3.3) with wn = 1/n
and δ = 2ν, and Theorem 3.1.

5 Proofs

In this section, C denotes any constant that does not depend on j, k and n. Its value may
change from one term to another and may depend on φ and ψ.

Proof of Theorem 3.1. The triangular inequality yields

E(|Q̂−Qf |) ≤ A1 +A2 +A3, (5.1)

where

A1 =
∑

k∈Dτ

E(|α̂2
τ,k − α2

τ,k|), A2 =
2d−1
∑

u=1

j0
∑

j=τ

∑

k∈Dj

E(|β̂2j,k,u − β2j,k,u|)

and

A3 =
2d−1
∑

u=1

∞
∑

j=j0+1

∑

k∈Dj

β2j,k,u.

10



Let us bound A1, A2 and A3.

Upper bound for A1. We have

α̂2
τ,k − α2

τ,k = (α̂τ,k − ατ,k)
2 + 2ατ,k(α̂τ,k − ατ,k).

Using the triangular inequality, the Cauchy-Schwarz inequality and (3.3), we obtain

E(|α̂2
τ,k − α2

τ,k|) ≤ E((α̂τ,k − ατ,k)
2) + 2|ατ,k|

√

E((α̂τ,k − ατ,k)2)

≤ C(wn +
√
wn) ≤ C

√
wn.

Therefore, since Card(Dτ ) is constant,

A1 ≤ C
√
wn. (5.2)

Upper bound for A2. Again, we can write

β̂2j,k,u − β2j,k,u = (β̂j,k,u − βj,k,u)
2 + 2βj,k,u(β̂j,k,u − βj,k,u).

It follows from the triangular inequality, the Cauchy-Schwarz inequality and (3.3) that

E(|β̂2j,k,u − β2j,k,u|) ≤ E((β̂j,k,u − βj,k,u)
2) + 2|βj,k,u|

√

E((β̂j,k,u − βj,k,u)2)

≤ C(2jδdwn + |βj,k,u|2jδd/2
√
wn).

Using the Cauchy-schwarz inequality, Card(Dj) = 2jd, f ∈ Ls(M) with s > (1 + δ)d/2 and
(3.4), we obtain

A2 ≤ C



wn

j0
∑

j=τ

2j(1+δ)d +
√
wn

2d−1
∑

u=1

j0
∑

j=τ

2jδd/2
∑

k∈Dj

|βj,k,u|





≤ C






wn

j0
∑

j=τ

2j(1+δ)d +
√
wn

j0
∑

j=τ

2j(1+δ)d/2

√

√

√

√

√

2d−1
∑

u=1

∑

k∈Dj

β2j,k,u







≤ C



wn2
j0(1+δ)d +

√
wn

j0
∑

j=τ

2−j(s−(1+δ)d/2)



 ≤ C
√
wn. (5.3)

Upper bound for A2. The assumption f ∈ Ls(M) with s > (1 + δ)d/2 and (3.4) yield

A3 ≤ C

∞
∑

j=j0+1

2−2js ≤ C2−2j0s ≤ C2−j0(1+δ)d ≤ C
√
wn. (5.4)

11



Putting (5.1), (5.2), (5.3) and (5.4) together, we obtain

E(|Q̂−Qf |) ≤ C
√
wn.

Theorem 3.1 is proved. �
Proof of Proposition 4.2. First of all, in order to apply Theorem 3.1, let us prove

that the wavelet coefficient estimators (4.9) satisfy he assumption (3.3).
Observe that, thanks to the independence between ξ1 and X1 and X1 ∼ U([0, 1]d),

E(β̂j,k,u) = βj,k,u. Since (Zt)t∈Z is a stationary process, a standard covariance decomposition
yields

E

(

(β̂j,k,u − βj,k,u)
2
)

=
1

n2
V

(

n
∑

i=1

YiΨj,k,u(Xi)

)

≤ T1 + T2,

where

T1 =
1

n
V(Y1Ψj,k,u(X1)), T2 =

2

n

n−1
∑

m=1

|Cov (Ym+1Ψj,k,u(Xm+1), Y1Ψj,k,u(X1)) |.

In order to bound T1 and T2, we shall need the following moments result. Using again the
independence between ξ1 and X1, E(ξ

4
1) < ∞, X1 ∼ U([0, 1]d), (4.7), applying the change

of variables y = 2jx − k, and using the fact that Ψ is compactly supported, we have for
any ν ∈ {2, 4},

E((Y1Ψj,k,u(X1))
ν) ≤ C(Cν

1 + E(ξν1 ))E((Ψj,k,u(X1))
ν) = C

∫

[0,1]d
(Ψj,k,u(x))

νdx

= C2jd(ν−2)/2

∫

[0,1]d
(Ψ(x))νdx ≤ C2jd(ν−2)/2. (5.5)

It follows from (5.5) with ν = 2 that

T1 ≤
1

n
E
(

(Y1Ψj,k,u(X1))
2
)

≤ C
1

n
.

Let us now study the upper bound for T2. Let [c lnn] be the integer part of c lnn where
c = 1/ ln b. We have

T2 = T2,1 + T2,2, (5.6)

where

T2,1 =
1

n

[c lnn]
∑

m=1

|Cov (Ym+1Ψj,k,u(Xm+1), Y1Ψj,k,u(X1)) |
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and

T2,2 =
1

n

n−1
∑

m=[c lnn]+1

|Cov (Ym+1Ψj,k,u(Xm+1), Y1Ψj,k,u(X1)) |.

The Cauchy-Schwarz inequality and (5.5) with ν = 2 yield

|Cov (Ym+1Ψj,k,u(Xm+1), Y1Ψj,k,u(X1)) | ≤ E((Y1Ψj,k,u(X1))
2) ≤ C.

Hence

T2,1 ≤ C
lnn

n
.

By the Davydov inequality (see Davydov (1970)), (4.8), again (5.5) with ν = 4 and 2jd ≤ n,
we obtain

T2,2 ≤ C
1

n

√

E

(

(Y1Ψj,k,u(X1))
4
)

n−1
∑

m=[c lnn]+1

√
αm

≤ C
1

n
2jd/2

∞
∑

m=[c lnn]+1

b−m/2 ≤ C
1

n

√
nb−c lnn/2 ≤ C

1

n
.

Hence

T2 ≤ C
lnn

n
.

Combining the inequalities above, we obtain

E

(

(β̂j,k,u − βj,k,u)
2
)

≤ C
lnn

n
.

This inequality holds for α̂j,k instead of β̂j,k,u and αj,k instead of βj,k,u. Therefore the
assumption (3.3) is satisfied with wn = lnn/n and δ = 0. Theorem 3.1 yields the desired
result. �
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