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Abstract

We investigate the estimation of the integral of the square of a multidimensional
unknown function f under mild assumptions on the model allowing dependence on
the observations. We develop an adaptive estimator based on a plug-in approach and
wavelet projections. Taking the mean absolute error and assuming that f has a certain
degree of smoothness, we prove that our estimator attains a sharp rate of convergence.
Applications are given for the biased density model, the nonparametric regression model
and a GARCH-type model under some mixing dependence conditions (α-mixing or β-
mixing). A simulation study considering nonparametric regression models with depen-
dent observations illustrates the usefulness of the proposed estimator.

Key words and phrases: Quadratic functional estimation, Plug-in approach, Wavelets,
Rates of convergence, Mixing dependence.

AMS 2000 Subject Classifications: 62G07, 62G20.

1 Introduction

Let d be a positive integer, (Ω,A,P) be a probability space, Z be a random variable vector
on R

d, f : [0, 1]d → R be an unknown squared integrable function related to Z (as a density
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function, a regression function,. . . ) and Qf be the quadratic functional:

Qf =

∫

[0,1]d
f2(x)dx. (1.1)

We aim to estimate Qf from n identical distributed observations Z1, . . . , Zn of Z.
When d = 1 and Z1, . . . , Zn are independent, this problem has been addressed in many

papers for a wide variety of models under various settings. See, e.g., Bickel and Ritov (1988),
Donoho and Nussbaum (1990), Kerkyacharian and Picard (1996), Gayraud and Tribouley
(1999), Prakasa Rao (1999), Johnstone (2001a,b), Delaigle and Gijbels (2002), Laurent
(2005), Cai and Low (2005, 2006), Giné and Nickl (2008), Petsa and Sapatinas (2010) and
Butucea and Meziani (2011). The multidimensional case has been considered by Barbedor
(2006) for the density model. When d = 1 and Z1, . . . , Zn are dependent, the estimation of
Qf has been investigated by Hosseinioun et al. (2009) for the density model and by Butucea
and Comte (2009) for the density deconvolution model. A common feature is that when f
has a certain degree of smoothness the parametric rate of convergence “1/

√
n” is achievable.

The main contribution of this paper is to present new theoretical results in a general
multidimensional nonparametric setting. “General” in the sense that it includes a wide
variety of models with possible dependent Z1, . . . , Zn. In the first part, we develop a sim-
ple adaptive estimator for Qf based on a plug-in approach and wavelet methodology. We
refer to, e.g., Härdle et al. (1998) and Vidakovic (1999) for detailed discussions on the
performances of wavelet estimators and some of their advantages over traditional methods.
The asymptotic performances of our estimator are evaluated under the mean absolute error
(MAE) over a wide range of function class for f . Under mild assumptions on Z1, . . . , Zn, we
prove that it attains a sharp rate of convergence (which can be 1/

√
n in some situations).

Then we apply our general result to three different models under mixing dependence condi-
tions. To be more specific, we consider the biased density model with α-mixing observations,
the nonparametric regression model with α-mixing observations and a GARCH-type model
with β-mixing observations. These mixing dependence structures are reasonably weak and
particularly interesting in the considered nonparametric models thanks to their numerous
applications in dynamic economic systems and financial time series. See, e.g., White and
Domowitz (1984), Härdle (1990) and Doukhan (1994). Let us mention that, to the best
of our knowledge, the obtained results are new for these statistical frameworks. Finally, a
small simulation study is provided in the context of nonparametric regression models with
dependent observations illustrating the usefulness of the proposed estimator in finite sample
situations.

The rest of the paper is organized as follows. In Section 2, we present some preliminaries
on wavelets. In Section 3 we describe our wavelet estimator and study its asymptotic
properties. Applications are given in Section 4. Section 5 is devoted to a simulation study.
Finally, the proofs are postponed to Section 6.
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2 Preliminaries on wavelets

In this section, we briefly present the wavelet tensor-product bases on [0, 1]d and the con-
sidered function space in term of wavelet coefficients.

2.1 Wavelet tensor-product bases on [0, 1]d

For the purpose of this paper, we use a compactly supported wavelet-tensor product basis
on [0, 1]d based on the Daubechies wavelets.

Let N be a positive integer, φ be ”father” Daubechies-type wavelet and ψ be a ”mother”
Daubechies-type wavelet of the family db2N . In particular, mention that φ and ψ have
compact supports (see Mallat (2009)).

For any x = (x1, . . . , xd) ∈ [0, 1]d, we consider 2d functions as follows:

• A scale function Φ defined by

Φ(x) =
d
∏

v=1

φ(xv),

• 2d − 1 wavelet functions (Ψu)u∈{1,...,2d−1} defined by

Ψu(x) =



























ψ(xu)
d
∏

v=1
v 6=u

φ(xv) when u ∈ {1, . . . , d},

∏

v∈Au

ψ(xv)
∏

v 6∈Au

φ(xv) when u ∈ {d+ 1, . . . , 2d − 1},

where (Au)u∈{d+1,...,2d−1} forms the set of all the non void subsets of {1, . . . , d} of
cardinal superior or equal to 2.

For any integer j and any k = (k1, . . . , kd), we set

Φj,k(x) = 2jd/2Φ(2jx1 − k1, . . . , 2
jxd − kd),

for any u ∈ {1, . . . , 2d − 1},

Ψj,k,u(x) = 2jd/2Ψu(2
jx1 − k1, . . . , 2

jxd − kd).

We set Dj = {0, . . . , 2j−1}d. Then, with an appropriate treatment at the boundaries, there
exists an integer τ such that the system

S = {Φτ,k,k ∈ Dτ ; (Ψj,k,u)u∈{1,...,2d−1}, j ∈ N− {0, . . . , τ − 1}, k ∈ Dj}
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forms an orthonormal basis of L2([0, 1]
d) = {h : [0, 1]d → R;

∫

[0,1]d h
2(x)dx <∞}.

A function h ∈ L2([0, 1]
d) can be expressed via S as wavelet series as

h(x) =
∑

k∈Dτ

ατ,kΦτ,k(x) +

2d−1
∑

u=1

∞
∑

j=τ

∑

k∈Dj

βj,k,uΨj,k,u(x), x ∈ [0, 1]d, (2.1)

where

αj,k =

∫

[0,1]d
h(x)Φj,k(x)dx, βj,k,u =

∫

[0,1]d
h(x)Ψj,k,u(x)dx. (2.2)

The feature of (2.1) is to provide a set of wavelet approximation coefficients, i.e., {ατ,k; k ∈
Dτ}, and wavelet detail coefficients, i.e., {βj,k,u; j ≥ τ, k ∈ Dj , u ∈ {1, . . . , 2d − 1}}.
For further details about wavelet bases, we refer to Meyer (1992), Cohen et al. (1993) and
Mallat (2009).

2.2 Function space

As usual in nonparametric estimation, we shall assume that f has a certain degree of
smoothness. In this study, it is characterized by the set of functions Ls(M) defined by

Ls(M) =







h ∈ L2([0, 1]
d); (2.2) satisfies

∑

k∈Dτ

α2
τ,k + sup

j≥τ
22js

2d−1
∑

u=1

∑

k∈Dj

β2j,k,u ≤M







,

where s > 0 and M > 0.
Under suitable assumptions on s, Ls(M) corresponds to the so-called Besov ballBs

2,∞(M).
It includes a wide variety of functions. A simple example in the case d = 1 is the follow-
ing: let h ∈ L2([0, 1]

d such that its derivatives exist and are continuous up to order ℓ
with ℓ ∈ {0, . . . , N − 1}, and there exists a constant C > 0 satisfying |h(ℓ)(x) − h(ℓ)(y)| ≤
C|x − y|ω, (x, y) ∈ [0, 1]2, ω ∈ (0, 1). Then there exists a constant C > 0 such that
|βj,k,1| ≤ C2−j(ω+ℓ+1/2) for any j ≥ τ and k ∈ Dj . Hence h ∈ Ls(M) with s = ω + ℓ.
Further details about such function spaces can be found in, e.g., Devore and Popov (1988),
Meyer (1992), Härdle et al. (1998) and Mallat (2009).
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3 Estimator and result

3.1 Estimator

Let τ be the integer mentioned in Section 2. Let us expand f as (2.1). Thanks to the
orthonormality of the wavelet basis S, we can express Qf as

Qf =
∑

k∈Dτ

α2
τ,k +

2d−1
∑

u=1

∞
∑

j=τ

∑

k∈Dj

β2j,k,u, (3.1)

where

αj,k =

∫

[0,1]d
f(x)Φj,k(x)dx, βj,k,u =

∫

[0,1]d
f(x)Ψj,k,u(x)dx.

In view of (3.1), using the plug-in approach, we consider the following wavelet-based esti-
mator:

Q̂ =
∑

k∈Dτ

α̂2
τ,k +

2d−1
∑

u=1

j∗
∑

j=τ

∑

k∈Dj

β̂2j,k,u, (3.2)

where α̂τ,k and β̂j,k denote two estimators of ατ,k and βj,k respectively and j∗ denotes a
positive integer.

We formulate the following assumption. From Z1, . . . , Zn, we suppose that we are able
to construct α̂τ,k and β̂j,k satisfying: for any integer j ≥ τ and k ∈ Dj , there exist a positive
sequence (wn)n∈N∗ with limn→∞wn = 0, a real number δ ≥ 0 and a constant C > 0 such
that

E
(

(α̂τ,k − ατ,k)
2
)

≤ Cwn, E
(

(β̂j,k,u − βj,k,u)
2
)

≤ C2jδdwn. (3.3)

We then consider the integer j∗ satisfying

w−1/(2d(1+δ))
n < 2j∗+1 ≤ 2w−1/(2d(1+δ))

n . (3.4)

Note that, contrary to the wavelet-based estimators constructed from a U -statistics (see,
e.g., Kerkyacharian and Picard (1996), Prakasa Rao (1999) and Barbedor (2006)), Q̂ is not
an unbiased estimator of Qf .

However,

• one can prove that, if α̂τ,k and β̂τ,k,u are unbiased estimators of ατ,k and βτ,k,u re-

spectively, under (3.3) and (3.4), Q̂ is asymptotically unbiased,
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• the simplicity of its construction offers a certain flexibility on the nature of the consid-
ered model; if we are able to construct wavelet coefficient estimators satisfying (3.3)
(whatever the dependence structure of the observations), assuming that f has a cer-
tain degree of smoothness, we can prove good asymptotic results for Q̂ (see Theorem
3.1 below and the applications in Section 4).

3.2 Result

Theorem 3.1 below investigates the performances of Q̂ under the MAE for f ∈ Ls(M).

Theorem 3.1 Let us consider the general nonparametric setting described in Section 1.
Let Qf be (1.1) and Q̂ be (3.2) under (3.3) and (3.4). Suppose that f ∈ Ls(M) with M > 0
and s > (1 + δ)d/2. Then there exists a constant C > 0 such that

E(|Q̂−Qf |) ≤ C
√
wn.

Theorem 3.1 shows that, under mild assumptions on the model, our estimator attains the
rate of convergence

√
wn (which can be the optimal one in the minimax sense, see Remark

4.1).

Remark 3.1 Since limn→∞wn = 0, Theorem 3.1 implies the consistency of Q̂.

Remark 3.2 The construction of Q̂ does not depend on the smoothness parameter s of f ;
Q̂ is adaptive.

Remark 3.3 In our study we have supposed that the support of f satisfies supp(f) = [0, 1]d

only for the sake of simplicity in exposition. Theorem 3.1 can be extended for any compactly
supported function f provided to an adaptation of the wavelet basis.

Remark 3.4 In our multidimensional and general nonparametric framework, the construc-
tion of an adaptive estimator attaining the rate

√
wn for f ∈ Ls(M) with M > 0 and all

s > 0 (without restriction as s > (1 + δ)d/2) raises new significant technical difficulties.
This needs further investigations that we leave for a future work.

I what follows, we show examples of applications of Theorem 3.1 to three nonparametric
problems: the biased density model, the nonparametric regression model and a GARCH-
type model, under various dependent structures. The presented results are new in the
considered frameworks.
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4 Applications of Theorem 3.1

4.1 Biased density model

Model. Let d be a positive integer, (Zt)t∈Z be a strictly stationary random sequence defined
on the probability space ([0, 1]d,B([0, 1]d),P). The density of Z1 is given by

g(x) =
w(x)f(x)

µ
, x ∈ [0, 1]d,

where w denotes a known positive function and µ is the unknown normalization parameter:
µ =

∫

[0,1]d w(x)f(x)dx. Our goal is to estimate the quadratic functional Qf (1.1) from
Z1, . . . , Zn.

When Z1, . . . , Zn are independent and d = 1, this problem has been studied by Petsa
and Sapatinas (2010). Further details about the weighted density estimation problem can
be found in, e.g., Efromovich (2004), Brunel et al. (2009) and the references therein.

The rest of study is devoted to the estimation of Qf in the α-mixing case.
Definitions. For j ∈ Z, define the σ-fields

FZ
−∞,j = σ(Zk, k ≤ j), FZ

j,∞ = σ(Zk, k ≥ j).

For any m ∈ Z, we define the m-th α-mixing coefficient of (Zt)t∈Z by

αm = sup
(A,B)∈FZ

−∞,0×FZ
m,∞

|P(A ∩B)− P(A)P(B)| . (4.1)

We say that (Zt)t∈Z is α-mixing if and only if limm→∞ αm = 0.
Full details on the α-mixing dependence can be found in, e.g., Rosenblatt (1956),

Doukhan (1994), Carrasco and Chen (2002) and Fryzlewicz and Subba Rao (2011).
Assumptions. We formulate the following assumptions.

• There exist two constants c > 0 and C > 0 such that

c ≤ inf
x∈[0,1]d

w(x), sup
x∈[0,1]d

w(x) ≤ C. (4.2)

• There exists a constant C > 0 such that

sup
x∈[0,1]d

f(x) ≤ C. (4.3)

• For anym ∈ {1, . . . , n}, let g(Z0,Zm) be the density of (Z0, Zm). There exists a constant
C > 0 such that

sup
m∈{1,...,n}

sup
(x,y)∈[0,1]2d

|g(Z0,Zm)(x,y)− g(x)g(y)| ≤ C. (4.4)

7



• There exist two constants C > 0 and q > 1 such that the m-th α-mixing coefficient
(4.1) of (Zt)t∈Z satisfies

n
∑

m=1

mqαq
m ≤ C. (4.5)

Result. Proposition 4.1 below explores the performances of Q̂ (3.2) with a suitable choice
of α̂j,k and β̂j,k,u under the MAE for f ∈ Ls(M).

Proposition 4.1 Let us consider the biased density model framework described above under
(4.2), (4.3), (4.4) and (4.5). Let Qf be (1.1), Q̂ be (3.2) with

α̂τ,k =
µ̂

n

n
∑

i=1

Φτ,k(Zi)

w(Zi)
, β̂j,k,u =

µ̂

n

n
∑

i=1

Ψj,k,u(Zi)

w(Zi)
, µ̂ =

(

1

n

n
∑

i=1

1

w(Zi)

)−1

(4.6)

and j∗ such that
n1/(2d) < 2j∗+1 ≤ 2n1/(2d).

Suppose that f ∈ Ls(M) with M > 0 and s > d/2. Then there exists a constant C > 0 such
that

E(|Q̂−Qf |) ≤ C
1√
n
.

The proof of Proposition 4.1 is based on an adaptation of (Chesneau, 2011, Proposition 6.2)
to the multidimensional case showing that the wavelet coefficients estimators (4.6) satisfy
(3.3) with wn = 1/n and δ = 0, and Theorem 3.1. For this reason, the details are omitted.

Remark 4.1 Let us mention that 1/
√
n is the optimal rate of convergence in the minimax

sense for the standard density estimation problem (i.e. with w(x) = 1) in the i.i.d. case
and for f ∈ Ls(M) with s > d/2. See, e.g., (Tsybakov, 2004, Section 2.7.4.).

4.2 Regression model

Model. Let d be a positive integer, (Zt)t∈Z be a strictly stationary bivariate random
sequence defined on the probability space (R× [0, 1]d,B(R× [0, 1]d),P) where Zt = (Yt, Xt),

Yt = f(Xt) + ξt, t ∈ Z, (4.7)

(Xt)t∈Z is a stationary random process with a known density g : Rd → [0,∞), (ξt)t∈Z is
a stationary random process with E(ξ1) = 0 and E(ξ41) < ∞, and f : [0, 1]d → R is an
unknown regression function. Moreover, it is understood that ξt is independent of Xt, for
any t ∈ Z. Our goal is to estimate the quadratic functional Qf (1.1) from Z1, . . . , Zn. We

8



consider the α-mixing dependence. This kind of dependence is particularly interesting for
nonparametric regression models thanks to its applications in dynamic economic systems
and financial time series (see, e.g., Härdle (1990), White and Domowitz (1984) and the
references therein).
Assumptions. We formulate the following assumptions.

• There exists a constant C > 0 such that

sup
x∈[0,1]d

|f(x)| ≤ C. (4.8)

• There exists a constant c > 0 such that

inf
x∈[0,1]d

g(x) ≥ c. (4.9)

• There exist two constants a > 0 and b > 0 such that the m-th α-mixing coefficient
(4.1) of (Zt)t∈Z satisfies

αm ≤ ae−bm. (4.10)

This corresponds to the so-called strong exponentially mixing case.

Result. Proposition 4.2 below investigates the performances of Q̂ (3.2) with a suitable
choice of α̂j,k and β̂j,k,u under the MAE for f ∈ Ls(M).

Proposition 4.2 Let us consider the regression model framework described above under
(4.8), (4.9) and (4.10). Let Qf be (1.1), Q̂ be (3.2) with

α̂τ,k =
1

n

n
∑

i=1

Yi
g(Xi)

Φτ,k(Xi), β̂j,k,u =
1

n

n
∑

i=1

Yi
g(Xi)

Ψj,k,u(Xi) (4.11)

and j∗ such that
( n

lnn

)1/(2d)
< 2j∗+1 ≤ 2

( n

lnn

)1/(2d)
.

Suppose that f ∈ Ls(M) with M > 0 and s > d/2. Then there exists a constant C > 0 such
that

E(|Q̂−Qf |) ≤ C

√

lnn

n
.

Note that, in comparison to the corresponding optimal rate of convergence in the minimax
sense for the i.i.d. case i.e. 1/

√
n, we pay an extra logarithmic term. We explain this

term by the mild assumptions made on our nonparametric regression model (remark that
no “Castellana-Leadbetter-type condition” (as (4.4)) is done on (Zt)t∈Z).
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Remark 4.2 Other types of nonparametric regression models with dependent observations
can be considered. For instance, one can considered (4.7) with X1, . . . , Xn i.i.d. (or deter-
ministic) and (ξt)t∈Z a α-mixing process. In this setting, using similar arguments to Liang
(2011), one can also apply Theorem 3.1.

4.3 GARCH model

Model. Let (Zt)t∈Z be a strictly stationary random sequence defined on the probability
space ([0, 1],B([0, 1]),P) where

Zt = Xtξt, t ∈ Z, (4.12)

(ξt)t∈Z is a strictly stationary random sequence, the density of ξ1 is known and is denotes
by g, and (Xt)t∈Z is a strictly stationary random sequence, the density of X1 is unknown
ans is denoted by f . Moreover, it is understood that ξt is independent of Xt, for any t ∈ Z.
Our goal is to estimate the quadratic functional Qf (1.1) from Z1, . . . , Zn. We focus our
attention on the β-mixing dependence.

The model (4.12) belongs to the family of GARCH-type models. Financial applications
related to (4.12) can be found in Carrasco and Chen (2002).
Definitions. For any m ∈ Z, we define the m-th β-mixing coefficient of (Zt)t∈Z by

βm =
1

2
sup

((Ai)i∈I ,(Bi)i∈J )∈F
Z
−∞,0×FZ

m,∞

∑

i∈I

∑

j∈J

|P(Ai ∩Bj)− P(Ai)P(Bj)| , (4.13)

where the supremum is taken over all finite partitions (Ai)i∈I and (Bj)j∈J of Ω, which are
respectively FZ

−∞,0 and FZ
m,∞ measurable.

We say that (Zt)t∈Z is β-mixing if and only if limm→∞ βm = 0.
Full details can be found in, e.g., Doukhan (1994), Viennet (1997) and Carrasco and

Chen (2002).
Assumptions. We formulate the following assumptions.

• There exists an integer ν ≥ 1 such that, for any i ∈ {1, . . . , n},

ξi =
ν
∏

r=1

Ur,i, (4.14)

where U1,i, . . . , Uν,i are ν i.i.d. random variables with U1,1 ∼ U([0, 1]).

• There exists a constant C > 0 such that

sup
x∈[0,1]

f(x) ≤ C. (4.15)
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• There exists a constant C > 0 such that them-th β-mixing coefficient (4.13) of (Zt)t∈Z
satisfies

n
∑

m=1

βm ≤ C. (4.16)

Result. Proposition 4.3 below evaluates the performances of Q̂ (3.2) with a suitable choice
of α̂j,k and β̂j,k,u under the MAE for f ∈ Ls(M).

Proposition 4.3 Let us consider the GARCH model framework described above under
(4.14), (4.15) and (4.16). Let Qf be (1.1) with d = 1, for any integer ℓ ≥ 1 and any
h ∈ Cℓ([0, 1]),

T (h)(x) = (xh(x))′, Tℓ(h)(x) = T (Tℓ−1(h))(x), x ∈ [0, 1],

Q̂ be (3.2) with d = 1,

α̂τ,k =
1

n

n
∑

i=1

Tν(φj,k)(Zi), β̂j,k,1 =
1

n

n
∑

i=1

Tν(ψj,k,1)(Zi) (4.17)

and j∗ such that
n1/(2(1+2ν)) < 2j∗+1 ≤ 2n1/(2(1+2ν)).

Suppose that f ∈ Ls(M) with M > 0 and s > (1 + 2ν)/2. Then there exists a constant
C > 0 such that

E(|Q̂−Qf |) ≤ C
1√
n
.

The proof of Proposition 4.3 is based on (Chesneau and Doosti, 2012, Proposition 5.2)
showing that the wavelet coefficients estimators (4.17) satisfy (3.3) with wn = 1/n and
δ = 2ν, and Theorem 3.1. For this reason, the details are omitted.

5 A simulation study

In this section, we examine the finite-sample performance of the proposed wavelet estimator
by a short simulation study in the context of Section 4.2.

5.1 The one dimensional case

We consider the nonparametric regression model

Yi = f(Xi) + ξi, i ∈ {1, . . . , n},
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Figure 1: (a) Wave theoretical regression function f1. (b) Noisy observations. (c) Typical
reconstructions from 100 Monte-Carlo simulations with n = 1024 with the basic wavelet
linear estimator (solid) and theoretical regression function f1 (dashed). (d)–(f) Origi-
nal/Noisy/Estimated wavelet coefficients from a single simulation.

where Xi = i/n, f : [0, 1] → R is an unknown regression function and (ξt)t∈Z is an AR(1)-
process, i.e.,

ξt = αξt−1 + ǫt,

where (ǫt)t∈Z is a sequence of i.i.d. random variables drawn from a zero-mean normal
distribution with variance σ2ǫ . Let us mention that Y1, . . . , Yn are dependent and (ξt)t∈Z
is strictly stationary and strongly mixing for |α| < 1 (see Doukhan (1994)). We aim to
estimate Qf (1.1) from Y1, . . . , Yn.

Two regression functions (“Wave” and “Time Shifted Sine”, initially introduced in Mar-
ron et al. (1998)) were used (see Figure 1(a) and Figure 2(a)). They are defined by

1. Wave:
f1(x) = 0.5 + 0.2 cos(4πx) + 0.1 cos(24πx).

2. Time Shifted Sine: first define the transformation h(x) = (1− cos(πx))/2, then

f2(x) = 0.3 sin
(

3π
(

h(h(h(h(x)))) + x
))

+ 0.5.
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Figure 2: (a) Time Shifted Sine theoretical regression function f2. (b) Noisy observations.
(c) Typical reconstructions from 100 Monte-Carlo simulations with n = 1024 with the basic
wavelet linear estimator (solid) and theoretical regression function f2 (dashed). (d)–(f)
Original/Noisy/Estimated wavelet coefficients from a single simulation.

The primary level τ = 0 and the Symmlet wavelet with 6 vanishing moments were used
throughout all experiments. All simulations were carried out using Matlab.

Figure 1(c) and Figure 2(c) show the results of the basic wavelet linear estimator from
100 replications of n = 1024 samples, with σǫ = 0.2 and α = 0.2. Using the empirical
wavelet coefficient estimators of fu (see Figure 1(c) and Figure 2(c)) in Q̂u (3.2) (estimator
for Qfu (1.1)) for any u ∈ {1, 2}, we obtain

Q̂1 ≈ 0.2749, Q̂2 ≈ 0.2938, MAE(Q̂1) = 0.0105, MAE(Q̂2) = 0.0106.

Then, the MAE of our estimation procedure is analyzed with sample size 512, 1024 and
2048. Table 1 gives the MAE calculated by taking an average of the absolute errors based
on 100 replications. Furthermore, we study the influence of the variance σǫ (ranging from
0.04 to 1) of the noise and of the parameter α (ranging from 0.05 to 0.5) in the AR(1)
process on the estimator. Table 1 shows that increasing the variance of the noise and/or α
in the AR(1) process increases the MAE. Moreover, as expected, the MAE is decreasing as
the sample size increases.
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Table 1: 100× mean MAE values from 100 replications of sample sizes 512, 1024 and 2048.

α = 0.05

σǫ = 0.04 σǫ = 0.2 σǫ = 1

n 512 1024 2048 512 1024 2048 512 1024 2048

MAE(Q̂1) 0.263 0.166 0.097 0.954 0.825 0.477 14.223 14.066 7.224

MAE(Q̂2) 0.217 0.135 0.077 1.486 0.984 0.820 14.291 13.892 7.203

α = 0.2

σǫ = 0.04 σǫ = 0.2 σǫ = 1

n 512 1024 2048 512 1024 2048 512 1024 2048

MAE(Q̂1) 0.314 0.197 0.115 1.185 1.055 0.596 19.653 19.472 10.081

MAE(Q̂2) 0.260 0.163 0.092 1.211 1.061 0.574 19.770 19.266 10.056

α = 0.5

σǫ = 0.04 σǫ = 0.2 σǫ = 1

n 512 1024 2048 512 1024 2048 512 1024 2048

MAE(Q̂1) 1.367 0.843 0.516 8.201 7.976 5.374 46.041 45.576 24.852

MAE(Q̂2) 1.198 0.781 0.451 8.157 8.079 5.371 46.237 45.237 24.817

5.2 The two-dimensional case

We conclude the simulation results by a two-dimensional example. We consider the (two-
dimensional) nonparametric regression model

Yi,j = f(X1,i, X2,j) + ξi,j , (i, j) ∈ {1, . . . , n∗}2,

where X1,i = i/n∗, X2,j = j/n∗ , f : [0, 1]2 → R is an unknown regression function and
ξi,j = ξ1,i + ξ2,j , (ξ1,t)t∈Z and (ξ2,t)t∈Z are two independent AR(1)-processes given by

ξu,t = αuξu,t−1 + ǫu,t, u ∈ {1, 2},

(ǫ1,t)t∈Z and (ǫ2,t)t∈Z are two sequences of i.i.d. random variables drawn from a zero-mean
normal distribution with variance σ2ǫ1 and σ2ǫ2 respectively. We aim to estimate Qf (1.1)
from the n = n2∗ random variables Y1,1, . . . , Yn∗,n∗ .

Two regression functions were used. They are defined by

1.
f1(x, y) = 0.5 + 0.2 cos(4πx) + 0.1 cos(24πx) + 0.2 cos(4πy).
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(a) (b)

(c) (d)

Figure 3: (a) Theoretical regression function f1. (b) Noisy observations. Typical reconstruc-
tions (c) from a single simulation and (d) from 100 Monte-Carlo simulations with n = 2562

with the basic wavelet linear estimator.

2. First define the transformation h(x) = (1− cos(πx))/2, then

f2(x, y) = 0.3 sin
(

3π
(

h(h(h(h(x)))) + x
))

+ 0.1 cos(6πy) + 0.5.

Figure 3(d) and Figure 4(d) give an example of reconstruction with the basic wavelet
linear estimator from 100 replications of n = 2562 samples, with σǫ1 = σǫ2 = 0.2 and
α1 = α2 = 0.2.

In Table 2 the MAE of the estimation procedure in the two-dimensional case is analyzed.
As in the unidimensional case, it is obvious that simultaneously increasing the variances σ2ǫ1
and σ2ǫ2 of the noises of the two AR(1) processes increases the MAE and the MAE decreases
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(a) (b)

(c) (d)

Figure 4: (a) Theoretical regression function f2. (b) Noisy observations. Typical reconstruc-
tions (c) from a single simulation and (d) from 100 Monte-Carlo simulations with n = 2562

with the basic wavelet linear estimator.

as the sample size n increases. Moreover, we can see that increasing the two parameters α1

and α2 also increases the MAE but in a significantly lower fashion. However in association
with very high level of noise (i.e., σǫ1 = σǫ2 = 1), the quadratic functional become rather
difficult to estimate.
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Table 2: 100× mean MAE values from 100 replications of sample sizes 1282, 2562 and 5122.

α1 = α2 = 0.05

σǫ1 = σǫ2 = 0.04 σǫ1 = σǫ2 = 0.2 σǫ1 = σǫ2 = 1

n 1282 2562 5122 1282 2562 5122 1282 2562 5122

MAE(Q̂1) 0.650 0.188 0.046 0.610 0.347 0.220 38.975 27.934 19.810

MAE(Q̂2) 0.903 0.140 0.024 0.821 0.343 0.212 38.452 28.002 19.588

α1 = α2 = 0.2

σǫ1 = σǫ2 = 0.04 σǫ1 = σǫ2 = 0.2 σǫ1 = σǫ2 = 1

n 1282 2562 5122 1282 2562 5122 1282 2562 5122

MAE(Q̂1) 0.650 0.187 0.046 0.647 0.407 0.261 52.782 38.704 27.476

MAE(Q̂2) 0.903 0.139 0.024 0.830 0.406 0.254 52.243 38.777 27.204

α1 = α2 = 0.5

σǫ1 = σǫ2 = 0.04 σǫ1 = σǫ2 = 0.2 σǫ1 = σǫ2 = 1

n 1282 2562 5122 1282 2562 5122 1282 2562 5122

MAE(Q̂1) 0.653 0.180 0.048 1.007 0.836 0.525 113.486 90.852 65.491

MAE(Q̂2) 0.905 0.133 0.031 1.075 0.853 0.522 112.903 90.967 65.005
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6 Proofs

In this section, C denotes any constant that does not depend on j, k and n. Its value may
change from one term to another and may depend on φ and ψ.

Proof of Theorem 3.1. It follows from (3.1), (3.2) and the triangular inequality that

E(|Q̂−Qf |) ≤ A1 +A2 +A3, (6.1)

where

A1 =
∑

k∈Dτ

E(|α̂2
τ,k − α2

τ,k|), A2 =

2d−1
∑

u=1

j∗
∑

j=τ

∑

k∈Dj

E(|β̂2j,k,u − β2j,k,u|)

and

A3 =
2d−1
∑

u=1

∞
∑

j=j∗+1

∑

k∈Dj

β2j,k,u.

Let us now bound A1, A2 and A3.
Upper bound for A1. We have

α̂2
τ,k − α2

τ,k = (α̂τ,k − ατ,k)
2 + 2ατ,k(α̂τ,k − ατ,k).

Owing to the triangular inequality, the Cauchy-Schwarz inequality and (3.3), we obtain

E(|α̂2
τ,k − α2

τ,k|) ≤ E((α̂τ,k − ατ,k)
2) + 2|ατ,k|

√

E((α̂τ,k − ατ,k)2)

≤ C(wn +
√
wn) ≤ C

√
wn.

Therefore, since Card(Dτ ) is constant,

A1 ≤ C
√
wn. (6.2)

Upper bound for A2. Again, we can write

β̂2j,k,u − β2j,k,u = (β̂j,k,u − βj,k,u)
2 + 2βj,k,u(β̂j,k,u − βj,k,u).

The triangular inequality, the Cauchy-Schwarz inequality and (3.3) lead to

E(|β̂2j,k,u − β2j,k,u|) ≤ E((β̂j,k,u − βj,k,u)
2) + 2|βj,k,u|

√

E((β̂j,k,u − βj,k,u)2)

≤ C(2jδdwn + |βj,k,u|2jδd/2
√
wn).
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Using the Cauchy-schwarz inequality, Card(Dj) = 2jd, f ∈ Ls(M) with s > (1 + δ)d/2 and
(3.4), we obtain

A2 ≤ C



wn

j∗
∑

j=τ

2j(1+δ)d +
√
wn

2d−1
∑

u=1

j∗
∑

j=τ

2jδd/2
∑

k∈Dj

|βj,k,u|





≤ C






wn

j∗
∑

j=τ

2j(1+δ)d +
√
wn

j∗
∑

j=τ

2j(1+δ)d/2

√

√

√

√

√

2d−1
∑

u=1

∑

k∈Dj

β2j,k,u







≤ C



wn2
j∗(1+δ)d +

√
wn

∞
∑

j=τ

2−j(s−(1+δ)d/2)



 ≤ C
√
wn. (6.3)

Upper bound for A3. The assumption f ∈ Ls(M) with s > (1 + δ)d/2 and (3.4) yield

A3 ≤ C

∞
∑

j=j∗+1

2−2js ≤ C2−2j∗s ≤ C2−j∗(1+δ)d ≤ C
√
wn. (6.4)

Putting (6.1), (6.2), (6.3) and (6.4) together, we obtain

E(|Q̂−Qf |) ≤ C
√
wn.

Theorem 3.1 is proved. �
Proof of Proposition 4.2. First of all, in order to apply Theorem 3.1, let us prove

that the wavelet coefficient estimators (4.11) satisfy the assumption (3.3).
Observe that, thanks to the independence between ξ1 and X1 and E(ξ1) = 0, we have

E(β̂j,k,u) = E

(

f(X1)

g(X1)
Ψj,k,u(X1)

)

=

∫

[0,1]d

f(x)

g(x)
Ψj,k,u(x)g(x)dx

=

∫

[0,1]d
f(x)Ψj,k,u(x)dx = βj,k,u.

Therefore, since (Zt)t∈Z is a stationary process, a standard covariance decomposition yields

E
(

(β̂j,k,u − βj,k,u)
2
)

=
1

n2
V

(

n
∑

i=1

Yi
g(Xi)

Ψj,k,u(Xi)

)

≤ T1 + T2,

where

T1 =
1

n
V

(

Y1
g(X1)

Ψj,k,u(X1)

)
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and

T2 =
2

n

n−1
∑

m=1

∣

∣

∣

∣

Cov

(

Ym+1

g(Xm+1)
Ψj,k,u(Xm+1),

Y1
g(X1)

Ψj,k,u(X1)

)∣

∣

∣

∣

.

In order to bound T1 and T2, we will need the following moments result. Using again the
independence between ξ1 and X1, E(ξ

4
1) <∞, (4.8), (4.9), applying the change of variables

y = 2jx− k and using the fact that Ψ is compactly supported, we have for any ν ∈ {2, 4},

E

((

Y1
g(X1)

Ψj,k,u(X1)

)ν)

≤ C

(

Cν + E(ξν1 )

cv−1

)

E

(

1

g(X1)
(Ψj,k,u(X1))

ν

)

= C

∫

[0,1]d

1

g(x)
(Ψj,k,u(x))

νg(x)dx = C

∫

[0,1]d
(Ψj,k,u(x))

νdx

= C2jd(ν−2)/2

∫

supp(Ψ)
(Ψu(x))

νdx ≤ C2jd(ν−2)/2. (6.5)

It follows from (6.5) with ν = 2 that

T1 ≤
1

n
E

(

(

Y1
g(X1)

Ψj,k,u(X1)

)2
)

≤ C
1

n
.

Let us now study the upper bound for T2. Let [r lnn] be the integer part of r lnn where
r = 1/b. We have

T2 = T2,1 + T2,2, (6.6)

where

T2,1 =
2

n

[r lnn]
∑

m=1

∣

∣

∣

∣

Cov

(

Ym+1

g(Xm+1)
Ψj,k,u(Xm+1),

Y1
g(X1)

Ψj,k,u(X1)

)∣

∣

∣

∣

and

T2,2 =
2

n

n−1
∑

m=[r lnn]+1

∣

∣

∣

∣

Cov

(

Ym+1

g(Xm+1)
Ψj,k,u(Xm+1),

Y1
g(X1)

Ψj,k,u(X1)

)∣

∣

∣

∣

.

The Cauchy-Schwarz inequality and (6.5) with ν = 2 yield

∣

∣

∣

∣

Cov

(

Ym+1

g(Xm+1)
Ψj,k,u(Xm+1),

Y1
g(X1)

Ψj,k,u(X1)

)∣

∣

∣

∣

≤ E

(

(

Y1
g(X1)

Ψj,k,u(X1)

)2
)

≤ C.

Hence

T2,1 ≤ C
lnn

n
.
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By the Davydov inequality (see Davydov (1970)), (4.10), again (6.5) with ν = 4 and 2jd ≤ n,
we obtain

T2,2 ≤ 10a1/2
1

n

√

√

√

√E

(

(

Y1
g(X1)

Ψj,k,u(X1)

)4
)

n−1
∑

m=[r lnn]+1

e−bm/2

≤ C
1

n
2jd/2e−br lnn/2 ≤ Cn−(1+br)/2 = C

1

n
.

Hence

T2 ≤ C
lnn

n
.

Combining the inequalities above, we obtain

E
(

(β̂j,k,u − βj,k,u)
2
)

≤ C
lnn

n
.

This inequality holds for α̂j,k instead of β̂j,k,u and αj,k instead of βj,k,u. Therefore the
assumption (3.3) is satisfied with wn = lnn/n and δ = 0. Theorem 3.1 yields the desired
result. �
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Tsybakov, A.B. (2004). Introduction à l’estimation non-paramétrique, Springer.

Vidakovic, B. (1999). Statistical Modeling by Wavelets. John Wiley & Sons, Inc., New York,
384 pp.

Viennet, G. (1997). Inequalities for absolutely regular processes: application to density
estimation. Probab. Theory Related Fields, 107, 467-492.

White, H. and Domowitz, I. (1984). Nonlinear Regression with Dependent Observations.
Econometrica, 52, 143-162.

24


