
HAL Id: hal-00707009
https://hal.science/hal-00707009

Submitted on 14 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A User Centric View of Lyee Requirements
Colette Rolland

To cite this version:
Colette Rolland. A User Centric View of Lyee Requirements. International Workshop on Lyee
Methodology, 2002, France. pp.1. �hal-00707009�

https://hal.science/hal-00707009
https://hal.archives-ouvertes.fr

A User Centric View of Lyee Requirements

Colette ROLLAND

Université Paris1 Panthéon Sorbonne

CRI, 90 Rue de Tolbiac

75013 Paris, France

Tel. 33 1 44 07 86 34 – 33 1 44 07 86 45

Fax. 33 1 44 07 89 54

rolland@univ-paris1.fr

Abstract. The paper deals with the modelling of Lyee user requirements and

guidelines to support their capture. The Sorbonne contribution to the Lyee

collaborative project aims to reduce the software development cycle to two explicit

steps, requirements engineering and code generation by coupling the code

generation features of LyeeALL with an interface to capture user requirements. The

paper presents a 2-layer meta-model relating the set of concepts to capture user

requirements to the set of concepts for the formulation of software requirements that

are the input of the LyeeALL generation mechanism. It exemplifies the concepts

with example and introduces the guidance support for capturing these user centric

requirements.

1. Introduction

The research of the Sorbonne group within the Lyee
1
 collaborative project is aimed at

developing a methodology that supports software development in two steps, requirements

engineering and code generation. The former is the contribution of the Sorbonne group

whereas the latter is provided by LyeeALL.

LyeeALL is a commercial Japanese CASE environment which aims at transforming

software requirements into code. As shown in Figure 1, the underlying Lyee approach [16]

[17] comprises an original framework to structure programs, an engine to control their

execution and a generation mechanism to generate programs from given requirements.

These requirements are expressed in rather low-level terms such as screen layouts and

database accesses. Moreover they are influenced by the LyeeALL internals such as the

Lyee identification policy of program variables, the generated program structure and the

Lyee program execution control mechanism. As a consequence it is difficult to get the Lyee

customer away from the burden of Lyee internals instead of focusing his/her attention on

the requirements. Projects conducted in industry with LyeeAll show the need to separate

clearly software requirements from user-centric requirements in order to acquire the former

from the latter.

1
 Lyee, which stands for GovernmentaL MethodologY for SoftwarE ProvidencE, is a methodology for

software development used for the implementation of business software applications. Lyee was invented by

Fumio Negoro.

mailto:rolland@univ-paris1.fr

Figure 1 : LyeeALL

The Sorbonne group develops research towards meeting this need. As a first step, the group

is aiming at:

- (1) defining a user-centric requirements model

- (2) developing methodological rules to support the capture of these requirements

in a systematic way,.

- (3) developing a software assistant to guide the capture of user centric

requirements

- (4) generating the Lyee software requirements from these user requirements

In a second step, the objective is to provide an intelligent software support for the

elicitation of high level requirements and the automated generation of the Lyee software

requirements.

In this paper we concentrate on points (1) and (2) above. In the next section we

introduce the meta-modelling approach which was used to define the user-centric

requirements model and we provide an overview of the model. Section 3 contains a

description of the model concepts and illustrates them with examples. The next section

deals with the process support to help in the capture of user-centric requirements. Some

idea of future work is given in the conclusion.

2. Meta-Modelling Approach and Lyee Requirements Meta-Model

At the start of the project, it was quickly realised that Lyee was understood in operational

terms such as Process Route Diagram (PRD), Pallets, Signification Vectors, Routing

Vectors and the like and it was difficult to get a global, systemic view of it. The need for the

latter was felt particularly strongly because :

(a) user-centric requirements are to be related to Lyee software requirements. and a

systemic model would help in clearly expressing this relationship.

(b) additionally, the transition form user requirements to Lyee programs called for

traversal across different levels of abstraction, a task that the area of modelling

and meta-modelling is known to perform effectively.

Meta-modelling is known as a technique to capture knowledge about methods. It

has been used for understanding, comparing and evaluating methods [7]. Meta-models were

also used as a basis for method-engineering [4] and Case shell construction [3] [9] [13]. A

number of meta modelling languages have been proposed to deal with (a) the representation

of the product aspects of methods [1] [3] [8] [10] [15] [24] and (b) for modelling the

process aspects of methods [12] [20] [21] [23].

We used a meta modelling approach to first model the set of concepts underlying

the Lyee software requirements and secondly, to abstract from them the user-centric

requirements model. The result of this effort is a 2-layer meta model
2
 expressed with UML

notations. The upper layer corresponds to the user-centric requirements model whereas the

lower layer identifies the set of concepts required to express software requirements in Lyee

terms.

Figure 2 shows the meta-model and highlights the separation between user

requirements concepts and Lyee software requirements concepts. The former constitute the

user requirement layer whereas the latter form the Lyee software requirements layer.

User Requirements Layer

Lyee Software Requirements Layer

1 1..*

Name

Domain

{complete, or}

InputOutput

source

target Link

Condition

Duplex Continuous Multiplex

Name

Type

{complete, or}

Node

NodeID

PSG

PSGName
0..* 0..*

IntermediateEndBegin

1..*

1..*
1..*

1..*

1..* 0..*

0..1

{complete, or}

Action Word

W04

W02

W03

PNTR

PNTD

PNTE

LogicalID

Device

Logical Unit

SFID

1

1

1

1

1

1

1

1..*

NextpalletID

Routing Word
Word

WordID

Domain Word

L3-condition

L4-formula

Name

Domain

PRD1

POP1

PCL1

PCR1 PCR2 PBOX

PWT1
Word in

Pallet/Unit
1..*

PNTA PNTM

IntraSF

PNTN

PNTC

PRD

PRDName

Pallet

PalletI

D

Passive

Active

{complete, or}

ItemDefined

condition

formula

Scenario Function

InterSF

Condition

User Requirements Layer

Lyee Software Requirements Layer

1 1..*

Name

Domain

{complete, or}

InputOutput

source

target Link

Condition

DuplexDuplex ContinuousContinuous MultiplexMultiplex

Name

Type

{complete, or}

Node

NodeID

PSG

PSGName
0..* 0..*

IntermediateIntermediateEndBegin

1..*

1..*
1..*

1..*

1..* 0..*

0..1

{complete, or}

Action Word

W04

W02

W03

PNTR

PNTD

PNTE

LogicalID

Device

Logical Unit

SFID

1

1

1

1

1

1

1

1..*

NextpalletID

Routing Word

NextpalletID

Routing Word
Word

WordID

Domain Word

L3-condition

L4-formula

Name

Domain

PRD1

POP1

PCL1

PCR1 PCR2 PBOX

PWT1
Word in

Pallet/Unit
1..*

PNTA PNTM

IntraSF

PNTN

PNTC

PRD

PRDName

Pallet

PalletI

D

Pallet

PalletI

D

Passive

Active

{complete, or}

ItemDefined

condition

formula

Scenario Function

InterSF

Condition

InterSF

Condition

Figure 2 : Lyee meta-model

Let us introduce first, the lower layer concepts to express Lyee software

requirements. The essence of the Lyee approach is to reduce software requirements to the

description of program variables called words, and to generate the control structure that

logically processes these variables and produces the expected result. Despite the traditional

design approaches in which both the variables and the control structure of the program must

be designed, LyeeALL generates the latter provided an appropriate description of the

former is given.

 From the design view point, the approach can be compared to declarative approaches

for information system design. In these approaches, system design is reduced to a set of

predicates from which the state of the system can be derived at any point of time t. Lyee

relies on the notion of word and makes the distinction between input words (these are

given value through system communication with the external world) and output words

produced by the system. Instead of predicates, Lyee uses formulae to express how to

produce an output word. The ordering of word production does not need to be given. In

this sense the Lyee approach is declarative.

 From the generation view point, LyeeALL is similar to a forward inference engine of an

expert system which generates new facts by applying to the existing base of facts at

time t those rules having their premises true. Similarly, the Lyee engine saturates the

2
 The term meta-model is used in the paper in the same sense as the term meta schema.

application of formulae till all the output words are determined. However, as the Lyee

engine controls the execution of formulae which are procedural rules and not inference

rules, the engine activates a proprietary function to a Lyee specific program structure,

the Process Route Diagram (PRD). This structure is hierarchical : a PRD is composed

of Scenario Functions (SF), composed of Pallets which are made of Vectors. In order to

carry out the generated program control the function generates its own words, such as

the action words related to vectors and routing words to distribute the control over the

various SFs of a PRD.

The concept of Word is therefore central to the expression of Lyee software

requirement, whereas the ones of PRD, SF, Pallet and Vector required by the word

processing mechanism of LyeeALL are also part of the Lyee software requirements model.

These concepts can be seen in Figure 2 as part of the lower layer of the meta-model.

The upper layer of Figure 2 is centred on three concepts only : Defined, Item and

PSG. This reflects the fact that the user-centric model abstracts from the details of Lyee

software requirements to identify the minimum set of concepts to capture the domain

dependent requirements. However the simplicity of the upper layer results fundamentally

from the declarative approach of Lyee.

We present the upper layer concepts in the next section and illustrate them with the

Split example. Split a Goal is a functionality which, given a goal statement such as

‘Withdraw cash from an ATM’, automatically decomposes it into a verb and its parameters.

For example, Withdraw is the verb, Cash is the target parameter of the verb and from an

ATM is the means parameter. The full functionality identifies 7 different parameters .

However, in this paper we will consider only the two parameters exemplified above, target

and means. Besides, the case considered in the following extends when necessary, the Split

functionality in three different ways :

(a) the storage of the goal and its decomposition in a database.

(b) the retrieval of the goal name from a Goal table in a database.

(c) the possible failure of the goal decomposition function.

3. The User Centric Requirements Meta-Model

 Interaction driven user requirement capture

In order to comply with the Lyee approach, the user requirements model should be

centred on a notion which abstracts from the Lyee internal concept of word. Obviously

words required by the Lyee processing mechanism are not relevant at this level. On the

contrary, the concern is only with domain dependent words. Besides, there is a need to

provide the requirement holder with a means to grasp a ‘set of ‘words’ conceptually

associated with one another. We propose the notion of ‘system interaction’ for that purpose.

We believe that the Lyee approach, which is output driven, fits with a use case [6] kind of

user requirements capture.

Our suggestion to the Lyee user is to reason in terms of a goal driven interaction as

shown in Figure 3. The interaction is meant to be between the user and the system viewed

as a black box. The interaction is goal driven in the sense that the user asks the system to

achieve the goal he/she has in mind without knowing how the system will do it. The user

provides some input and receives the output which corresponds to the expected result. It is

the achievement of the goal which produces the output. The input is necessary to achieving

the goal. We refer to this goal as the interaction goal.

In generic terms, any interaction is characterised by the user goal ‘Get a result’; it

produces an output, given some user input. In the Split example, the user goal is to get

support from the system to decompose a goal statement. Thus, ‘Split a Goal’ is the

interaction goal. If, for example, the input is the goal statement ‘Withdraw cash from the

ATM’, then the achievement of the goal produces the output i.e. the decomposed form of

the goal : Withdraw verb cash target from the ATM means.

System

Get a result

Output

Input

System

Split a Goal

with a card based ATM means

Withdraw verb

cash target

Split (Withdraw cash with

a card based ATM)

Figure 3 : The interaction view point

 Words in interaction

An interaction delineates a number of input and output ‘words’ logically assembled

together. The former correspond to meta-model items belonging to the same defined (see

below).

In order to systematise the collect of requirements, we identify generic classes of

‘words’ that will be instantiated in any such interaction and represented as items in the

requirements formulation. Let us introduce so far three of them :

- Winput : the input provided by the user

- Wresult: the result of the goal achievement

- Woutput : : the output displayed to the user

In the ‘Split a Goal’ interaction of Figure 4, Winput is the goal statement given as

input by the user, the result Wresult produced by the achievement of the goal ‘Split a Goal ‘,

is the set {verb, target, means} and the output Woutput presented to the user is identical to the

result, i.e. the set {verb, target, means}.

Winput : {goal,}

Wresult : {verb, target, means}.

 Woutput = Wresult

As illustrated with the Split example, the set of output words Woutput might be the

same as the set of result words Wresult ; however the semantics is different as the former are

the ones whose values are presented to the user whereas the latter are the ones resulting of

the interaction goal achievement.

In addition, as shown underneath a relationship can be established between the

Winput and

Wresult:

 Wresult Wcmd (Winput)

Indeed, to get the interaction goal achieved, the user has to provide the input and to

give some kind of command (Wcmd)

 The concepts of Defined
3
 and Item

All the words of an interaction shall be represented with the meta-model concept of

Item. The above typology helps identifying the items to be identified and described for a

given interaction.

3
 In the following concepts are in italics with a capital as first letter. Instances of concepts are in italics with a

small first letter. For example, Item refers to a concept whereas item refers to an instance of the concept Item.

A specific item such as goal is in small letter and italics.

 Item Wresult, Wcmd, Winput , Woutput

The items belong to the same defined. A Defined is a container of Items logically

related to each other. Defined and Items are the keys to expressing user requirements

compliant to our meta-model.

In the Split example there are 5 items, namely goal, cmdSplit, verb, target and

means. All belong to the same defined, Split1. Figure 4 presents the instantiation of the

meta-model for formulating the Items and defined of the Split example. The instance is

drawn with the UML object diagram notations.

:Output

target
X
target=ftarget (Split1.goal)

:Output

means
X
means=fmeans (Split1.goal)

:Defined

Split1

screen

:Passive

goal

X

:Active

cmdSplit

K

:Output

verb
X
verb=fverb (Split1.goal)

:Output

target
X
target=ftarget (Split1.goal)

:Output

target
X
target=ftarget (Split1.goal)

:Output

means
X
means=fmeans (Split1.goal)

:Output

means
X
means=fmeans (Split1.goal)

:Defined

Split1

screen

:Defined

Split1

screen

:Passive

goal

X

:Passive

goal

X

:Active

cmdSplit

K

:Active

cmdSplit

K

:Output

verb
X
verb=fverb (Split1.goal)

:Output

verb
X
verb=fverb (Split1.goal)

Figure 4 : Items & Defined of the Split interaction

In the meta-model, the concepts of Defined and Item have attributes: Every defined

has a name (Name) and a type (Type) which identifies the physical device of the container

(screen, file, database etc..). An item has a name (Name) and a domain (Domain): numeric

(9), char(X) and (K) for screen buttons. In the Split example, goal is the name of an item of

the defined Split1 which has a string of characters as domain(X).

The meta-model specialises Item into Output and Input. An output is produced by

the system whereas an input is captured from the user. Input is further specialised into

Passive and Active. An active input triggers a system action whereas a passive input

represents values captured from the user. A screen button such as cmdSplit in the Split

example is an active item whereas goal is a passive one. Both specialisations (Item into

Output or Input and Input as Active or Passive) are partitions of the set of items i.e. they are

complete and exclusive.

Finally, the concept of Output Item has two specific attributes : Formula and

Condition. The Formula is mandatory whereas the Condition is set by default to true. Due

to the declarative nature of the Lyee approach, calculation dependencies among items do

not need to be expressed through conditions. Therefore, only constraints such as validity

constraints on input items might become conditions associated to outputs depending on the

validity of these inputs. The formula is the calculation rule. In the Split example, the verb

will be associated to the formula, verb = fverb(goal). The function fverb when applied to a

goal statement produces the verb of its goal statement.

 Housekeeping goals

The achievement of the interaction goal ‘Get a result’ is not always as straight

forward as in the case considered so far. It can happen that it requires some additional goals

to be fulfilled. We refer to these goals as housekeeping goals. Typical examples are the

extension (a) and (b) of the Split case introduced above in the paper. In case (a) the

decomposition is stored in the database and in case (b) the goal statement is retrieved from

the database. ‘Store Goal Decomposition’ and ‘Retrieve Goal Statement’ are housekeeping

goals. They are additional to the interaction goal ‘ Split a Goal’’.

It shall be noticed that there is a fundamental difference between the two types of

goals, interaction goal and housekeeping goal. Whereas the ‘Get a result’ type of goal is

the essence of the interaction, the housekeeping goals contribute to the performance of a

successful interaction but do not determine its purpose. The interaction goal is user-centric

whereas the housekeeping goals are system-centric. Following goal decomposition in

requirements engineering [3] [6] [23], housekeeping goals can be regarded as sub goals of

the interaction goal ‘Get a result’.

However housekeeping goals implies new items and new defineds to be introduced.

Let us understand the nature of these items by extending the typology of ‘words’ as defined

previously in cases similar to extension (a) of the Split example. A similar reasoning can be

done for each type of housekeeping goal [25].

In cases similar to extension (a) of the Split example, words to be memorised in a

persistent manner such as in a database or a file, Windb have to be identified as part of the

user requirements formulation.

 Windb Wcmddb (Wdbkey, Woutput)

The above expression characterises the production of Windb. In order to store output

words Woutput in specific database words, Windb, the database key Wdbkey is required and the

user shall activate a command, Wcmddb .

Consequently, new items shall be introduced :

Items Windb, Wcmddb, Wdbkey,

Housekeeping goals lead to specific defineds as they use a specific device distinct

from the one characterising the defined of the interaction. In the Split example, the

requirement formulation (Figure 5) includes the defined GOAL of type database with the

associated items, goalid, goal, verb, means and target. In contrast, the Wcmddb is part of the

defined associated to the interaction. In the Split example the command button, CmdOK is

an item of the defined Split1.

As there are several defineds a precedence relationship between these shall be introduced.

The concept of PSG in the meta-model captures this aspect.

 The concept of PSG

The meta-model includes the notion of a PSG, the Precedence Succedence Graph to

stipulate ordering conditions between Defineds.

As shown in Figure 2, a PSG has Nodes and Links between Nodes. Nodes are

classified into Intermediate, Begin and End. Begin and End Nodes are predefined nodes to

start and end the program whereas Intermediate Nodes. are related to Defineds .

Links between Nodes are of three different types : Continuous, Duplex and

Multiplex Whereas all links indicate the processing order of the related defineds, a

continuous link is a forward link between two defineds while duplex /multiplex links are

backward links between two defineds. The choice between a duplex or a multiplex link

depends on whether or not data have to be transferred to process the backward defined. In

the Split example, the defined GOAL is multiplex- linked to the defined Split1 to get back to

an empty Split screen after a goal decomposition was performed. In this case there is no

data transfer associated to the backward link to Split1 and therefore, the GOAL-Split1 link

in the psgSplit is a multiplex one. It shall be noticed that this information is user driven : it

is a user decision to choose an iterative process allowing to capture a goal statement and

ask for its decomposition several times.

Finally, the meta-model shows that a Link might have an associated Condition

which constraints its occurrence.

 Figure 5 presents the instantiation of the meta-model to formulating the Split a Goal

requirements in case (a). The instance is drawn using the UML object diagram notations. It

shows that there are two defined, (a) Split1 of type screen, gathering the input and output

items of the interaction and (b) GOAL of type database composed of the items representing

the attributes of the relational table to store the goal decomposition.

Split1 comprises active items (cmdSplit, cmdOK and cmdCancel) whereas GOAL

has only passive items. Some items in Split1 are typed input (cmdSplit, cmdOK,

cmdCancel, goal) whereas the others are output items (verb, target, means). All items in

GOAL are typed output as they are produced by the program and stored in the database.

Each of the output items in the defined Split1 are associated with a formula that is its

calculation rule. In compliance with the meta-model, the output items of the defined GOAL

have formulae which are rules for expressing that the values of the attributes of the database

table GOAL are the ones of corresponding items of the defined Split1.

:Output

target
X
target=ftarget (Split1.goal)

:Output

means
X
means=fmeans (Split1.goal)

:Defined

Split1

screen

:Passive

goal

X

:Active

cmdOK

K

:Continuous

cmdOK=true

:Begin

Node1

:Intermediate

Node2

:Intermediate

Node3

: PSG

psgSplit

:Multiplex

:Continuous

Source

Target

Source

Target Source

Target

:Output

goal

X

:Output

target

X

:Output

means

X

:Defined

GOAL

database

:Output

verb

X :Output

verb
X
verb=fverb (Split1.goal)

:Output

goalid

X

:Active

cmdSplit

K

:Active

cmdCancel

K
:End

Node4

:Continuous

cmdCancel=true

Source

Target

:Output

target
X
target=ftarget (Split1.goal)

:Output

target
X
target=ftarget (Split1.goal)

:Output

means
X
means=fmeans (Split1.goal)

:Output

means
X
means=fmeans (Split1.goal)

:Defined

Split1

screen

:Defined

Split1

screen

:Passive

goal

X

:Passive

goal

X

:Active

cmdOK

K

:Active

cmdOK

K

:Continuous

cmdOK=true

:Continuous

cmdOK=true

:Begin

Node1

:Begin

Node1

:Intermediate

Node2

:Intermediate

Node2

:Intermediate

Node3

:Intermediate

Node3

: PSG

psgSplit

: PSG

psgSplit

: PSG

psgSplit

:Multiplex:Multiplex

:Continuous:Continuous

Source

Target

Source

Target Source

Target

:Output

goal

X

:Output

goal

X

:Output

target

X

:Output

target

X

:Output

means

X

:Output

means

X

:Defined

GOAL

database

:Defined

GOAL

database

:Output

verb

X

:Output

verb

X :Output

verb
X
verb=fverb (Split1.goal)

:Output

verb
X
verb=fverb (Split1.goal)

:Output

goalid

X

:Output

goalid

X

:Active

cmdSplit

K

:Active

cmdSplit

K

:Active

cmdCancel

K

:Active

cmdCancel

K
:End

Node4

:End

Node4

:Continuous

cmdCancel=true

:Continuous

cmdCancel=true

Source

Target

Figure 5 : Formulating the Split requirements through meta-model instantiation

The psgSplit comprises two nodes, Split1 and GOAL in addition to the Begin and

End nodes. They are related by a continuous forward link which is activated in the

processing when the button OK has been pushed and a multiplex link in the backward

direction which is processed as soon as the goal decomposition has been stored in the

database.

 Considering Obstacles to ‘Get a result’

The notion of obstacle has been introduced in requirements engineering by Colin

Potts in [19] and further developed in [3] [29] [30] [31]. An obstacle is defined as anything

which happens and causes a failure in achieving a goal. From a requirement viewpoint, it is

important to identify obstacles as the system under construction shall be prepared to react to

obstacle happenings. In our case, identifying the risks of interaction goal failure is a means

to complete the requirements related to the interaction.

Considering obstacles to the achievement of ‘Get a result’ leads to the introduction

of new types of words, Wcase
i
 characterised as follows :

 Wcase
i
 = P(Woutput) : f boolean = true

 Woutput = Wcase
i

The set of words referred to as Wcase
i
 corresponds to the subset of output words,

Woutput which are produced under a certain condition (f boolean = true).The entire set of output

words to be considered in the interaction is therefore the union of Wcase
i
.

Let us consider case (c) of the Split example, assuming that the f verb function might

fail if the name of the verb extracted from the goal statement is not in the table of verbs

used by this function. The interaction might then, fail in achieving the interaction goal

‘Split a Goal’. Consequently, there are two cases of output :

- case
1
 occurs when the verb, target and means items are presented to the user,

whereas

- case
2
 occurs when the decomposition cannot be performed; the message

‘Impossible Split’ is shown to the user.

In this case Woutput = Wcase
1

 Wcase
2

 Wcase
1

 = {goal, target, means, verb}

 Wcase
2

 = {‘Impossible Split’}

An item has to be introduced for every word of each Wcase
i
.

Figure 6 shows the instantiation of the meta-model to formulating case (c) of the

Split example. Two new defineds Scase1 and Scase2 have been added and linked to the

defined Split1 through forward continuous links. These links are labelled with conditions

identifying the two cases, case
1
 and case

2
. Each of the defineds aggregates the appropriate

items : {goal, target, means, verb, cmdOK} for the defined Scase1 and {M1, cmdOK} for

the defined Scase2.

Verb found

:Active

cmdSplit

K

:Defined

Split1

screen

:Passive

goal
X

:Defined

Scase1

screen

:Defined

Scase2

screen

:Output

M1 :‘Impossible

Split’
X

:Output

verb
X

:Output

target

X

:Output

means
X

:Begin

Node1

:Intermediate

Node2

: PSG

psgSplit

:Continuous

Source

Target

:Continuous

cmdSplit=true

:Intermediate

Node3

Source

Target

:Continuous

cmdSplit=true

:Intermediate

Node4

Source

Verb not

found

Target

:End

Node5

:Continuous

cmdOK=true
Source

Target

:Continuos

cmdOK=true

:Active

CmdOK

K

:Active

cmdOK

K

:Output

goal
X

Source

Target

Verb found

:Active

cmdSplit

K

:Active

cmdSplit

K

:Defined

Split1

screen

:Defined

Split1

screen

:Passive

goal
X

:Passive

goal
X

:Defined

Scase1

screen

:Defined

Scase1

screen

:Defined

Scase2

screen

:Defined

Scase2

screen

:Output

M1 :‘Impossible

Split’
X

:Output

M1 :‘Impossible

Split’
X

:Output

verb
X

:Output

verb
X

:Output

target

X

:Output

target

X

:Output

means
X

:Output

means
X

:Begin

Node1

:Begin

Node1

:Intermediate

Node2

:Intermediate

Node2

: PSG

psgSplit

: PSG

psgSplit

: PSG

psgSplit

:Continuous:Continuous

Source

Target

:Continuous

cmdSplit=true

:Continuous

cmdSplit=true

:Intermediate

Node3

:Intermediate

Node3

Source

Target

:Continuous

cmdSplit=true

:Continuous

cmdSplit=true

:Intermediate

Node4

:Intermediate

Node4

Source

Verb not

found

Target

:End

Node5

:End

Node5

:Continuous

cmdOK=true

:Continuous

cmdOK=true
Source

Target

:Continuos

cmdOK=true

:Continuos

cmdOK=true

:Active

CmdOK

K

:Active

CmdOK

K

:Active

cmdOK

K

:Active

cmdOK

K

:Output

goal
X

:Output

goal
X

Source

Target

Figure 6 : Formulating the Split case (c) through meta-model instantiation.

 Compound interaction

In real projects the user has to deal with more gross-grained interactions than the

Split interaction drawn in Figure 3. We suggest a distinction between a simple interaction

and a compound interaction. The former is associated to one single atomic interaction goal

whereas in the latter the goal is an aggregate of interaction sub-goals

Figure 7 is an example of compound

interaction where the goal ‘Get Confirmed

Booking’ is an aggregate of two sub-goals :

‘Request for Booking’ and ‘Confirm & Pay’.

The request parameters are the inputs

necessary to achieve the first sub goal which

results in an offer to the customer. This offer

is the input for the achievement of the

second sub goal.

CustomerCustomer Get Confirmed

Booking

Confirmed Booking

Request for booking (request parameters)

Confirm & Pay (offer parameters)

Figure 7: Booking interaction

The notion of AND decomposition of a goal is well known in requirements

engineering [5] [6] [19] [22] and business process modelling [3] [11] [14] [18] [26] and

seems to fit our needs. The interaction goal of a compound interaction is decomposable in

two or more ANDed sub-goals. As shown in Figure 9, the interaction goal ‘Get Confirmed

Booking’ is decomposable in two sub-goals ‘Get Booking Offer’ and ‘Confirm Booking

Offer’

Goal Decomposition Get Confirmed Booking

Get Booking Offer Confirm Booking Offer

Interaction Decomposition
CustomerCustomer

Get

Booking Offer

Booking Offer

Confirm & Pay

(booking offer)

Confirm

Booking Offer

Request for booking

(request parameters)

Confirmed

Booking

Sub-Interaction1 Sub-Interaction2

Figure 8 : Decomposition of the ‘Get Confirmed Booking’ interaction

It is important to notice that sub-goals are interaction goals. In other words, the

compound interaction can be seen as a sequence of atomic interactions, each of them

corresponding to one sub-goal of the compound interaction goal. This is exemplified in

Figure 8 that shows the compound interaction to ‘Get a Confirmed Booking’ as composed

of two interactions, the first one to ‘Get Booking Offer’ and the second one to ‘Confirm

Booking Offer’. Each of these interactions follows the pattern explained above and might

include housekeeping goals. Each of these will have to be scrutinised as explained before to

identify the involved items and defineds.

To sum up, the user centric layer of the meta-model identifies three key concepts,

Defined, Item and PSG. These three concepts are used to express the set of domain

dependent requirements and this expression is necessary and sufficient to derive the Lyee

software requirements. Items are the essence of Lyee user requirements, the external form

of Lyee internal words. A Defined is a group of items that are conceptually related to one

another and are bound together in a simple or compound interaction. In addition to the

Defineds flowing from the interaction, housekeeping goals introduce complementary

defineds that require the use of devices such as databases, files or Internet communications.

The concept of PSG captures the ordering of the defineds required by the user.

From a semantic viewpoint, this paper proposes to relate the user-centric

requirements to the notion of an interaction and introduces an interaction frame with a

typology of ‘words’ to reason systematically about the requirements implied by this

interaction. It was shown that a complex interaction case can be mastered using a

decomposition mechanism that breaks down the compound interaction in ANDed atomic

interactions. This introduces the problem of guiding the process to capture user-centric

requirements compliant with the meta-model. This problem is dealt with in the next section.

4. Guiding the Requirements Capture

Any method is defined as composed of a product model and a process model [20]. Whereas

section 3 was dealing with the product model of the Lyee method, we consider here the

process aspect of the method. Our aim is to systematise the capture of user-centric

requirements and their formulation in terms which comply with the upper layer of the meta-

model as presented in the previous section. Ultimately, our goal is to implement a software

assistant to support the capture and formulation of these requirements.

Our process modelling approach is Pattern based. The concept of a pattern has been

introduced by Alexander in architecture [2] and borrowed by IT engineers to capture

software design knowledge. According to Alexander, a pattern refers to ‘a problem which

occurs again and again in our environment and describes the core of the solution to that

problem, in such a way that you can use this solution a million times over, without ever

doing it the same way twice’. The key idea of a pattern is thus, to associate a problem to its

solution in a well identified context. The formulation of the problem and of its associated

solution are generic.

We identified ten typical situations (the problem) in Lyee user-centric requirements

capture (the context) and associate to them ten guidelines (the solution) to help in the

requirements elicitation and formulation. We coupled the situation and associated guideline

in a Requirement Pattern and therefore, the process model takes the form of a Catalogue of

Requirements Patterns.

Each pattern captures a requirement situation and guides the formulation of the

requirement in compliance with the requirement meta-model. In fact each pattern tells for

the given situation, what are the concepts of the meta-model to instantiate and how, which

are the attributes that have to be considered and what are the links between concepts that

must be instantiated.

The ten patterns will be applied again and again in the different software projects

using Lyee. Even if actual situations are different from one project to another, each of them

should match one pattern situation and the pattern will bring the core solution to the

requirements capture problem raised by this situation.

 Identifying generic activities of requirements capture in an atomic interaction

In order to systematise the requirements capture, we first founded our reasoning on

the notion of atomic interaction and investigate the possibility to identify generic activities

of requirements capture within the context of an atomic interaction. We end up with the

view that the capture of requirements related to an atomic interaction comprises four

activities to, respectively:

- Start the interaction (To Start requirement)

- Perform the action (To Act requirement)

- Prepare the output (To Output requirement)and,

- End the interaction (To End requirement)

 Formulate requirement

for an atomic Interaction

Formulate
“To Start”
requirement

Formulate
 “To Act”

requirement

Formulate
“To Output”
requirement

Formulate
“To End”

requirement

To prepare

the capture
of W Input

To Get W cmd and
Calculate W result

To prepare

Defined and
Items for

W case i
To elicit W indb

Figure 9 : Generic activities of requirements capture in an atomic interaction

As shown in Figure 9, each of these activities is linked to the ‘word’ typology

introduced in section 3 as each activity is associated to one type of ‘words’. The

requirement activity is concerned with the elicitation and definition of these ‘words’, their

grouping in defineds and the positioning of those in the PSG of the interaction.

- The To Start requirement deals with the capture of Winput

- The To Act requirement is concerned by the elicitation of the Wcmd and the

calculation of Wresult

- The To Output requirement shall help eliciting and defining Wcase
i

- Finally, the To End requirement considers Windb

 Identifying typical situations in requirements capture

The relationship between a requirement activity and its associated type of word was

essential to identify generic situations for requirements capture. For instance, we identified

two different situations dealing with the capture of W input : either the input value is directly

captured from the user or it is indirectly captured through the satisfaction of a housekeeping

goal. In the Split example this corresponds to the initial case and case (b), respectively. In

the initial case the user provides the goal statement whereas in case (b) it provides the

goalid which is used to retrieve the goal in the database table.

We identified two generic situations for each of the four generic activities of

requirement capture introduced above. These situations are described in the Table1 below.

Situation Requirement Activity Situation Characterisation

S2 To Start W input are captured directly from the user

S3 To Start W input are captured indirectly through some

housekeeping goal to retrieve the input value

from a database or a file

S1 To Act W result are calculated by simple formulae which

do not require the calculation of intermediate

words

S8 To Act W result are calculated by complex formulae

which do require the calculation of

intermediate words and possibly the access to

data in a file or database.

S6 To Output There is no obstacle neither in the capture of

Winput nor in the production of W result

S7 To Output A number of different cases of output

production shall be considered due to possible

obstacles either in the capture of W input or in

the production of W result

S4 To End The interaction ends normally without

additional housekeeping activity.

S5 To End Some housekeeping activity shall be performed

such as storing part or the totality of Woutputs

Table 1 : Generic situations in requirements capture

It shall be noticed that the two situations of each activity are orthogonal. Given an

interaction and one requirement activity , let say ‘To Act’ either S1 or S8 will be true but

not both as the same time.

 Identifying requirements patterns

- Atomic interaction patterns

To each of the 8 situations of requirement capture presented above, we define a

guideline that helps in the performance of the requirement activity. As the result of any of

these requirements activities is an instantiation of the meta-model concepts, guidance tells

which items shall be introduced, to which defineds they must be associated and how these

defineds must be positioned in the PSG. Every guideline provides exactly this type of

knowledge : given the situation at hand, the guideline advises on items, defineds and their

attributes as well as defineds precedence relationships required by the situation.

We couple the situation and the guideline in a pattern, namely a Requirement

Pattern. Figure 10 shows the 8 patterns corresponding to the 8 situations described in

Table1. These are atomic patterns in the sense that they do not call for applying other

patterns.

 Formulate requirement
for an atomic interaction

P2 P3 P1 P8 P6 P7 P4 P5

Immediate
Start

Prerequisite
for Start

Simple
Word

Complex
Word

Single
Output

Multiple
Output

Simple
End

Compound
End

“To Start” “To Act” “To Output” “To End”

Figure 10 : Requirements Patterns for an atomic interaction

These 8 patterns provide advice to capture and formulate requirements for each of

the generic requirements activities:

- P2 &P3 support the ‘ToStart’ requirements activity, i.e. the setting of

requirements to ensure that Winput will be properly defined

- P1 & P8 help in the elicitation of requirements which guarantees that Wresult

can be calculated by the Lyee program

- P6 &P7 advice in discovering obstacles to interaction goal achievement and to

formulate the appropriate items, defineds and PSG links for handling these

obstacles in the Lyee program.

- P4 &P5 ensure that the interaction will end correctly and that housekeeping

goals will be taken care of.

- Composite pattern for atomic interaction

Each of the previous 8 patterns deals with one single requirement activity whereas

to get the complete set of requirements for a given problem, the requirements engineer has

to perform one of each type of activity. The complete set of requirements requires that each

of the following be performed once: ‘To start’, ‘To Act’, ‘To Output’ and ‘To End’.

To obtain advice on this, a new pattern, Pattern P9, is introduced. As shown in

Figure 11, the requirement pattern P9 is a compound pattern composed of the 8 atomic

patterns, P1 to P8.

Solution :
1 Apply patterns as shown below in the left to right order :

2. When multiple choice is provided select the pattern based on the

situation

P2

P3

P6

P7

P4

P5

start output end

1..*

act

P1

P8

sequence multiplicity1..*
Multiple choice

Figure 11 : The compound requirement pattern P9

P9 simply advises that one pattern for each of the four activities needs to be applied

to complete one interaction requirements formulation. The choice of the right pattern to

apply for each activity is based on the situation at hand. Since the situations of the two

candidate patterns of any activity are orthogonal, the decision making is facilitated. For

instance, in the simple case of the Split example (get the goal statement and outputs the

goal decomposition), P2 is applicable as the input is directly got from the user; P1 must be

applied as the decomposition function produces the goal decomposition directly from the

goal statement; P6 is the right pattern because there is no obstacle either in getting the input

or in calculating the result and P4 is applicable in this case as there is no additional task to

perform than displaying the goal decomposition to the user.

Thus, for a given interaction, the requirements process will consist of a path within

P9. For instance, P2, P1, P6, P4 is the path for dealing with the basic Split example whereas

P3, P8, P7, P5 is the path for the extended Split example (combining (a), (b) and (c)).

- Composite pattern for compound interaction

Finally, the requirement pattern P10 deals with a compound interaction as

introduced in the previous section. As shown in Figure 12, P10 is a composite pattern

which calls for the iterative application of P9.

As suggested by the figure, the

pattern gives advice on how to decompose a

compound interaction into atomic

interactions to which the pattern P9 should

be applied. In fact, the pattern helps in

recognising that the interaction is not an

atomic one in the first place.

P10

(3)
 cdm

 3
(2)

 cdm
 2

(1)
 cdm

 1

P9
 Get a Result

Input

Output

Figure 12 : The composite requirement pattern
P10

5. Conclusion

The UP1 activity presented here relies on meta-modelling. Meta-modelling has been used

in Information Systems as a way of developing abstractions of methods to aid in method

understanding, evaluation and comparison. In extending this to Lyee we expected to gain a

better understanding of how the Lyee method generates programs from given software

requirements. Indeed the lower of the two layers of our meta-model achieved this purpose.

The upper layer added a new abstraction level which makes it possible to deal with user

requirements and not with low level software requirements. With this capability comes the

possibility of generating Lyee programs directly from user requirements. The next step to

be taken is to formalise the mapping rules between the two sets of concepts.

Meta-modelling addresses both, process and product aspects of methods. The meta-

model presented in this paper is a product meta-model. To complete the formalisation of

the method it is necessary to also model the way-of-working. The paper introduced the

pattern approach and the ten patterns which are currently under development to support the

acquisition of user requirements. Each pattern identifies a generic situation in user

requirements capture and proposes a solution to elicit and formulate the requirement typical

of this situation. The next step will be to validate the pattern through extensive experiments

and to develop a CASE tool to guide the requirements engineers in the application of

patterns.

6. References

[1] N.Ahituv, ‘A Meta-Model of information flow : a tool to support information theory’, Communications of

the ACM, 30(9), pp781-791, 1987.

[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, S. Angel, ‘A Pattern

Language’, Oxford University Press, New York, 1977.

[3] A.I. Anton, W. M. Mc Cracken, C. Potts, ‘Goal decomposition and scenario analysis in business process

reengineering’, Proceedings of the 6
th

 International Conference CAiSE’94 on Advanced Information

Systems Engineering, Utrecht, the Netherlands, Springer Verlag, pp. 94-104, 1994.

[4] S. Brinkkemper, K. Lyytinen, R. Welke (eds): ‘Method Engineering : Principles of Method Construction

and Toll Support’, Chapman & HALL, London, UK, 1996

[5] : J. Bubenko, C. Rolland, P. Loucopoulos, V. De Antonellis, ‘Facilitating, ‘Fuzzy to Formal’

Requirements Modelling’ , Proc. of the First International Conference on Requirements Engineering,

Colorado Springs, Colorado, 1994.

[6] A. Cockburn, ‘Structuring use cases with goals’, 1995

http://members.aol.com/acocburn/papers/usecases.htm

[7] Series of Proceedings of CAISE/IFIP8.1 International Workshop on Evaluation of Modeling Methods in

Systems Analysis and Design (EMMSAD).

[8] J.C. Grundy, J.R. Venable, ‘Towards an integrated environment for method engineering’, Proc. IFIP WG

8.1 Conf on ‘Method Engineering’, Chapman and Hall, pp 45-62, 1996.

[9] F. Harmsen, S.Brinkkemper, ‘Design and implementation of a method base management system for

situational CASE environment’, Proceedings of the 2
nd

 APSEC Conference, IEEE Computer Society Press,

PP 430-438, 1995.

[10] A.H.M. Ter Hofstede, ‘Information modelling in data intensive domains’, Dissertation, University of

Nijimegen, The Netherlands 1993.

[11] R.L. Hsiao and R.J. Ormerod, ‘A new perspective on the dynamics of information technology-enabled

strategic change’, Information Systems Journal, Blackwell Science, Vol. 8. No. 1, pp. 21-52, 1998.

[12] M. Jarke, C. Rolland, A. Sutcliffe, R. Domges, ‘The NATURE requirements Engineering’. Shaker

Verlag, Aachen 1999.

[13] S. Kelly, K. Lyyttinen, M. Rossi, ‘MetaEdit+: A fully configurable, multi-user and multi tool CASE and

CAME environment’, Proc. CAiSE 96 Conference, Springer Verlag, 1996.

[14] J. Lee, ‘Goal-Based Process Analysis: A Method for Systematic Process Redesign’, Proceedings of

Conference on Organizational Computing Systems, , Milpitas, CA, pp. 196-201, 1993.

[15] MOF Specification, OMG document ad/97-08-14, revised submission, September 1, 1997.

[16] F. Negoro, ‘Methodology to Determine Software in a Deterministic Manner’, Proceeding of ICII,

Beijing, China, 2001.

[17] F. Negoro, ‘A proposal for Requirement Engineering’, Proceeding of ADBIS, Vilnius, Lithuania, 2001.

[18] M.A. Ould ‘Business Processes - Modelling and Analysis for Re-engineering and Improvement’, John

Wiley and Sons, Chichester, UK, 1995.

[19] C. Potts, K. Takahashi, A.I. Anton, ‘Inquiry-based requirements analysis’, IEEE Software 11(2), pp. 21-

32, 1994.

[20] N. Prakash, ‘On Method Statics and Dynamics’, Information Systems, Vol 24, No 8, pp 613-637, 1999.

[21] C. Rolland, C. Souveyet, M. Moreno, ‘An Approach for Defining Ways-of-Working’, Information

Systems Journal, 1995.

[22] C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A. Sutcliffe, N.A.M. Maiden, M. Jarke, P. Haumer, K.

Pohl, Dubois, P. Heymans, ‘A proposal for a scenario classification framework’. Requirements Engineering

Journal Vol 3, No1, 1998.

[23] C. Rolland, N. Prakash, A. Benjamen : ‘A Multi-Model Vew of Process Modelling’, Requirements

Engineering Journal (4)(4), pp169-187, 1999.

[24] M. Saeki, K. Wen-yin, ‘Specifying Software Specification and Design Methods’, Proc. CAISE 94, LNCS

811, Springer Verlag, pp 353-366, Berlin, 1994.

[25] TR5.1: ‘L’Ecritoire Linguistic Approach : Concept Definition and Implementation’. Technical Report,

University Paris 1, C.R.I, mars 2002.

[26] E. Yu, J. Mylopoulos, ‘Using goals, rules and methods to support reasoning in business process

reengineering’. Proceedings of the 27
th

 Hawaii International Conference System Sciences, Maui, Hawaii,

January 4-7, Vol. IV pp. 234-243, 1994.

[27] S. Si-Said, G. Grosz, C. Rolland, ‘Mentor, A Computer Aided Requirements Engineering Environment’,

Proceedings of the 8
th

 CAISE Conference. Challenges in Modern Information Systems, Heraklion, Crete,

Greece, May 1996.

[28] K.Smolander, K.Lyytinen, V.Tahvanainen, P.Martiin : ‘Meta-Edit - A Flexible Graphical Environment

for Methodology Modelling’, Proceedings of the 3
rd

 International Conference in Advanced Information

Systems Engineering.

[29] A. Dardenne, A.v. Lamsweerde, and S. Fickas , ‘Goal-directed Requirements Acquisition’, Science of

Computer Programming, Vol. 20, 1993.

[30] A.v. Lamsweerde, R. Dairmont, P. Massonet; ‘Goal Directed Elaboration of Requirements for a Meeting

Scheduler : Problems and Lessons Learnt’, in Proceedings of Requirements Engineering, pp 194 –204,1995.

[31] A.G. Sutcliffe, N.A.M. Maiden, S. Minocha, D. Manuel, ‘Supporting Scenario-based Requirements

Engineering’, Transaction of Software Engineering, Special Issue on Scenario Management, Vol. 24, No. 12,

1998.

