Colette Rolland
email: rolland@univ-paris1.fr

A User Centric View of Lyee Requirements

The paper deals with the modelling of Lyee user requirements and guidelines to support their capture. The Sorbonne contribution to the Lyee collaborative project aims to reduce the software development cycle to two explicit steps, requirements engineering and code generation by coupling the code generation features of LyeeALL with an interface to capture user requirements. The paper presents a 2-layer meta-model relating the set of concepts to capture user requirements to the set of concepts for the formulation of software requirements that are the input of the LyeeALL generation mechanism. It exemplifies the concepts with example and introduces the guidance support for capturing these user centric requirements.

Introduction

The research of the Sorbonne group within the Lyee1 collaborative project is aimed at developing a methodology that supports software development in two steps, requirements engineering and code generation. The former is the contribution of the Sorbonne group whereas the latter is provided by LyeeALL.

LyeeALL is a commercial Japanese CASE environment which aims at transforming software requirements into code. As shown in Figure 1, the underlying Lyee approach [START_REF] Negoro | Methodology to Determine Software in a Deterministic Manner[END_REF] [17] comprises an original framework to structure programs, an engine to control their execution and a generation mechanism to generate programs from given requirements. These requirements are expressed in rather low-level terms such as screen layouts and database accesses. Moreover they are influenced by the LyeeALL internals such as the Lyee identification policy of program variables, the generated program structure and the Lyee program execution control mechanism. As a consequence it is difficult to get the Lyee customer away from the burden of Lyee internals instead of focusing his/her attention on the requirements. Projects conducted in industry with LyeeAll show the need to separate clearly software requirements from user-centric requirements in order to acquire the former from the latter. The Sorbonne group develops research towards meeting this need. As a first step, the group is aiming at:

-(1) defining a user-centric requirements model -(2) developing methodological rules to support the capture of these requirements in a systematic way,. -(3) developing a software assistant to guide the capture of user centric requirements -(4) generating the Lyee software requirements from these user requirements In a second step, the objective is to provide an intelligent software support for the elicitation of high level requirements and the automated generation of the Lyee software requirements.

In this paper we concentrate on points (1) and (2) above. In the next section we introduce the meta-modelling approach which was used to define the user-centric requirements model and we provide an overview of the model. Section 3 contains a description of the model concepts and illustrates them with examples. The next section deals with the process support to help in the capture of user-centric requirements. Some idea of future work is given in the conclusion.

Meta-Modelling Approach and Lyee Requirements Meta-Model

At the start of the project, it was quickly realised that Lyee was understood in operational terms such as Process Route Diagram (PRD), Pallets, Signification Vectors, Routing Vectors and the like and it was difficult to get a global, systemic view of it. The need for the latter was felt particularly strongly because :

(a) user-centric requirements are to be related to Lyee software requirements. and a systemic model would help in clearly expressing this relationship. (b) additionally, the transition form user requirements to Lyee programs called for traversal across different levels of abstraction, a task that the area of modelling and meta-modelling is known to perform effectively.

Meta-modelling is known as a technique to capture knowledge about methods. It has been used for understanding, comparing and evaluating methods [START_REF]Series of Proceedings of CAISE/IFIP8.1 International Workshop on Evaluation of Modeling Methods in Systems Analysis and Design[END_REF]. Meta-models were also used as a basis for method-engineering [START_REF]Method Engineering : Principles of Method Construction and Toll Support[END_REF] and Case shell construction [START_REF] Anton | Goal decomposition and scenario analysis in business process reengineering[END_REF] [9] [START_REF] Kelly | MetaEdit+: A fully configurable, multi-user and multi tool CASE and CAME environment[END_REF]. A number of meta modelling languages have been proposed to deal with (a) the representation of the product aspects of methods [START_REF] Ahituv | A Meta-Model of information flow : a tool to support information theory[END_REF] [3] [START_REF] Grundy | Towards an integrated environment for method engineering[END_REF] [10] [START_REF]MOF Specification[END_REF] [START_REF] Saeki | Specifying Software Specification and Design Methods[END_REF] and (b) for modelling the process aspects of methods [START_REF] Jarke | The NATURE requirements Engineering[END_REF] [START_REF] Prakash | On Method Statics and Dynamics[END_REF] [21] [START_REF] Rolland | A Multi-Model Vew of Process Modelling[END_REF].

We used a meta modelling approach to first model the set of concepts underlying the Lyee software requirements and secondly, to abstract from them the user-centric requirements model. The result of this effort is a 2-layer meta model2 expressed with UML notations. The upper layer corresponds to the user-centric requirements model whereas the lower layer identifies the set of concepts required to express software requirements in Lyee terms.

Figure 2 shows the meta-model and highlights the separation between user requirements concepts and Lyee software requirements concepts. The former constitute the user requirement layer whereas the latter form the Lyee software requirements layer.

User Requirements Layer

Lyee Software Requirements Layer Let us introduce first, the lower layer concepts to express Lyee software requirements. The essence of the Lyee approach is to reduce software requirements to the description of program variables called words, and to generate the control structure that logically processes these variables and produces the expected result. Despite the traditional design approaches in which both the variables and the control structure of the program must be designed, LyeeALL generates the latter provided an appropriate description of the former is given.

From the design view point, the approach can be compared to declarative approaches for information system design. In these approaches, system design is reduced to a set of predicates from which the state of the system can be derived at any point of time t. Lyee relies on the notion of word and makes the distinction between input words (these are given value through system communication with the external world) and output words produced by the system. Instead of predicates, Lyee uses formulae to express how to produce an output word. The ordering of word production does not need to be given. In this sense the Lyee approach is declarative. From the generation view point, LyeeALL is similar to a forward inference engine of an expert system which generates new facts by applying to the existing base of facts at time t those rules having their premises true. Similarly, the Lyee engine saturates the application of formulae till all the output words are determined. However, as the Lyee engine controls the execution of formulae which are procedural rules and not inference rules, the engine activates a proprietary function to a Lyee specific program structure, the Process Route Diagram (PRD). This structure is hierarchical : a PRD is composed of Scenario Functions (SF), composed of Pallets which are made of Vectors. In order to carry out the generated program control the function generates its own words, such as the action words related to vectors and routing words to distribute the control over the various SFs of a PRD.

The concept of Word is therefore central to the expression of Lyee software requirement, whereas the ones of PRD, SF, Pallet and Vector required by the word processing mechanism of LyeeALL are also part of the Lyee software requirements model. These concepts can be seen in Figure 2 as part of the lower layer of the meta-model.

The upper layer of Figure 2 is centred on three concepts only : Defined, Item and PSG. This reflects the fact that the user-centric model abstracts from the details of Lyee software requirements to identify the minimum set of concepts to capture the domain dependent requirements. However the simplicity of the upper layer results fundamentally from the declarative approach of Lyee.

We present the upper layer concepts in the next section and illustrate them with the Split example. Split a Goal is a functionality which, given a goal statement such as 'Withdraw cash from an ATM', automatically decomposes it into a verb and its parameters. For example, Withdraw is the verb, Cash is the target parameter of the verb and from an ATM is the means parameter. The full functionality identifies 7 different parameters . However, in this paper we will consider only the two parameters exemplified above, target and means. Besides, the case considered in the following extends when necessary, the Split functionality in three different ways :

(a) the storage of the goal and its decomposition in a database. (b) the retrieval of the goal name from a Goal table in a database. (c) the possible failure of the goal decomposition function.

The User Centric Requirements Meta-Model

Interaction driven user requirement capture

In order to comply with the Lyee approach, the user requirements model should be centred on a notion which abstracts from the Lyee internal concept of word. Obviously words required by the Lyee processing mechanism are not relevant at this level. On the contrary, the concern is only with domain dependent words. Besides, there is a need to provide the requirement holder with a means to grasp a 'set of 'words' conceptually associated with one another. We propose the notion of 'system interaction' for that purpose. We believe that the Lyee approach, which is output driven, fits with a use case [START_REF] Cockburn | Structuring use cases with goals[END_REF] kind of user requirements capture.

Our suggestion to the Lyee user is to reason in terms of a goal driven interaction as shown in Figure 3. The interaction is meant to be between the user and the system viewed as a black box. The interaction is goal driven in the sense that the user asks the system to achieve the goal he/she has in mind without knowing how the system will do it. The user provides some input and receives the output which corresponds to the expected result. It is the achievement of the goal which produces the output. The input is necessary to achieving the goal. We refer to this goal as the interaction goal.

In generic terms, any interaction is characterised by the user goal 'Get a result'; it produces an output, given some user input. In the Split example, the user goal is to get support from the system to decompose a goal statement. Thus, 'Split a Goal' is the interaction goal. If, for example, the input is the goal statement 'Withdraw cash from the ATM', then the achievement of the goal produces the output i.e. the decomposed form of the goal : Withdraw verb cash target from the ATM means.

Words in interaction

An interaction delineates a number of input and output 'words' logically assembled together. The former correspond to meta-model items belonging to the same defined (see below).

In order to systematise the collect of requirements, we identify generic classes of 'words' that will be instantiated in any such interaction and represented as items in the requirements formulation. Let us introduce so far three of them :

-W input : the input provided by the user -W result: the result of the goal achievement -W output : : the output displayed to the user In the 'Split a Goal' interaction of Figure 4, W input is the goal statement given as input by the user, the result W result produced by the achievement of the goal 'Split a Goal ', is the set {verb, target, means} and the output W output presented to the user is identical to the result, i.e. the set {verb, target, means}.

W input : {goal,} W result : {verb, target, means}. W output = W result As illustrated with the Split example, the set of output words W output might be the same as the set of result words W result ; however the semantics is different as the former are the ones whose values are presented to the user whereas the latter are the ones resulting of the interaction goal achievement.

In addition, as shown underneath a relationship can be established between the W input and W result:

W result W cmd (W input)
Indeed, to get the interaction goal achieved, the user has to provide the input and to give some kind of command (W cmd)

The concepts of Defined 3

and Item

All the words of an interaction shall be represented with the meta-model concept of Item. The above typology helps identifying the items to be identified and described for a given interaction.

Item W result, W cmd, W input , W output
The items belong to the same defined. A Defined is a container of Items logically related to each other. Defined and Items are the keys to expressing user requirements compliant to our meta-model.

In the Split example there are 5 items, namely goal, cmdSplit, verb, target and means. All belong to the same defined, Split1. In the meta-model, the concepts of Defined and Item have attributes: Every defined has a name (Name) and a type (Type) which identifies the physical device of the container (screen, file, database etc..). An item has a name (Name) and a domain (Domain): numeric (9), char(X) and (K) for screen buttons. In the Split example, goal is the name of an item of the defined Split1 which has a string of characters as domain(X).

The meta-model specialises Item into Output and Input. An output is produced by the system whereas an input is captured from the user. Input is further specialised into Passive and Active. An active input triggers a system action whereas a passive input represents values captured from the user. A screen button such as cmdSplit in the Split example is an active item whereas goal is a passive one. Both specialisations (Item into Output or Input and Input as Active or Passive) are partitions of the set of items i.e. they are complete and exclusive.

Finally, the concept of Output Item has two specific attributes : Formula and Condition. The Formula is mandatory whereas the Condition is set by default to true. Due to the declarative nature of the Lyee approach, calculation dependencies among items do not need to be expressed through conditions. Therefore, only constraints such as validity constraints on input items might become conditions associated to outputs depending on the validity of these inputs. The formula is the calculation rule. In the Split example, the verb will be associated to the formula, verb = f verb (goal). The function f verb when applied to a goal statement produces the verb of its goal statement.

Housekeeping goals

The achievement of the interaction goal 'Get a result' is not always as straight forward as in the case considered so far. It can happen that it requires some additional goals to be fulfilled. We refer to these goals as housekeeping goals. Typical examples are the extension (a) and (b) of the Split case introduced above in the paper. In case (a) the decomposition is stored in the database and in case (b) the goal statement is retrieved from the database. 'Store Goal Decomposition' and 'Retrieve Goal Statement' are housekeeping goals. They are additional to the interaction goal ' Split a Goal''.

It shall be noticed that there is a fundamental difference between the two types of goals, interaction goal and housekeeping goal. Whereas the 'Get a result' type of goal is the essence of the interaction, the housekeeping goals contribute to the performance of a successful interaction but do not determine its purpose. The interaction goal is user-centric whereas the housekeeping goals are system-centric. Following goal decomposition in requirements engineering [START_REF] Anton | Goal decomposition and scenario analysis in business process reengineering[END_REF] [6] [START_REF] Rolland | A Multi-Model Vew of Process Modelling[END_REF], housekeeping goals can be regarded as sub goals of the interaction goal 'Get a result'.

However housekeeping goals implies new items and new defineds to be introduced. Let us understand the nature of these items by extending the typology of 'words' as defined previously in cases similar to extension (a) of the Split example. A similar reasoning can be done for each type of housekeeping goal [START_REF]L'Ecritoire Linguistic Approach : Concept Definition and Implementation[END_REF].

In cases similar to extension (a) of the Split example, words to be memorised in a persistent manner such as in a database or a file, W indb have to be identified as part of the user requirements formulation.

W indb W cmddb (W dbkey, W output)
The above expression characterises the production of W indb. In order to store output words W output in specific database words, W indb, the database key W dbkey is required and the user shall activate a command, W cmddb .

Consequently, new items shall be introduced :

Items W indb, W cmddb, W dbkey,
Housekeeping goals lead to specific defineds as they use a specific device distinct from the one characterising the defined of the interaction. In the Split example, the requirement formulation (Figure 5) includes the defined GOAL of type database with the associated items, goalid, goal, verb, means and target. In contrast, the W cmddb is part of the defined associated to the interaction. In the Split example the command button, CmdOK is an item of the defined Split1.

As there are several defineds a precedence relationship between these shall be introduced. The concept of PSG in the meta-model captures this aspect.

The concept of PSG

The meta-model includes the notion of a PSG, the Precedence Succedence Graph to stipulate ordering conditions between Defineds.

As shown in Figure 2, a PSG has Nodes and Links between Nodes. Nodes are classified into Intermediate, Begin and End. Begin and End Nodes are predefined nodes to start and end the program whereas Intermediate Nodes. are related to Defineds .

Links between Nodes are of three different types : Continuous, Duplex and Multiplex Whereas all links indicate the processing order of the related defineds, a continuous link is a forward link between two defineds while duplex /multiplex links are backward links between two defineds. The choice between a duplex or a multiplex link depends on whether or not data have to be transferred to process the backward defined. In the Split example, the defined GOAL is multiplex-linked to the defined Split1 to get back to an empty Split screen after a goal decomposition was performed. In this case there is no data transfer associated to the backward link to Split1 and therefore, the GOAL-Split1 link in the psgSplit is a multiplex one. It shall be noticed that this information is user driven : it is a user decision to choose an iterative process allowing to capture a goal statement and ask for its decomposition several times.

Finally, the meta-model shows that a Link might have an associated Condition which constraints its occurrence.

Figure 5 presents the instantiation of the meta-model to formulating the Split a Goal requirements in case (a). The instance is drawn using the UML object diagram notations. It shows that there are two defined, (a) Split1 of type screen, gathering the input and output items of the interaction and (b) GOAL of type database composed of the items representing the attributes of the relational table to store the goal decomposition.

Split1 comprises active items (cmdSplit, cmdOK and cmdCancel) whereas GOAL has only passive items. Some items in Split1 are typed input (cmdSplit, cmdOK, cmdCancel, goal) whereas the others are output items (verb, target, means). All items in GOAL are typed output as they are produced by the program and stored in the database. Each of the output items in the defined Split1 are associated with a formula that is its calculation rule. In compliance with the meta-model, the output items of the defined GOAL have formulae which are rules for expressing that the values of the attributes of the database table GOAL are the ones of corresponding items of the defined Split1. The psgSplit comprises two nodes, Split1 and GOAL in addition to the Begin and End nodes. They are related by a continuous forward link which is activated in the processing when the button OK has been pushed and a multiplex link in the backward direction which is processed as soon as the goal decomposition has been stored in the database.

Considering Obstacles to 'Get a result'

The notion of obstacle has been introduced in requirements engineering by Colin Potts in [START_REF] Potts | Inquiry-based requirements analysis[END_REF] and further developed in [START_REF] Anton | Goal decomposition and scenario analysis in business process reengineering[END_REF] [29] [30] [START_REF] Sutcliffe | Supporting Scenario-based Requirements Engineering[END_REF]. An obstacle is defined as anything which happens and causes a failure in achieving a goal. From a requirement viewpoint, it is important to identify obstacles as the system under construction shall be prepared to react to obstacle happenings. In our case, identifying the risks of interaction goal failure is a means to complete the requirements related to the interaction.

Considering obstacles to the achievement of 'Get a result' leads to the introduction of new types of words, W case i characterised as follows :

W case i = P(W output) : f boolean = true W output = W case i
The set of words referred to as W case i corresponds to the subset of output words, W output which are produced under a certain condition (f boolean = true).The entire set of output words to be considered in the interaction is therefore the union of W case i . Let us consider case (c) of the Split example, assuming that the f verb function might fail if the name of the verb extracted from the goal statement is not in the table of verbs used by this function. The interaction might then, fail in achieving the interaction goal 'Split a Goal'. Consequently, there are two cases of output :

-case 1 occurs when the verb, target and means items are presented to the user, whereas -case 2 occurs when the decomposition cannot be performed; the message 'Impossible Split' is shown to the user.

In this case

W output = W case 1 W case 2 W case 1 = {goal, target, means, verb} W case 2 = {'Impossible Split'}
An item has to be introduced for every word of each W case i .

Figure 6 shows the instantiation of the meta-model to formulating case (c) of the Split example. Two new defineds Scase1 and Scase2 have been added and linked to the defined Split1 through forward continuous links. These links are labelled with conditions identifying the two cases, case 1 and case 2 . Each of the defineds aggregates the appropriate items : {goal, target, means, verb, cmdOK} for the defined Scase1 and {M1, cmdOK} for the defined Scase2.

Compound interaction

In real projects the user has to deal with more gross-grained interactions than the Split interaction drawn in Figure 3. We suggest a distinction between a simple interaction and a compound interaction. The former is associated to one single atomic interaction goal whereas in the latter the goal is an aggregate of interaction sub-goals Figure 7 is an example of compound interaction where the goal 'Get Confirmed Booking' is an aggregate of two sub-goals : 'Request for Booking' and 'Confirm & Pay'. The request parameters are the inputs necessary to achieve the first sub goal which results in an offer to the customer. This offer is the input for the achievement of the second sub goal.

Customer Customer

Get Confirmed Booking

Confirmed Booking

Request for booking (request parameters)

Confirm & Pay (offer parameters)

Figure 7: Booking interaction

The notion of AND decomposition of a goal is well known in requirements engineering [START_REF] Bubenko | Facilitating, 'Fuzzy to Formal' Requirements Modelling[END_REF] [6] [19] [START_REF] Rolland | A proposal for a scenario classification framework[END_REF] and business process modelling [3] [11] [14] [18] [26] and seems to fit our needs. The interaction goal of a compound interaction is decomposable in two or more ANDed sub-goals. As shown in Figure 9, the interaction goal 'Get Confirmed Booking' is decomposable in two sub-goals 'Get Booking Offer ' It is important to notice that sub-goals are interaction goals. In other words, the compound interaction can be seen as a sequence of atomic interactions, each of them corresponding to one sub-goal of the compound interaction goal. This is exemplified in Figure 8 that shows the compound interaction to 'Get a Confirmed Booking' as composed of two interactions, the first one to 'Get Booking Offer' and the second one to 'Confirm Booking Offer'. Each of these interactions follows the pattern explained above and might include housekeeping goals. Each of these will have to be scrutinised as explained before to identify the involved items and defineds.

To sum up, the user centric layer of the meta-model identifies three key concepts, Defined, Item and PSG. These three concepts are used to express the set of domain dependent requirements and this expression is necessary and sufficient to derive the Lyee software requirements. Items are the essence of Lyee user requirements, the external form of Lyee internal words. A Defined is a group of items that are conceptually related to one another and are bound together in a simple or compound interaction. In addition to the Defineds flowing from the interaction, housekeeping goals introduce complementary defineds that require the use of devices such as databases, files or Internet communications. The concept of PSG captures the ordering of the defineds required by the user.

From a semantic viewpoint, this paper proposes to relate the user-centric requirements to the notion of an interaction and introduces an interaction frame with a typology of 'words' to reason systematically about the requirements implied by this interaction. It was shown that a complex interaction case can be mastered using a decomposition mechanism that breaks down the compound interaction in ANDed atomic interactions. This introduces the problem of guiding the process to capture user-centric requirements compliant with the meta-model. This problem is dealt with in the next section.

Guiding the Requirements Capture

Any method is defined as composed of a product model and a process model [START_REF] Prakash | On Method Statics and Dynamics[END_REF]. Whereas section 3 was dealing with the product model of the Lyee method, we consider here the process aspect of the method. Our aim is to systematise the capture of user-centric requirements and their formulation in terms which comply with the upper layer of the metamodel as presented in the previous section. Ultimately, our goal is to implement a software assistant to support the capture and formulation of these requirements.

Our process modelling approach is Pattern based. The concept of a pattern has been introduced by Alexander in architecture [START_REF] Alexander | A Pattern Language[END_REF] and borrowed by IT engineers to capture software design knowledge. According to Alexander, a pattern refers to 'a problem which occurs again and again in our environment and describes the core of the solution to that problem, in such a way that you can use this solution a million times over, without ever doing it the same way twice'. The key idea of a pattern is thus, to associate a problem to its solution in a well identified context. The formulation of the problem and of its associated solution are generic.

We identified ten typical situations (the problem) in Lyee user-centric requirements capture (the context) and associate to them ten guidelines (the solution) to help in the requirements elicitation and formulation. We coupled the situation and associated guideline in a Requirement Pattern and therefore, the process model takes the form of a Catalogue of Requirements Patterns.

Each pattern captures a requirement situation and guides the formulation of the requirement in compliance with the requirement meta-model. In fact each pattern tells for the given situation, what are the concepts of the meta-model to instantiate and how, which are the attributes that have to be considered and what are the links between concepts that must be instantiated.

The ten patterns will be applied again and again in the different software projects using Lyee. Even if actual situations are different from one project to another, each of them should match one pattern situation and the pattern will bring the core solution to the requirements capture problem raised by this situation.

Identifying generic activities of requirements capture in an atomic interaction

In order to systematise the requirements capture, we first founded our reasoning on the notion of atomic interaction and investigate the possibility to identify generic activities of requirements capture within the context of an atomic interaction. We end up with the view that the capture of requirements related to an atomic interaction comprises four activities to, respectively:

- As shown in Figure 9, each of these activities is linked to the 'word' typology introduced in section 3 as each activity is associated to one type of 'words'. The requirement activity is concerned with the elicitation and definition of these 'words', their grouping in defineds and the positioning of those in the PSG of the interaction.

Identifying typical situations in requirements capture

The relationship between a requirement activity and its associated type of word was essential to identify generic situations for requirements capture. For instance, we identified two different situations dealing with the capture of W input : either the input value is directly captured from the user or it is indirectly captured through the satisfaction of a housekeeping goal. In the Split example this corresponds to the initial case and case (b), respectively. In the initial case the user provides the goal statement whereas in case (b) it provides the goalid which is used to retrieve the goal in the database table.

We identified two generic situations for each of the four generic activities of requirement capture introduced above. These situations are described in the Table1 below. It shall be noticed that the two situations of each activity are orthogonal. Given an interaction and one requirement activity , let say 'To Act' either S1 or S8 will be true but not both as the same time.

Identifying requirements patterns -Atomic interaction patterns

To each of the 8 situations of requirement capture presented above, we define a guideline that helps in the performance of the requirement activity. As the result of any of these requirements activities is an instantiation of the meta-model concepts, guidance tells which items shall be introduced, to which defineds they must be associated and how these defineds must be positioned in the PSG. Every guideline provides exactly this type of knowledge : given the situation at hand, the guideline advises on items, defineds and their attributes as well as defineds precedence relationships required by the situation.

We couple the situation and the guideline in a pattern, namely a Requirement Pattern. Figure 10 shows the 8 patterns corresponding to the 8 situations described in Table1. These are atomic patterns in the sense that they do not call for applying other patterns. These 8 patterns provide advice to capture and formulate requirements for each of the generic requirements activities:

Formulate requirement for an atomic

-P2 &P3 support the 'ToStart' requirements activity, i.e. the setting of requirements to ensure that Winput will be properly defined -P1 & P8 help in the elicitation of requirements which guarantees that Wresult can be calculated by the Lyee program -P6 &P7 advice in discovering obstacles to interaction goal achievement and to formulate the appropriate items, defineds and PSG links for handling these obstacles in the Lyee program. -P4 &P5 ensure that the interaction will end correctly and that housekeeping goals will be taken care of.

-Composite pattern for atomic interaction

Each of the previous 8 patterns deals with one single requirement activity whereas to get the complete set of requirements for a given problem, the requirements engineer has to perform one of each type of activity. The complete set of requirements requires that each of the following be performed once: 'To start', 'To Act', 'To Output' and 'To End'.

To obtain advice on this, a new pattern, Pattern P9, is introduced. As shown in Figure 11, the requirement pattern P9 is a compound pattern composed of the 8 atomic patterns, P1 to P8. P9 simply advises that one pattern for each of the four activities needs to be applied to complete one interaction requirements formulation. The choice of the right pattern to apply for each activity is based on the situation at hand. Since the situations of the two candidate patterns of any activity are orthogonal, the decision making is facilitated. For instance, in the simple case of the Split example (get the goal statement and outputs the goal decomposition), P2 is applicable as the input is directly got from the user; P1 must be applied as the decomposition function produces the goal decomposition directly from the goal statement; P6 is the right pattern because there is no obstacle either in getting the input or in calculating the result and P4 is applicable in this case as there is no additional task to perform than displaying the goal decomposition to the user.

Thus, for a given interaction, the requirements process will consist of a path within P9. For instance, P2, P1, P6, P4 is the path for dealing with the basic Split example whereas P3, P8, P7, P5 is the path for the extended Split example (combining (a), (b) and (c)).

-Composite pattern for compound interaction

Finally, the requirement pattern P10 deals with a compound interaction as introduced in the previous section. As shown in Figure 12, P10 is a composite pattern which calls for the iterative application of P9.

As suggested by the figure, the pattern gives advice on how to decompose a compound interaction into atomic interactions to which the pattern P9 should be applied. In fact, the pattern helps in recognising that the interaction is not an atomic one in the first place.

Conclusion

The UP1 activity presented here relies on meta-modelling. Meta-modelling has been used in Information Systems as a way of developing abstractions of methods to aid in method understanding, evaluation and comparison. In extending this to Lyee we expected to gain a better understanding of how the Lyee method generates programs from given software requirements. Indeed the lower of the two layers of our meta-model achieved this purpose.

The upper layer added a new abstraction level which makes it possible to deal with user requirements and not with low level software requirements. With this capability comes the possibility of generating Lyee programs directly from user requirements. The next step to be taken is to formalise the mapping rules between the two sets of concepts. Meta-modelling addresses both, process and product aspects of methods. The metamodel presented in this paper is a product meta-model. To complete the formalisation of the method it is necessary to also model the way-of-working. The paper introduced the pattern approach and the ten patterns which are currently under development to support the acquisition of user requirements. Each pattern identifies a generic situation in user requirements capture and proposes a solution to elicit and formulate the requirement typical of this situation. The next step will be to validate the pattern through extensive experiments and to develop a CASE tool to guide the requirements engineers in the application of patterns.

Figure 1 :

 1 Figure 1 : LyeeALL

Figure 2 :

 2 Figure 2 : Lyee meta-model

Figure 3 :

 3 Figure 3 : The interaction view point

Figure 4 Figure 4 :

 44 Figure 4 : Items & Defined of the Split interaction

Figure 5 :

 5 Figure 5 : Formulating the Split requirements through meta-model instantiation

Figure 6 :

 6 Figure 6 : Formulating the Split case (c) through meta-model instantiation.

Figure 8 :

 8 Figure 8 : Decomposition of the 'Get Confirmed Booking' interaction

Figure 9 :

 9 Figure 9 : Generic activities of requirements capture in an atomic interaction

-

 The To Start requirement deals with the capture of W input -The To Act requirement is concerned by the elicitation of the W cmd and the calculation of W result -The To Output requirement shall help eliciting and defining W case i -Finally, the To End requirement considers W indb

Figure 10 :

 10 Figure 10 : Requirements Patterns for an atomic interaction

Figure 11 :

 11 Figure 11 : The compound requirement pattern P9

Figure 12 :

 12 Figure 12 : The composite requirement pattern P10

 and 'Confirm Booking Offer'

	Goal Decomposition	Get Confirmed Booking
	Get Booking Offer	Confirm Booking Offer
			Customer Customer
	Interaction Decomposition	
			Confirmed
	Request for booking		Booking
	(request parameters)		Confirm & Pay
	Booking Offer	(booking offer)
	Get		Confirm
	Booking Offer Sub-Interaction1		Booking Offer Sub-Interaction2

 Start the interaction (To Start requirement) -Perform the action (To Act requirement) -Prepare the output (To Output requirement)and, -End the interaction (To End requirement)

		Formulate requirement	
		for an atomic Interaction	
	Formulate	Formulate	Formulate	Formulate
	"To Start"	"To Act"	"To Output"	"To End"
	requirement	requirement	requirement	requirement
	To prepare the capture of W Input	To Get W cmd and Calculate W result	To prepare W case i Defined and Items for	To elicit W indb

Table 1 :

 1 Generic situations in requirements capture

	Situation	Requirement Activity	Situation Characterisation
	S2	To Start	W input are captured directly from the user
	S3	To Start	W input are captured indirectly through some
			housekeeping goal to retrieve the input value
			from a database or a file
	S1	To Act	W result are calculated by simple formulae which
			do not require the calculation of intermediate
			words
	S8	To Act	W result are calculated by complex formulae
			which do require the calculation of
			intermediate words and possibly the access to
			data in a file or database.
	S6	To Output	There is no obstacle neither in the capture of
			W input nor in the production of W result
	S7	To Output	A number of different cases of output
			production shall be considered due to possible
			obstacles either in the capture of W input or in
			the production of W result
	S4	To End	The interaction ends normally without
			additional housekeeping activity.
	S5	To End	Some housekeeping activity shall be performed
			such as storing part or the totality of W outputs

Lyee, which stands for GovernmentaL MethodologY for SoftwarE ProvidencE, is a methodology for software development used for the implementation of business software applications. Lyee was invented by Fumio Negoro.

The term meta-model is used in the paper in the same sense as the term meta schema.

In the following concepts are in italics with a capital as first letter. Instances of concepts are in italics with a small first letter. For example, Item refers to a concept whereas item refers to an instance of the concept Item.A specific item such as goal is in small letter and italics.