
HAL Id: hal-00707008
https://hal.science/hal-00707008

Submitted on 14 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lyee Program Execution Patterns
Mohamed Ben Ayed

To cite this version:
Mohamed Ben Ayed. Lyee Program Execution Patterns. International Workshop on Lyee Methodol-
ogy, 2002, France. pp.1. �hal-00707008�

https://hal.science/hal-00707008
https://hal.archives-ouvertes.fr

Lyee1 Program Execution Patterns

Mohamed BEN AYED

Université Paris1 Panthéon Sorbonne

CRI, 90 Rue de Tolbiac

75013 Paris, France

mohamed.benayed@malix.univ-paris1.fr

Abstract. The research undertaken aims to find regularities in Lyee program

execution traces and to relate the trace chunks to well defined types of Lyee design

situations. Our findings take the form of Lyee execution patterns, each pattern

coupling a situation with a trace chunk. The paper presents and illustrate them with

an example.

1. Introduction

Lyee-Sorbonne
2
 is a Franco-Japanese research project aiming at developing a methodology

that supports software development in two steps, requirements engineering and code

generation. The former is the contribution of the Sorbonne’s group whereas the latter is

provided by LyeeALL.

The overall objective of the research activity of the Sorbonne Unit is to apply a method

engineering approach to the Lyee methodology [5,6]. The expected results consist on

formalising the product and the process aspects of the Lyee method, proposing

improvements to guide the process and to contribute to the extension of the functionality of

LyeeALL accordingly.

As a prerequisite of this method engineering activity, we developed a number of

application examples using the Lyee method and the support of LyeeALL. This paper is a

reflection on these experiments. It takes the form of a set of execution patterns that we

discovered by analysing the program traces of the generated code for these examples. As

any pattern, an execution pattern associates a problem to its solution. The problem is a

design situation typical of the Lyee way-of-thinking whereas the solution is a sequence of

steps of the Lyee executed program. We identify eight patterns that, we think, are sufficient

to explain any Lyee program trace. In other words, any Lyee program execution trace is an

aggregate of several of the 8 pattern traces.

The patterns show that there are regularities in the Lyee program execution control.

Moreover, they allow us to relate a typical sequence of steps in program execution control

to a well identified design situation. This was helpful to understand the key design

situations to focus on during the requirements acquisition phase [9].

The paper presents the eight execution patterns and illustrate them with an example.

The rest of the paper is organised as follows. Section 2 introduces the notion of Lyee

program execution trace and the notations used to present a program trace in the patterns.

Section 3 presents the execution patterns which are illustrated with an example in section 4.

1 Lyee, which stands for GovernmentaL MethodologY for SoftwarE ProvidencE, is a methodology for software

development used for the implementation of business software applications. Lyee was invented by Fumio Negoro.

2
 This paper hereof is contributed to the Lyee International Collaborative Research Project sponsored by Catena Corp. and

the Institute of Computer Based Software Methodology and Technology.

2. Tracing a Lyee Program Execution

In this section we first provide a brief overview of the Lyee program structure and

execution control and then, introduce the notations to describe a Lyee program execution

trace.

2.1. Lyee Program Execution Control

The Lyee approach and its support tool LyeeALL aim at transforming software

requirements into code. The essence of the approach is to reduce software requirements to

the description of program variables called words, and to generate the control structure

that logically processes these variables and produces the expected result. Despite the

traditional design approaches in which both the variables and the control structure of the

program must be designed, LyeeALL generates the latter provided an appropriate

description of the former is given. The underlying Lyee approach comprises an original

framework to structure programs, an engine to control their execution and a generation

mechanism to generate programs from given requirements.

The Lyee engine controls the determination of words by executing a function, the Tense

Control Function on a program generated by LyeeALL. This program is an instance of a

generic model, the Process Route Diagram (PRD). The PRD provides the structural

framework of Lyee programs whereas the Tense Control Function ensures the dynamic

control of program execution.

As shown in Figure 1, the structure of a Lyee program is a directed graph whose nodes

are instances of a basic structure called Scenario Function. A Scenario Function (SF) is

itself an aggregate of three sub-structures, called Pallets, W04, W02 and W03. Each pallet

structure is further decomposed into sub-structures called Vectors. There are three types of

vectors, Signification Vectors (Li), Action Vectors (I2, O4, S4) and Routing Vectors(Ri).

Besides, there is a specific set of vectors for each pallet; for example pallet W04 has four

vectors, L4, O4, S4 and R4. Finally each vector has an algorithmic structure which is a

specialisation of the generic structure called the Predicate Structure [7] .

L4

O4

L 2

I2

L 3L4L4

S4

R4

R3r

W04 W02 W03

L 2L2

I2

L 3L3

R2 L 3L 3R3k

multiplex / duplex

link

W04 W02 W03

Continuous

Link

Scenario Function

L4L4

O4

L 2L 2

I2

L 3L 3L4L4

S4

R4

R3r

W04 W02 W03

L 2L2

I2

L 3L3

R2 L 3L 3L 3R3k

multiplex / duplex

link

W04 W02 W03

Continuous

Link

Scenario Function

Figure 1 : Lyee Program Execution Control

The Tense Control Function ensures the program control through Pallet Functions. The

control is summed up in the following formula [6]:

TU = [4({L4,j},{O4, r },{S4, r }, R4) + 2({L2,i},{I2,r }, R2) + 3({L3,j},{R3,k})].

As expressed by the formula, the Tense Control Function may be defined as 4 +

2 + 3. In short, 4 controls the determination of output words and their physical

presentation on a device such as a screen, 2 ensures the capture of input words whereas

3 aims at verifying the conditions under which the determination of output words is

possible. Each pallet function controls the program execution thanks to its related vectors.

It shall be noticed that the Routing Vectors are used to hand over the control either from

one Pallet to another in the same SF or to another SF. The Routing Vectors R4, R2 and R3r

allow to progress locally from one Pallet Function to another one in the same SF. Contrarily

R3k Routing Vectors are used to hand over the control to another SF. There are three types

of SF links which are handled by the Routing Vectors R3k : continuous, duplex and

multiplex links. The former is a forward link whereas the two latter are backward links. A

duplex link is required when words generated by the dependee SF must be transferred to

dependent SF that starts its execution by Pallet Function 3. The multiplex link holds in

case of no data transfer and the SF execution starts with Pallet Function 4.

2.2.Lyee Program Execution Trace

The purpose of program execution tracing is to provide an exact image of the sequence of

steps by which the program transforms a set of inputs in a set of outputs. In the case of

Lyee, the program execution trace has a predefined structure which is the one underlying

the program execution control, namely the Tense Control Function. In fact, a Lyee program

execution trace is an instance of the TU formula introduced above. Each step of the trace is

an instance of the TU formula element, e.g. L4.w for a step which produces the output word

w, R3r to hand over the control to the 4 of the same SF, L2.x for acquiring the input word

x, etc…

In the following, we present a Lyee program execution trace as a sequence of

instantiated vectors. Figure 2 is an example of trace based on the notations summed up in

Table1.

Notations Meaning

Li. word Instantiation of the Significant vector Li for “word”

a Lb Execution of the pallet function a for vector Lb

I2 Input vector for pallet 2

O4 Output vector for pallet 4

S4 Structural vector

R4 Routing vector for pallet 4

R2 Routing vector for pallet 2

R3r, R3k Routing vector for pallet 3:

- r : recursive link

- k: continuous, duplex or multiplex link

Table1 : Notations for Lyee Program Execution Tracing

As illustrated in Figure 2 below, the trace is presented in a table with three columns.

The first indicates the step number, the second one provides the trace by reference to the

vector executed at this step and the third one explains the effect of this execution. For

instance in Figure 2, step 1 corresponds to the evaluation of the output word, word1 by the

signification vector L4; in step 2 the O4 execution leads to display the screen, and step 4

hands over the control to Pallet W02.

Step Trace Effect

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

4 L4.word1
 O4
 S4
 R4

None
Display screen
Clear memory word
NextPallet Id = SF01W02

2 L2.word2
 I2
 R2

None
None
NextPallet Id = SF01W03

3 L3.Goal
 R3r

None
NextPallet Id = SF01W04

Figure 2 : Trace Example

3. Execution Patterns

This section presents the eight Lyee program execution patterns. Patterns have been

introduced in software engineering as a mean to capture a solution applicable to a problem

in a given context. A pattern identifies a problem which occurs again and again and

provides a generic solution that can be recurrently applied to solve the problem. In [1],

Alexander defines a pattern as describing “a problem which occurs over and over again in

our environment and then describes the core of the solution to that problem, in such a way

that you can use this solution a million times over, without ever doing it the same way

twice”. A large number of similar definitions of the term “pattern” exists today [2,3,4]. All

these definitions share two main ideas. First, a pattern relates a recurring problem to its

solution. Second, each problem has characteristics that distinguish it from other problems.

3.1. Lyee Execution Pattern Structure

The Lyee execution patterns presented in this section aim at identifying sequences of steps

which occur again and again in the execution of Lyee programs. Each pattern associates a

sequence of steps to the situation in which this sequence is executed.

A sequence of steps is expressed using the trace notations introduced before. Every of

the sequence of steps of the eight patterns can be found as parts of a SF execution.

The corresponding situation shall thus characterise the SF in some way. To achieve this

objective, we propose to view any SF as a state transition (Figure 3) that transforms a set of

words (Wbefore) into another set of words (Wafter), provided some input words (Wi). A

pattern situation characterises the transition through conditions expressed on the three types

of words Wbefore, Wi and Wafter .

W before W after Wbefore Wafter

Wi

Figure 3 : The semantic view of a Scenario Function

The state before is defined by the set of words called Wbefore that, if not empty, has been

determined by previous executions of one or several SFs. The state after is defined by a set

of new input and/or output words called Wafter resulting from the SF execution. As shown in

Figure 3, the transition requires some input words called Wi from the external world (user

world or database world). Words of Wi can be captured in one shot or in several

asynchronous steps. This refers to the fact that the transition may encompass one or several

interactions with the external world. In other words, the SF is related to a state transition

including at least one interaction with the external world but may comprise several ones.

We will see later on the influence of this on the program trace.

Every pattern is presented in the following in two parts (a) the situation in which it

is applicable and, (b) the typical sequence of steps of program execution corresponding to

this situation. In each part, the situation and the sequence of steps respectively, are

presented and then, commented.

3.2. Pattern P1: Start of an Independent Scenario Function

Situation: W before =

We qualify this SF as independent because its execution does not depend on previous

SF executions.

Execution trace :

Step Trace Effect

(1) 4.{L4,j} j : set of output words None

(2) 4.O4 Display the screen / None

(3) 4.S4 Clear word memory / None

(4) 4.R4

Wait for the user interaction (asynchronous relation

between pallets W04 and WO2)

Or

No Wait (synchronous relation between pallets W04 and

W02)

NextPallet Id=SF01W02

Table 2 : Execution Trace of Pattern P1

The main characteristic of the trace presented in Table 2 is that one execution of the 4

pallet function is sufficient to trigger a successful execution of the 2 pallet function (in the

sense that it allows capturing the input). The 4 pallet execution leads to displaying the

empty screen (in the case where the SF is typed screen) and to clear the word memory.

3.3. Pattern P2: Start of a Dependent Scenario Function

Situation: W before

We qualify this SF as dependent because the SF execution depends of words

determined previously by the execution of other SFs.

Execution trace :

Step Trace Effect

(1) 4.{L4,j}

j : set of output words

None

(2) 4.O4 None

(3) 4.S4 None

(4) 4.R4 NextPallet Id=SF01W02

(5) 2.{L2,i}

i : set of input words

None

(6) 2.I2 None

(7) 2.R2 NextPallet Id=SF01W03

(8) 3.{L3,j}

j : set of output words

Determine the necessary conditions of output words based

on words of previous SF

(9) 3.R3r

r : recursive link

NextPallet Id=SF01W04

(10) 4.{L4,j}

j : set of output words

Determine the output words based on words of previous SF

(11) 4.O4 Display the screen / None

(12) 4.S4 Clear memory word / None

(13) 4.R4 NextPallet Id=SF01W02

Wait for the user interaction (asynchronous relation

between pallets W04 and WO2)

Or

No Wait (synchronous relation between pallets W04 and

W02)

Table 3 : Execution Trace of Pattern P2

The trace presented in Table 3 shows that the words of the state before can be

determined only at the second execution of the pallet function 4. The first iteration of the

sequence of pallets 4, 2, 3 does not have visible effects but is a prerequisite for the

second iteration to happen and be succesful. The effects of the second iteration start with

the 4.L4 execution that can determine the words of Wbefore.

3.4. Pattern P3: Input Word Capture

Situation : Wi

The situation refers to the fact that the transition must capture input words. Therefore,

this situation shall occur in any SF execution implementing a complete interaction with the

user, as the assumption is that the transition includes at least one capture of input words

from the external world.

Execution trace :

Step Trace Effect

(1) 2.{L2,i}, i : input words None

(2) 2.I2 Read the input from physical device

(3) Loop NextPallet Id=SF01W02

(4) 2.{L2,i}, i : input words Determine the input words (from buffer)

(5) 2.I2 None

(6) 2.R2 NextPallet Id=SF01W03

(7) 3.{L3,j}, j : output word None

(8) 3.R3r

(or 3.R3c, c : continuous link)

NextPallet Id = SF01W04

Table 4 : Execution Trace of Pattern P3

The trace presented in Table 4 indicates that two iterations of the pallet function 2

are needed to successfully capture the input words. The first iteration makes the physical

read action feasible whereas the second uses the buffer filled in by the read action to

actually determine the input words. The control is then given to pallet 3.

3.5. Pattern P4: Output Word Production

Situation : Wafter = f (Winput)

This situation indicates that Wafter depends of Winput . This situation shall occur in any

SF execution implementing a complete interaction with the user (or interfacing a program

with a database).

Execution trace :

Step Trace Effect

(1) 3.{L3,j}, j : output words Determine the necessary conditions of output words

(2) 3.R3r (r : recursive link) NextPallet Id=SF01W04

(3) 4.{L4,j}, j : output words Determine the output words dependent of the input words

(4) 4.O4 Display the screen / Write in the database

(5) 4.S4 Clear word memory / None

(6) 4.R4 NextPallet Id=SF01W02

Wait for the user interaction (asynchronous relation between

pallets W04 and WO2)

Or

No Wait (synchronous relation between pallets W04 and W02)

Table 5 : Execution Trace of Pattern P4

As shown in Table 5, the pattern indicates that in the production of output words, the

execution of the pallet function 3 determining the necessary conditions of the output

words is followed by the execution of the pallet function 4 implementing physically the

write operation on the corresponding device.

3.6. Pattern P5: Dependent Output Word Production

Situation : j1 W after and {j: j W after and j = fj(j1) }

The characteristic of this situation is that some of the output words produced in the SF

are intermediate values which are not displayed to the user.

This situation addresses dependencies among output words belonging to W after. More

precisely the situation identifies a dependence of the type n to 1 : n output words {j}

belonging to W after are dependent of only 1 word j1 in the same W after .

This situation imposes an ordering in the calculation of output words, which is reflected

in the pattern sequence of steps.

Execution trace :

Step Trace Effect

(1) 3.{L3,j}

j : output words

determine the necessary conditions of output

words j1 and {j}

(2) 3.R3r

r : recursive link

NextPallet Id=SF01W04

(3) 4.{L4,j1}

j1 : output words

Determine the output word j1 dependent of the

input words

(4) 4.O4 None

(5) Loop NextPallet Id=SF01W04

(6) 4.{L4,j}
{j} : dependent output words

Determine the output words {j}

(7) 4.O4 Display the screen / Write in the database

(8) 4.S4 Clear word memory / None

(9) 4.R4 NextPallet Id=SF01W02

Wait for the user interaction (asynchronous

relation between pallets W04 and WO2)

Or

No Wait (synchronous relation between pallets

W04 and W02)

Table 6 : Execution Trace of Pattern P5

The key characteristic of a sequence of steps presented in Table 6 is a double execution

of the 4 pallet function : one for determining the dependee word (j1) and one for

determining the set of dependent words. It shall be noticed that two iterations are sufficient,

even if the set of dependent words {j} comprises more than one word.

3.7. Pattern P6 : Termination of a SF Execution

Situation: Wafter is determined

The situation refers to the fact that the word Wafter have already been evaluated.

Execution trace :

Step Trace Effect

(1) 4.{L4,j}

j : set of output words

Already determined

(2) 4.O4 None

(3) 4.S4 None

(4) 4.R4 NextPallet Id=SF01W02

(5) 2.{L2,i}

i : set of input words

Already determined

(6) 2.I2 None

(7) 2.R2 NextPallet Id=SF01W03

(8) 3.{L3,j}

j : set of output words

Already satisfied

(9) 3.{R3,k}

k : continuous, duplex or multiplex

End of the Scenario

Function SF01.

Table 7 : Execution Trace of Pattern P6

As shown in table 7, a SF termination is detected when one iteration of the three pallet

functions induces no change compared to the previous iteration. Consequently the pattern

trace is made of a series of steps reflecting that the three pallet function executions have no

effect.

3.8. Pattern P7 : Mono Interaction

Situation : W i = Capture one shot (W i1)

As shown in Figure 4 the situation of this pattern refers to a transition in which a single

set of input words is captured in one shot. Such an SF is called atomic.

i1

W before W W before W after

Word

Figure 4 : Single Interaction

Execution Trace = (P1 | P2) + [P3] + [P4 + (P5)*] +P6

In this formula, the name of a pattern is used instead of the complete execution trace

corresponding to it. The vertical bar expresses that the left item and right item can be

substituted one to the other. A bracket means that the item is optional. Finally, the plus

operator expresses the trace concatenation. Pattern P7 is a compound pattern which

provides the composition of patterns in a transition with one single interaction.

Pattern P1 or Pattern P2 are applied to Start the execution of the transition; the pattern

P3 is applied to capture the set of input words Wi1.The pattern P4 or the pattern P5 (several

times) are then be applied in order to calculate the output words; depending of the fact that

they are dependent, or not of the others words. Pattern P6 ends the transition.

3.9. Pattern P8 : Multi – Interaction

Situation : Wi = j Capture one shot (W ij)

i1before

Wbefore W

after

Word before Word after

Word
...

iNWord

Figure 5: Multi-Interaction

The situation refers to in this pattern is the one of a compound SF. The term

compound is employed here to express the fact that within the same SF, several

interactions are performed to capture the input words (Figure 5).

Execution Trace = (P1 | P2) +([P3] + [P4 + (P5)*])
N
 + P6

 This pattern is similar to P7 but corresponds to the execution a compound SF. The

sequence of steps it refers to is an aggregate of other pattern sequences of steps .

4. Applying Patterns

In order to illustrate the execution patterns, we present the Split a Goal example. Some

other examples can be found in [8]. Split a Goal is a functionality which, given a goal

statement such as ‘Withdraw cash from an ATM’, automatically decomposes it into a verb

and its parameters. For example, Withdraw is the verb, cash is the target parameter of the

verb and from an ATM is the means parameter.

The full functionality identifies 7 different parameters. However, in this paper we will

consider only the two parameters exemplified above, target and means.

The Split a Goal example includes two screens: the Input screen (Screen1) lets the user

input the goal and inquiry for its decomposition (Figure 6). The Output screen (Screen2)

displays the values of the parameters resulting of the decomposition of the goal (Figure 7).

When the user clicks on the SearchDB button, the system accesses to the database using the

GoalId as query parameter and retrieves the goal name which is displayed to the user in the

Goal field.

 Screen1

Goal_ID SearchDB

Goal

Split Quit

Goal_ID SearchDB

Goal :

Split Quit

Figure 6: The Input screen to formulate the goal

 Screen2

Verb :

Target :

Means :

Stop Return

Goal Split

Verb :

Target :

Means :

Stop Return

Goal Split

Figure 7: The Output screen to display the
parameters

When the user clicks on the Split button, the system decomposes the goal into a Verb

and its parameters (Target, Means) using an algorithm, and displays the results on the

Output screen (Figure 7). The Return button triggers the display of the input screen

whereas the Stop button allows the user to stop the process at any moment.

The PRD presented in Figure 8 is composed of three Scenario Functions namely SF01

(associated to Screen 1), SF02 (for accessing the database) and SF03 (for displaying

outputs in Screen 2):

W04 W02 W03

W04 W02 W03

SW01 SR01

SW02 SR02

R3c

R3e End R3e End

R3m

Screen1

Screen2

W04 W02 W03

GoalDB

R3c

FR01

R3d

KR01

SF01

SF02

SF03

W04 W02 W03

W04 W02 W03

SW01 SR01

SW02 SR02

R3c

R3e End R3e End

R3m

Screen1

Screen2

W04 W02 W03

GoalDB

R3c

FR01

R3d

KR01

SF01

SF02

SF03

Figure 8: Process Route Diagram for Split a Goal example

Table 8 presents the execution trace, column 2 relates a sequence of steps in the

trace to one of the 8 patterns.

Step Pattern

Applied

Trace Effect

(1)
(2)
(3)
(4)

(5) (6)
(7) (8)

(9)
(10)

(11) (12)
(13) (14)

(15)
(16)
(17)
(18)

P8

P1 4 L4.Goal
 O4
 S4
 R4
 Wait until the user action

None
Display screen
Clear memory word
NextPallet Id = SF01W02
The user clicks on SearchDB button

P3

2 L2.Goal_ID, L2.SearchDB
 L2.Split, L2.Quit
 I2
 Loop

None
None
Capture input from screen
NextPallet Id = SF01W02

2 L2.Goal_ID, L2.SearchDB
 L2.Split, L2.Quit
 I2
 R2

Determine Input word (from buffer)
Determine Input word (from buffer)
None
NextPallet Id = SF01W03

3 L3.Goal
 R3c (continous link)

Determine the necessary condition
NextPallet Id = SF02W04
 end of execution of SF01 (break)

(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)

P7

P2 4 L4.Key_GoalID
 O4
 S4
 R4

None
None
None
NextPallet Id = SF02W02

2 L2.Goaldb
 I2
 R2

None
None
NextPallet Id = SF02W03

3 L3.Key_GoalID
 R3r

Determine the necessary condition
NextPallet Id = SF02W04

(28)
(29)
(30)
(31)
(32)
(33)
(34)

4 L4.Key_GoalID
 O4
 S4
 R4

Determine Output word
None
None
NextPallet Id = SF02W02

P3

2 L2.Goaldb
 I2
 Loop

None
Capture input from database
NextPallet Id = SF02W02

(35)
(36)
(37)
(38)
(39)

 2 L2.Goaldb
 I2
 R2

Determine input word from buffer
None
NextPallet Id = SF02W03

3 L3.Key_GoalID
 R3r

Already Satisfied
NextPallet Id = SF02W04

(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)

P6 4 L4.Key_GoalID
 O4
 S4
 R4

Already determined
None
None
NextPallet Id = SF02W02

2 L2.Goaldb
 I2
 R2

Already determined
None
NextPallet Id = SF02W03

3 L3.Key_GoalID
 R3d (duplex link)

Already satisfied
NextPallet Id = SF01W03
 end of execution of SF02

(49)
(50)

P8

P4 3 L3.Goal
 R3r
(return of the duplex link)

Already determined
NextPallet Id = SF01W04

(51)
(52)
(53)
(54)

(55) (56)
(56) (57)

(58)
(59)

(60) (61)
(62) (63)

(64)
(65)
(66)
(67)

4 L4.Goal
 O4
 S4
 R4
 Wait until the user action

Determine output word
Display screen
Clear memory word
NextPallet Id = SF01W02
The user clicks on the Split button

P3

2 L2.Goal_ID, L2.SearchDB
 L2.Split, L2.Quit
 I2
 Loop

None
None
Capture input from screen
NextPallet Id = SF01W02

2 L2.Goal_ID, L2.SearchDB
 L2.Split, L2.Quit
 I2
 R2

Determine Input word (from buffer)
Determine Input word (from buffer)
None
NextPallet Id = SF01W03

3 L3.Goal
 R3r

Already satisfied
NextPallet Id = SF01W04

(68)
(69)
(70)
(71)

(72) (73)
(74) (75)

(76)
(77)
(78)
(79)

P6

4 L4.Goal
 O4
 S4
 R4

Already determined
None
None
NextPallet ID = SF01W02

2 L2.Goal_ID, L2.SearchDB
 L2.Split, L2.Quit
 I2
 R2

Already determined
Already determined
None
NextPallet Id = SF01W03

3 L3.Goal
 R3c (continous link)

Already satisfied
NextPallet Id = SF03W04
 end of execution of SF01

(80) (81) (82)
(83)
(84)
(85)

(86) (87)
(88)
(89)

(90) (91) (92)
(93)

P7

P2 4 L4.Verb, L4.Target, L4.Means
 O4
 S4
 R4

None
None
None
NextPallet Id = SF03W02

2 L2.Stop, L2.Return
 I2
 R2

None
None
NextPallet Id = SF03W03

3 L3.Verb, L3.Target, L3.Means
 R3r

Determine the necessary condition
NextPallet Id =SF03W04

(94) (95) (96)
(97)
(98)
(99)

(100) (101)

(102)
(103)

(104) (105)
(106)
(107)

(108) (109) (110)
(111)

4 L4.Verb, L4.Target, L4.Means
 O4
 S4
 R4
 Wait until the user action

Determine output word
Display screen
Clear memory word
NextPallet Id = SF03W02
The user clicks on the Return button

P3

2 L2.Stop, L2.Return
 I2
 Loop

None
Read input from input screen
NextPallet Id = SF03W02

2 L2.Stop, L2.Return
 I2
 R2

Determine input word
None
NextPallet Id = SF03W03

3 L3.Verb, L3.Target, L3.Means
 R3r

Already satisfied
NextPallet Id = SF03W04

(112) (113) (114)
(115)
(116)
(117)

P6

4 L4.Verb, L4.Target, L4.Means
 O4
 S4
 R4

Already determined
None
None
NextPallet Id = SF03W02

(118) (119)
(120)
(121)

(122) (123) (124)
(125)

 2 L2.Stop, L2.Return
 I2
 R2

Already determined
None
NextPallet Id = SF03W03

3 L3.Verb, L3.Target, L3.Means
 R3m (multiplex link)

Already satisfied
NextPallet Id = SF01W04
 end of execution of SF03

(126)
(127)
(128)
(129)

(130) (131)
(132) (133)

(134)
(135)

(136) (137)
(138) (139)

(140)
(141)
(142)
(143)

P7

P1 4 L4.Goal
 O4
 S4
 R4
 Wait until the user action

None
Display screen
Clear memory word
NextPallet Id = SF01W02
The user clicks on the Quit button

P3

2 L2.Goal_ID, L2.SearchDB
 L2.Split, L2.Quit
 I2
 Loop

None
None
Capture input from screen
NextPallet Id = SF01W02

2 L2.Goal_ID, L2.SearchDB
 L2.Split, L2.Quit
 I2
 R2

Determine Input word (from buffer)
Determine Input word (from buffer)
None
NextPallet Id = SF01W03

3 L3.Goal
 R3r

None
NextPallet Id = SF01W04

(144)
(145)
(146)

(147)(148) (149)
(150) (151)

(152)
(153)
(154)
(155)

P6 4 L4.Goal
 O4
 S4
 R4

None
None
None
NextPallet Id = SF01W02

2 L2.Goal_ID, L2.SearchDB
 L2.Split, L2.Quit
 I2
 R2

Already determined
Already determined
None
NextPallet Id = SF01W03

3 L3.Goal
 R3e (continuous link)

Already satisfied
NextPallet Id = END
 end of execution of program

Table 8: Relating Split a Goal Trace to Patterns

Table 8 shows that the trace is composed of 14 parts each corresponding to a

sequence of steps of one of the six atomic patterns P1 to P6.

In addition, the table shows that groups of sequences of steps conform to the

compound patterns P7 and P8. For example, it can be seen that the trace starts with an

instance of the P8 pattern, followed by two instances of pattern P7.

The instance of pattern P8 conforms the P8 template : it is composed of a sequence

of atomic patterns instances : P1, P3, P4, P3 and P6.

5. Conclusion

This paper reflects on our experience with LyeeALL. It proposes generic Lyee program

execution traces captured in Lyee execution patterns. Each pattern identifies a recurrent

sequence of steps in Lyee program execution control and to relate it to the situation in

which this sequence shall be executed.
Any Lyee program execution trace results of the assembly of pattern sequences. In

other words, any Lyee program execution trace is an aggregation of instances of some of

these execution patterns. This was shown in the Split a Goal example. The execution

patterns were useful to understand the relevant design situations when drawing PRDs.

Based on these situations a set of design patterns have been defined and are currently under

validation.

6. References

[1] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, S. Angel, “A Pattern

Language”, Oxford University Press, New York, 1977.

[2] J. Coplien, D. Schmidt (eds.), “Pattern Languages of Program Design”, Addison Wesley, Reading, MA,

1995.

[3] M. Fowler, “Analysis Patterns: Reusable Object Models”, Addison-Wesley, 1997.

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns: Elements of Reusable Object-Oriented

Software”, Addison Wesley, Reading, MA, 1995.

[5] F. Negoro, “Intent Operationalisation For Source Code Generation”, Proceedings of SCI and ISAS,

Orlando, 2001.

[6] F. Negoro, “Methodology to define software in a deterministic manner”, Proceedings of ICII, Beijing,

China, 2001.

[7] F. Negoro, “The predicate structure to represent the intention for software”, Proceedings of SNPD,

Nagoya, Japan, 2001.

[8] S. Nurcan, M. Ben Ayed, C. Rolland, Lyee International Collaborative Project University Paris 1

Scientific Report SC1, Mars 2002

[9] C. Rolland, M. Ben Ayed, “Understanding the Lyee Methodology through Meta Modelling”, Proceeding

of EMMSAD, Toronto, 2002.

