Mohamed Ben Ayed
email: mohamed.benayed@malix.univ-paris1.fr

Lyee 1 Program Execution Patterns

The research undertaken aims to find regularities in Lyee program execution traces and to relate the trace chunks to well defined types of Lyee design situations. Our findings take the form of Lyee execution patterns, each pattern coupling a situation with a trace chunk. The paper presents and illustrate them with an example.

Introduction

Lyee-Sorbonne2 is a Franco-Japanese research project aiming at developing a methodology that supports software development in two steps, requirements engineering and code generation. The former is the contribution of the Sorbonne's group whereas the latter is provided by LyeeALL.

The overall objective of the research activity of the Sorbonne Unit is to apply a method engineering approach to the Lyee methodology [START_REF] Negoro | Intent Operationalisation For Source Code Generation[END_REF][START_REF] Negoro | Methodology to define software in a deterministic manner[END_REF]. The expected results consist on formalising the product and the process aspects of the Lyee method, proposing improvements to guide the process and to contribute to the extension of the functionality of LyeeALL accordingly.

As a prerequisite of this method engineering activity, we developed a number of application examples using the Lyee method and the support of LyeeALL. This paper is a reflection on these experiments. It takes the form of a set of execution patterns that we discovered by analysing the program traces of the generated code for these examples. As any pattern, an execution pattern associates a problem to its solution. The problem is a design situation typical of the Lyee way-of-thinking whereas the solution is a sequence of steps of the Lyee executed program. We identify eight patterns that, we think, are sufficient to explain any Lyee program trace. In other words, any Lyee program execution trace is an aggregate of several of the 8 pattern traces.

The patterns show that there are regularities in the Lyee program execution control. Moreover, they allow us to relate a typical sequence of steps in program execution control to a well identified design situation. This was helpful to understand the key design situations to focus on during the requirements acquisition phase [START_REF] Rolland | Understanding the Lyee Methodology through Meta Modelling[END_REF].

The paper presents the eight execution patterns and illustrate them with an example. The rest of the paper is organised as follows. Section 2 introduces the notion of Lyee program execution trace and the notations used to present a program trace in the patterns. Section 3 presents the execution patterns which are illustrated with an example in section 4.

Tracing a Lyee Program Execution

In this section we first provide a brief overview of the Lyee program structure and execution control and then, introduce the notations to describe a Lyee program execution trace.

Lyee Program Execution Control

The Lyee approach and its support tool LyeeALL aim at transforming software requirements into code. The essence of the approach is to reduce software requirements to the description of program variables called words, and to generate the control structure that logically processes these variables and produces the expected result. Despite the traditional design approaches in which both the variables and the control structure of the program must be designed, LyeeALL generates the latter provided an appropriate description of the former is given. The underlying Lyee approach comprises an original framework to structure programs, an engine to control their execution and a generation mechanism to generate programs from given requirements.

The Lyee engine controls the determination of words by executing a function, the Tense Control Function on a program generated by LyeeALL. This program is an instance of a generic model, the Process Route Diagram (PRD). The PRD provides the structural framework of Lyee programs whereas the Tense Control Function ensures the dynamic control of program execution.

As shown in Figure 1, the structure of a Lyee program is a directed graph whose nodes are instances of a basic structure called Scenario Function. A Scenario Function (SF) is itself an aggregate of three sub-structures, called Pallets, W04, W02 and W03. Each pallet structure is further decomposed into sub-structures called Vectors. There are three types of vectors, Signification Vectors (Li), Action Vectors (I2, O4, S4) and Routing Vectors(Ri). Besides, there is a specific set of vectors for each pallet; for example pallet W04 has four vectors, L4, O4, S4 and R4. Finally each vector has an algorithmic structure which is a specialisation of the generic structure called the Predicate Structure [START_REF] Negoro | The predicate structure to represent the intention for software[END_REF] . The Tense Control Function ensures the program control through Pallet Functions. The control is summed up in the following formula [START_REF] Negoro | Methodology to define software in a deterministic manner[END_REF]:

L4 O4 L 2 I2 L 3 L4 L4 S4 R4 R3r W04 W02 W03 L 2 L2 I2 L 3 L3 R2 L 3 L 3 R3k multiplex / duplex link W04 W02 W03 Continuous Link Scenario Function L4 L4 O4 L 2 L 2 I2 L 3 L 3 L4 L4 S4 R4 R3r W04 W02 W03 L 2 L2 I2 L 3 L3 R2 L 3 L 3 L 3 R3k multiplex / duplex link W04 W02 W03

Continuous Link

T U = [4({L4,j},{O4, r },{S4, r }, R4) + 2({L2,i},{I2,r }, R2) + 3({L3,j},{R3,k})].
As expressed by the formula, the Tense Control Function may be defined as 4 + 2 + 3. In short, 4 controls the determination of output words and their physical presentation on a device such as a screen, 2 ensures the capture of input words whereas 3 aims at verifying the conditions under which the determination of output words is possible. Each pallet function controls the program execution thanks to its related vectors. It shall be noticed that the Routing Vectors are used to hand over the control either from one Pallet to another in the same SF or to another SF. The Routing Vectors R4, R2 and R3r allow to progress locally from one Pallet Function to another one in the same SF. Contrarily R3k Routing Vectors are used to hand over the control to another SF. There are three types of SF links which are handled by the Routing Vectors R3k : continuous, duplex and multiplex links. The former is a forward link whereas the two latter are backward links. A duplex link is required when words generated by the dependee SF must be transferred to dependent SF that starts its execution by Pallet Function 3. The multiplex link holds in case of no data transfer and the SF execution starts with Pallet Function 4.

2.2.Lyee Program Execution Trace

The purpose of program execution tracing is to provide an exact image of the sequence of steps by which the program transforms a set of inputs in a set of outputs. In the case of Lyee, the program execution trace has a predefined structure which is the one underlying the program execution control, namely the Tense Control Function. In fact, a Lyee program execution trace is an instance of the T U formula introduced above. Each step of the trace is an instance of the T U formula element, e.g. L4.w for a step which produces the output word w, R3r to hand over the control to the 4 of the same SF, L2.x for acquiring the input word x, etc…

In the following, we present a Lyee program execution trace as a sequence of instantiated vectors. Figure 2 is an example of trace based on the notations summed up in Table1. As illustrated in Figure 2 below, the trace is presented in a table with three columns. The first indicates the step number, the second one provides the trace by reference to the vector executed at this step and the third one explains the effect of this execution. For instance in Figure 2, step 1 corresponds to the evaluation of the output word, word1 by the signification vector L4; in step 2 the O4 execution leads to display the screen, and step 4 hands over the control to Pallet W02.

Notations

Step Trace

Effect

(1) (2) (3) (4) (5) (6) (7) (8) (9

Execution Patterns

This section presents the eight Lyee program execution patterns. Patterns have been introduced in software engineering as a mean to capture a solution applicable to a problem in a given context. A pattern identifies a problem which occurs again and again and provides a generic solution that can be recurrently applied to solve the problem. In [START_REF] Alexander | A Pattern Language[END_REF], Alexander defines a pattern as describing "a problem which occurs over and over again in our environment and then describes the core of the solution to that problem, in such a way that you can use this solution a million times over, without ever doing it the same way twice". A large number of similar definitions of the term "pattern" exists today [START_REF]Pattern Languages of Program Design[END_REF][START_REF] Fowler | Analysis Patterns: Reusable Object Models[END_REF][START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF]. All these definitions share two main ideas. First, a pattern relates a recurring problem to its solution. Second, each problem has characteristics that distinguish it from other problems.

Lyee Execution Pattern Structure

The Lyee execution patterns presented in this section aim at identifying sequences of steps which occur again and again in the execution of Lyee programs. Each pattern associates a sequence of steps to the situation in which this sequence is executed.

A sequence of steps is expressed using the trace notations introduced before. Every of the sequence of steps of the eight patterns can be found as parts of a SF execution.

The corresponding situation shall thus characterise the SF in some way. To achieve this objective, we propose to view any SF as a state transition (Figure 3) that transforms a set of words (W before) into another set of words (W after), provided some input words (W i). A pattern situation characterises the transition through conditions expressed on the three types of words W before , W i and W after . The state before is defined by the set of words called W before that, if not empty, has been determined by previous executions of one or several SFs. The state after is defined by a set of new input and/or output words called W after resulting from the SF execution. As shown in Figure 3, the transition requires some input words called W i from the external world (user world or database world). Words of W i can be captured in one shot or in several asynchronous steps. This refers to the fact that the transition may encompass one or several interactions with the external world. In other words, the SF is related to a state transition including at least one interaction with the external world but may comprise several ones. We will see later on the influence of this on the program trace.

W before W after W before W after W i
Every pattern is presented in the following in two parts (a) the situation in which it is applicable and, (b) the typical sequence of steps of program execution corresponding to this situation. In each part, the situation and the sequence of steps respectively, are presented and then, commented.

Pattern P1: Start of an Independent Scenario Function

Situation: W before =
We qualify this SF as independent because its execution does not depend on previous SF executions.

Execution trace :

Step The main characteristic of the trace presented in Table 2 is that one execution of the 4 pallet function is sufficient to trigger a successful execution of the 2 pallet function (in the sense that it allows capturing the input). The 4 pallet execution leads to displaying the empty screen (in the case where the SF is typed screen) and to clear the word memory.

Pattern P2: Start of a Dependent Scenario Function

Situation: W before

We qualify this SF as dependent because the SF execution depends of words determined previously by the execution of other SFs.

Execution trace :

Step Trace Effect The trace presented in Table 3 shows that the words of the state before can be determined only at the second execution of the pallet function 4. The first iteration of the sequence of pallets 4, 2, 3 does not have visible effects but is a prerequisite for the second iteration to happen and be succesful. The of the second iteration start with the 4.L4 execution that can determine the words of W before .

Pattern P3: Input Word Capture

Situation : W i

The situation refers to the fact that the transition must capture input words. Therefore, this situation shall occur in any SF execution implementing a complete interaction with the user, as the assumption is that the transition includes at least one capture of input words from the external world.

Execution trace :

Step The trace presented in Table 4 indicates that two iterations of the pallet function 2 are needed to successfully capture the input words. The first iteration makes the physical read action feasible whereas the second uses the buffer filled in by the read action to actually determine the input words. The control is then given to pallet 3.

Pattern P4: Output Word Production

Situation : W after = f (W input)
This situation indicates that W after depends of W input . This situation shall occur in any SF execution implementing a complete interaction with the user (or interfacing a program with a database).

Execution trace :

Step As shown in Table 5, the pattern indicates that in the production of output words, the execution of the pallet function 3 determining the necessary conditions of the output words is followed by the execution of the pallet function 4 implementing physically the write operation on the corresponding device.

Pattern P5: Dependent Output Word Production

Situation : j1 W after and {j: j W after and j = f j (j1) }

The characteristic of this situation is that some of the output words produced in the SF are intermediate values which are not displayed to the user.

This situation addresses dependencies among output words belonging to W after . More precisely the situation identifies a dependence of the type n to 1 : n output words {j} belonging to W after are dependent of only 1 word j1 in the same W after .

This situation imposes an ordering in the calculation of output words, which is reflected in the pattern sequence of steps.

Execution trace :

Step The key characteristic of a sequence of steps presented in Table 6 is a double execution of the 4 pallet function : one for determining the dependee word (j1) and one for determining the set of dependent words. It shall be noticed that two iterations are sufficient, even if the set of dependent words {j} comprises more than one word.

Pattern P6 : Termination of a SF Execution

Situation: W after is determined

The situation refers to the fact that the word W after have already been evaluated.

Execution trace :

Step As shown in table 7, a SF termination is detected when one iteration of the three pallet functions induces no change compared to the previous iteration. Consequently the pattern trace is made of a series of steps reflecting that the three pallet function executions have no effect.

Pattern P7 : Mono Interaction

Situation : W i = Capture one shot (W i1)
As shown in Figure 4 the situation of this pattern refers to a transition in which a single set of input words is captured in one shot. Such an SF is called atomic.

Execution Trace = (P1 | P2) + [P3] + [P4 + (P5)*] +P6

In this formula, the name of a pattern is used instead of the complete execution trace corresponding to it. The vertical bar expresses that the left item and right item can be substituted one to the other. A bracket means that the item is optional. Finally, the plus operator expresses the trace concatenation. Pattern P7 is a compound pattern which provides the composition of patterns in a transition with one single interaction. Pattern P1 or Pattern P2 are applied to Start the execution of the transition; the pattern P3 is applied to capture the set of input words W i1 .The pattern P4 or the pattern P5 (several times) are then be applied in order to calculate the output words; depending of the fact that they are dependent, or not of the others words. Pattern P6 ends the transition. The situation refers to in this pattern is the one of a compound SF. The term compound is employed here to express the fact that within the same SF, several interactions are performed to capture the input words (Figure 5).

Execution Trace = (P1 | P2) +([P3] + [P4 + (P5)*]) N + P6

This pattern is similar to P7 but corresponds to the execution a compound SF. The sequence of steps it refers to is an aggregate of other pattern sequences of steps .

Applying Patterns

In order to illustrate the execution patterns, we present the Split a Goal example. Some other examples can be found in [START_REF] Nurcan | Lyee International Collaborative Project University Paris 1 Scientific Report SC1[END_REF]. Split a Goal is a functionality which, given a goal statement such as 'Withdraw cash from an ATM', automatically decomposes it into a verb and its parameters. For example, Withdraw is the verb, cash is the target parameter of the verb and from an ATM is the means parameter.

The full functionality identifies 7 different parameters. However, in this paper we will consider only the two parameters exemplified above, target and means. The Split a Goal example includes two screens: the Input screen (Screen1) lets the user input the goal and inquiry for its decomposition (Figure 6). The Output screen (Screen2) displays the values of the parameters resulting of the decomposition of the goal (Figure 7). When the user clicks on the SearchDB button, the system accesses to the database using the GoalId as query parameter and retrieves the goal name which is displayed to the user in the Goal field.

Goal Split

Verb :

Target :

Means :

Stop Return

Goal Split Figure 7: The Output screen to display the parameters When the user clicks on the Split button, the system decomposes the goal into a Verb and its parameters (Target, Means) using an algorithm, and displays the results on the Output screen (Figure 7). The Return button triggers the display of the input screen whereas the Stop button allows the user to stop the process at any moment.

The PRD presented in Figure 8 is composed of three Scenario Functions namely SF01 (associated to Screen 1), SF02 (for accessing the database) and SF03 (for displaying outputs in Screen 2): Table 8 shows that the trace is composed of 14 parts each corresponding to a sequence of steps of one of the six atomic patterns P1 to P6.

In addition, the table shows that groups of sequences of steps conform to the compound patterns P7 and P8. For example, it can be seen that the trace starts with an instance of the P8 pattern, followed by two instances of pattern P7.

The instance of pattern P8 conforms the P8 template : it is composed of a sequence of atomic patterns instances : P1, P3, P4, P3 and P6.

Conclusion

This paper reflects on our experience with LyeeALL. It proposes generic Lyee program execution traces captured in Lyee execution patterns. Each pattern identifies a recurrent sequence of steps in Lyee program execution control and to relate it to the situation in which this sequence shall be executed.

Any Lyee program execution trace results of the assembly of pattern sequences. In other words, any Lyee program execution trace is an aggregation of instances of some of these execution patterns. This was shown in the Split a Goal example. The execution patterns were useful to understand the relevant design situations when drawing PRDs. Based on these situations a set of design patterns have been defined and are currently under validation.

Figure 1 :

 1 Figure 1 : Lyee Program Execution Control

Figure 2 :

 2 Figure 2 : Trace Example

Figure 3 :

 3 Figure 3 : The semantic view of a Scenario Function

Figure 4 :

 4 Figure 4 : Single Interaction

3. 9 .Figure 5 :

 95 Figure 5: Multi-Interaction

Figure 6 :

 6 Figure 6: The Input screen to formulate the goal

Figure 8 :

 8 Figure 8: Process Route Diagram for Split a Goal example

)

	4 L4.word1	None
	O4	Display screen
	S4	Clear memory word
	R4	NextPallet Id = SF01W02
	2 L2.word2	None
	I2	None
	R2	NextPallet Id = SF01W03
	3 L3.Goal	None
	R3r	NextPallet Id = SF01W04

Table 2 :

 2 Execution Trace of Pattern P1

		Trace	Effect
	(1)	4.{L4,j} j : set of output words	None
	(2)	4.O4	Display the screen / None
	(3)	4.S4	Clear word memory / None
	(4)	4.R4	NextPallet Id=SF01W02
		Wait for the user interaction (asynchronous relation	
		between pallets W04 and WO2)	
		Or	
		No Wait (synchronous relation between pallets W04 and	
		W02)	

Table 3 :

 3 Execution Trace of Pattern P2

	1)	4.{L4,j}	None
		j : set of output words	
	(2)	4.O4	None
	(3)	4.S4	None
	(4)	4.R4	NextPallet Id=SF01W02
	(5)	2.{L2,i}	None
		i : set of input words	
	(6)	2.I2	None
	(7)	2.R2	NextPallet Id=SF01W03

Table 4 :

 4 Execution Trace of Pattern P3

Table 5 :

 5 Execution Trace of Pattern P4

		Trace	Effect
	(1)	3.{L3,j}, j : output words Determine the necessary conditions of output words
	(2)	3.R3r (r : recursive link) NextPallet Id=SF01W04
	(3)	4.{L4,j}, j : output words Determine the output words dependent of the input words
	(4)	4.O4	Display the screen / Write in the database
	(5)	4.S4	Clear word memory / None
	(6)	4.R4	NextPallet Id=SF01W02
			Wait for the user interaction (asynchronous relation between
			pallets W04 and WO2)
			Or
			No Wait (synchronous relation between pallets W04 and W02)

Table 6 :

 6 Execution Trace of Pattern P5

		Trace	Effect
	(1)	3.{L3,j}	determine the necessary conditions of output
		j : output words	words j1 and {j}
	(2)	3.R3r	NextPallet Id=SF01W04
		r : recursive link	
	(3)	4.{L4,j1}	Determine the output word j1 dependent of the
		j1 : output words	input words
	(4)	4.O4	None
	(5)	Loop	NextPallet Id=SF01W04
	(6)	4.{L4,j}	Determine the output words {j}
		{j} : dependent output words	
	(7)	4.O4	Display the screen / Write in the database
	(8)	4.S4	Clear word memory / None
	(9)	4.R4	NextPallet Id=SF01W02
			Wait for the user interaction (asynchronous
			relation between pallets W04 and WO2)
			Or
			No Wait (synchronous relation between pallets
			W04 and W02)

Table 7 :

 7 Execution Trace of Pattern P6

		Trace	Effect
	(1)	4.{L4,j}	Already determined
		j : set of output words	
	(2)	4.O4	None
	(3)	4.S4	None
	(4)	4.R4	NextPallet Id=SF01W02
	(5)	2.{L2,i}	Already determined
		i : set of input words	
	(6)	2.I2	None
	(7)	2.R2	NextPallet Id=SF01W03
	(8)	3.{L3,j}	Already satisfied
		j : set of output words	
	(9)	3.{R3,k}	End of the Scenario
		k : continuous, duplex or multiplex	Function SF01.

Table 8

 8 presents the execution trace, column 2 relates a sequence of steps in the trace to one of the 8 patterns.

	Step	Pattern	Trace	Effect
		Applied		
	(1)	P1	4 L4.Goal	None
	(2)		O4	Display screen
	(3)		S4	Clear memory word
	(4)		R4	NextPallet Id = SF01W02
			Wait until the user action	The user clicks on SearchDB button
	(5) (6)	P3	2 L2.Goal_ID, L2.SearchDB	None
	(7) (8)		L2.Split, L2.Quit	None
	(9)	P8	I2	Capture input from screen
	(10)		Loop	NextPallet Id = SF01W02
	(11) (12)		2 L2.Goal_ID, L2.SearchDB	Determine Input word (from buffer)
	(13) (14)		L2.Split, L2.Quit	Determine Input word (from buffer)
	(15)		I2	None
	(16)		R2	NextPallet Id = SF01W03
	(17)		3 L3.Goal	Determine the necessary condition
	(18)		R3c (continous link)	NextPallet Id = SF02W04
				 end of execution of SF01 (break)
	(19)	P2	4 L4.Key_GoalID	None
	(20)		O4	None
	(21)		S4	None
	(22)		R4	NextPallet Id = SF02W02
	(23)		2 L2.Goaldb	None
	(24)		I2	None
	(25)		R2	NextPallet Id = SF02W03
	(26)		3 L3.Key_GoalID	Determine the necessary condition
	(27)		R3r	NextPallet Id = SF02W04
	(28)		4 L4.Key_GoalID	Determine Output word
	(29)		O4	None
	(30)	P7	S4	None
	(31)		R4	NextPallet Id = SF02W02
	(32)	P3	2 L2.Goaldb	None
	(33)		I2	Capture input from database
	(34)		Loop	NextPallet Id = SF02W02

Table 8 :

 8 Relating Split a Goal Trace to Patterns

Lyee, which stands for GovernmentaL MethodologY for SoftwarE ProvidencE, is a methodology for software development used for the implementation of business software applications. Lyee was invented by Fumio Negoro.

This paper hereof is contributed to the Lyee International Collaborative Research Project sponsored by Catena Corp. and the Institute of Computer Based Software Methodology and Technology.