
1

An Approach for Evolution-Driven Method Engineering

Jolita Ralyté *, Colette Rolland ** , Mohamed Ben Ayed **

* Université de Genève, CUI, Rue de Général Dufour, 24, CH-1211 Genève 4, Switzerland
ralyte@cui.unige.ch

** Université Paris 1 Sorbonne, CRI, 90, rue de Tolbiac, 75634 Paris cedex 13, France
rolland@univ-paris1.fr; mohamed.benayed@malix.univ-paris1.fr

Abstract

The paper considers the evolutionary perspective of the method engineering. It presents an approach for method
engineering based on the evolution of an existing method, model or meta-model into a new one satisfying different
engineering objective. This approach proposes several different strategies to evolve the initial paradigm model
into a new one and provides guidelines supporting these strategies. The approach has been evaluated in the
Franco-Japanese research project around the Lyee methodology. A new model called Lyee User Requirements
Model has been obtained as an abstraction of the Lyee Software Requirements Model. The paper illustrates this
evolution case.

1. Introduction

In this paper we consider Method Engineering (ME) from the evolutionary point of view. In other words, we look for
an approach supporting evolution of an existing method, model or meta-model in order to obtain a new one better
adapted for a given engineering situation and /or satisfying different engineering objective. We consider such a
method evolution as situation-driven and relate our work to the area of Situational Method Engineering (SME)
[Welke92], which focuses on project-specific method construction.

The approach that we propose in this paper is based on some initial modelling idea expressed as a model or a meta-
model that we call the ‘paradigm model’ and supports the evolution of this paradigm model into a brand-new model
satisfying another engineering objective. That’s why we call this approach the Evolution-Driven Method
Engineering. We capture in it our experience accumulated in the method engineering and especially in the meta-
modelling domain. The hypothesis of this approach is that a new method is obtained either by abstracting from an
existing model or by instantiating a meta-model. Hence, this approach could be situated between the traditional ‘from
scratch’ ME and the assembly-based SME [Harmsen97, Brinkkemper98, Ralyté01].

We use the Map formalism proposed in [Rolland99, Benjamen99] to express the process model of our approach for
Evolution-Driven Method Engineering. Map provides a representation system allowing to combine multiple ways of
working into one complex process model. It is based on a non-deterministic ordering of two fundamental concepts
intentions and strategies. An intention represents a goal that can be achieved by the performance of the process. It
refers to a task (activity) that is a part of the process and is expressed in the intentional level. A strategy represents
the manner in which the intention can be achieved. Therefore, the map is a directed labelled graph with nodes
representing intentions and labelled edges expressing strategies. The directed nature of the map identifies which
intention can be done after a given one. A map includes two specific intentions, Start and Stop, to begin and end the
process respectively. There are several paths from Start to Stop in the map for the reason that several different
strategies can be proposed to achieve the intentions. A map therefore includes several process models that are
selected dynamically when the process proceeds, depending on the current situation. An intention achievement
guideline is associated to every triplet <source intention, target intention, strategy> providing advice to fulfil the
target intention following the strategy given the source intention has been achieved. Furthermore, this guideline can
be refined as an entire map at a lower level of granularity.

We have evaluated our approach in the Franco-Japanese collaborative research project Lyee1. The aim of this project
was to develop a methodology supporting software development in two steps: requirements engineering and code
generation. The latter was already supported by the LyeeAll CASE tool [Negoro01a,b] in order to generate

1 Lyee, which stands for GovernmentaL MethodologY for SoftwarE ProvidencE, is a methodology for software development used

for the implementation of business software applications. Lyee was invented by Fumio Negoro.

2

programs, provided a set of well-formatted software requirements are given. The Lyee Software Requirements Model
(LSRM) expresses these requirements in rather low-level terms such as screen layouts and database accesses.
Moreover they are influenced by the LyeeALL internals such as the Lyee identification policy of program variables,
the generated program structure and the Lyee program execution control mechanism. Experience with LyeeAll has
shown the need to acquire software requirements from relatively high level user-centric requirements. For this
reason, we have decided to evolve the Lyee methodology. We have used the existing LSRM as a baseline paradigm
model for the more abstract Lyee User Requirements Model (LURM) construction.

In the next section we outline our process model for Evolution-Driven ME. Section 3 details the Abstraction strategy
for method product model construction whereas section 4 describes the Pattern-based strategy for method process
model definition. Both strategies are illustrated by the LURM product and process models creation respectively.
Some conclusions and discussions about our future work are done in the section 5.

2. Process Model for Evolution-Driven Method Engineering

Our approach for Evolution-Driven ME uses meta-modelling as its underlying method engineering technique. Meta-
modelling is known as a technique to capture knowledge about methods. It is a basis for understanding, comparing,
evaluating and engineering methods. One of the results obtained by the meta-modelling community is the definition
of any method as composed of a product model and a process model [Prakash99]. A product model defines a set of
concepts, their properties and relationships that are needed to express the outcome of a process. A process model
comprises a set of goals, activities and guidelines to support the process goal achievement and the action execution.
Therefore, method construction following the meta-modelling technique is centred on the definition of these two
models. This is reflected in the map representing the process model for Evolution-Driven ME (Figure 1) by two core
intentions (the nodes of the map) Construct a product model and Construct a process model.

Stop

Construct a
product model

Construct a
process model

Abstraction
strategy

Instantiation
strategy

Strategy-driven

Context-driven

Simple strategy
Refinement
strategy

Completeness
strategy

Pattern-
driven

Start

Utilisation
strategy

Adaptation
strategy

Figure 1. Process Model for Evolution-Driven Method Engineering.

A number of product meta-models [Grundy96, Hofstede93, Prakash02, Saeki94, Plihon96] as well as process meta-
models [Jarke99, Rolland95, Rolland99] are available and our approach is based on some of them. This is shown in
Figure 1 by several different strategies (the labelled edges) to achieve each of the two core intentions.

The construction of the product model depends of the ME goal that could be to construct a method:
• by raising (or lowering) the level of abstraction of a given model,
• by instantiating a selected meta-model,
• by adapting a meta-model to some specific circumstances,
• by adapting a model.

Each of these cases defines a strategy to Construct a product model, namely the Abstraction, Instantiation,
Adaptation and Utilisation strategies. Each of them is supported by a guideline that consists in defining various
product model elements such as objects, links and properties in different manner.

In our example, we use the Lyee Software Requirements Model (LSRM) model as a baseline paradigm model for the
more abstract Lyee User Requirements Model (LURM) construction. In this case, the Abstraction strategy is the

3

more appropriate one to Construct a product model as the ME goal is to rise the level of abstraction of the LSRM.
For this reason, in the next section we detail and illustrate the guideline supporting product model construction
following the Abstraction strategy. This guideline is based on the abstraction of different elements from the
paradigm model (product and/or process model) into elements in the new product model and the refinement of the
obtained elements until the new product model became satisfactory.

Process model must conform to the product model. Process steps, activities, actions always refer to some product
model parts in order to construct, refine or transform them. This is the reason why in the map of Figure 1 the
intention to Construct a process model follows the one to Construct a product model. We know that a process model
can take multiple different forms. It could be a simple informal guideline, a set of ordered actions or activities to
carry out, a set of process patterns to be followed, etc. In our Evolution-Driven process model (Figure 1) we propose
four strategies: Simple, Context-driven, Pattern-driven and Strategy-driven to Construct a process model.

• The Simple strategy is useful to describe a uncomplicated process model that can be expressed as a textual
description or a set of actions to execute.

• The Context-driven process model is based on the NATURE process modelling formalism [Jarke99, Rolland95].
According to this formalism, a process model can be expressed as a hierarchy of contexts. A context is viewed
as a couple <situation, intention>. The situation represents the part of the product undergoing the process and
the intention reflects the goal to be achieved in this situation.

• Process model obtained following the Pattern-driven strategy takes the form of a Catalogue of Patterns. Each
pattern identifies a generic problem, which could occur quite often in the product model construction, and
proposes a generic solution applicable every time the problem appears. A generic solution is expressed as set of
steps allowing to resolve the corresponding problem.

• Finally, the Strategy-driven process model, also called the Map [Rolland99, Benjamen99] (see the introduction
of this paper), permits to combine several process models into one complex process model.

The process model of the LURM was defined following the Pattern-driven strategy. A set of patterns has been
defined to take into account different situations in the user requirements definition. Each pattern provides an advice
to capture and formulate requirements. The section 4 presents in detail and illustrates the guideline supporting the
Pattern-driven strategy for the process model construction.

3. Abstraction-Based Product Model Construction

The Abstraction strategy for product model construction consists in defining a new product model representing the
level of abstraction higher than this of its paradigm model. As a consequence, the objective of the corresponding
guideline is to support the construction of a product model as an abstraction of an other model (product or process or
both of them). This guideline is also expressed by a map shown in Figure 2.

Aggregation
strategy

Decomposition
strategy

Generalisation
strategy

Define
product element

Product-driven
abstraction

Specialisation
strategy

StopCompleteness
strategy

Start

Process-driven
abstraction Linking strategy

Top-down
mapping

Figure 2. Abstraction-Based Product Model Construction.

As the product model construction consists in the definition of its elements (objects, properties, links), there is only
one core intention in this map called Define product element. The achievement of this intention is supported by a set
of strategies. Two strategies named Product-driven abstraction and Process-driven abstraction are provided to start

4

the construction process. The first one deals with the paradigm product model whereas the second one is based on
the paradigm process model. The Product-driven abstraction consists in analysing the paradigm product model,
identifying elements that could be represented by more abstract elements in the new model and defining these
abstract elements. The Process-driven abstraction proposes to analyse the paradigm process model and to abstract
some of its activities into the upper level ones. The product elements referenced by these more abstract activities
must be integrated into the product model under construction. The concepts obtained following this strategy have to
match concepts (or a collection of concepts) of the paradigm product model. The Top-down mapping strategy can be
applied to assure it. The Generalisation, Specialisation, Aggregation and Decomposition strategies are used to refine
the model under construction whereas the Linking strategy helps to connect different elements of this model obtained
by applying different abstraction strategies.

In order to illustrate the abstraction-based product model construction we present first our paradigm model, which is
the Lyee Software Requirements Model depicted in Figure 3.

LogicalID
Device

Logical Unit

SFID

1

1

1

NextpalletID

Routing Word
Word

WordID

Domain Word
L3 – condition
L4 – formula
Name
Domain PRD1

POP1

Word in
Pallet /Unit1..*

IntraSF

PRDName
PRD

Scenario Function

W04
1

1..*

PalletI

Pallet

InterSF
Condition

PCL1

PWT1PCR1 PCR2 PBOX

PNTNPNTR
PNTA

PNTE

PNTC

PNTD PNTM

W02

W03
1

Action Word

LogicalID
Device

Logical Unit
LogicalID
Device

Logical Unit

SFID

1

1

1

NextpalletID

Routing Word
Word

WordID

Domain Word
L3 – condition
L4 – formula
Name
Domain

Domain Word
L3 – condition
L4 – formula
Name
Domain PRD1

POP1

Word in
Pallet /Unit1..*

IntraSF

PRDName
PRD

Scenario Function

W04
1

1..*

PalletI

Pallet
PalletI

Pallet

InterSF
Condition

PCL1

PWT1PCR1 PCR2 PBOX

PNTNPNTR
PNTA

PNTE

PNTC

PNTD PNTM

W02

W03
1

Action Word

Figure 3. The Lyee Software Requirements Model (LSRM).

The central concept in the LSRM is called a Word. A Word corresponds to a program variable: input words represent
values captured from the external world whereas output words are produced by the system by applying specific
formulae. Lyee Software Requirements processing mechanism applies a formulae to obtain output word from the
given input words. The execution of formulae is controlled by the Process Route Diagram (PRD). A PRD is
composed of Scenario Functions (SF), composed of Pallets which are made of Vectors. In order to carry out the
generated program control, the function generates its own Words such as the Action words and Routing words.
Action words are used to control physical Input/Output exchanges in a Lyee program, they implement application
actions such as reading a screen, submitting a query to a database, opening or closing a file, etc. Routing words are
used to distribute the control over various SFs of a PRD.

In order to comply with the LSRM paradigm, the LURM should be centred on a notion that abstracts from the
concept of Word. Obviously Words required by the Lyee processing mechanism are not relevant at this level. On the
contrary, the concern is only with Domain words. For that reason, the LSRM concept Domain word is abstracted into
LURM concept Item following the Product-driven abstraction strategy. The Specialisation strategy is applied in
order to specialise the Item into Output and Input to match the LSRM, which makes the difference between input and
output words used in its processing mechanism. An Output is produced by the system whereas the Input is captured
from the user. In the same manner, the Input is specialised into Active and Passive. The former triggers the system
actions whereas the latter represents values captured from the user.

Next we analyse the LSRM process model. The paradigm process model deals with the generation of the Lyee
program structure. The result of the obtained program execution must fit user’s requirements. In other words, it must
allow the user to satisfy one of its goals. For that reason, in the upper user requirements level we need to reason with
concepts allowing to identify these user goals and express how the user interacts with the system in order to achieve
them. The Process-driven abstraction strategy allows us to define the notion of Interaction representing the
exchanges between the user and the system from the user’s view point. An interaction is goal driven in the sense that
the user asks the system to achieve the goal he/she has in mind without knowing how the system will do it. As a
result, we associate an Interaction goal to each Interaction. The complexity of the interaction goal defines the
complexity of the corresponding interaction. If the interaction goal can be decomposed into several atomic goals, the

5

corresponding interaction can also be decomposed. Consequently, we specialise the interaction into Atomic and
Compound thanks to the Specialisation strategy.

Action Word

LogicalID
Device

Logical Unit

SFID

1

1

1

NextpalletID

Routing Word
Word

WordID

Domain Word
L3 – condition
L4 – formula
Name
Domain PRD1

POP1

Word in
Pallet /Unit1..*

IntraSF

PRDName
PRD

Scenario Function

Action Word

1

1..*

PalletI

Pallet

InterSF
Condition

PCL1

PWT1PCR1 PCR2 PBOX

PNTNPNTRPNTA

PNTE

PNTC

PNTD PNTM

W02

W031

1 1..*

{complete, or}source

target

PSG
PSGName

0..*

0..*

1..* 1..*

1..*

1..*

{complete, or}

Defined

Name
Type 1 1..*

Link
Condition

Continuous Multiplex

{complete, or}

Item

Name
Domain

Lyee User Requirements Model

Begin Intermediate

Condition
Formula

Output

Node
NodeID

Passive

Compound Atomic

Interaction goal

Winput Woutput Wresult Wend

End

Interaction
1

Lyee Software Requirements Model

Duplex

W04

Input

Active

Action Word

LogicalID
Device

Logical Unit
LogicalID
Device

Logical Unit

SFID

1

1

1

NextpalletID

Routing Word
Word

WordID

Domain Word
L3 – condition
L4 – formula
Name
Domain

Domain Word
L3 – condition
L4 – formula
Name
Domain PRD1

POP1

Word in
Pallet /Unit1..*

IntraSF

PRDName
PRD

Scenario Function

Action Word

1

1..*

PalletI

Pallet
PalletI

Pallet

InterSF
Condition

PCL1

PWT1PCR1 PCR2 PBOX

PNTNPNTRPNTA

PNTE

PNTC

PNTD PNTM

W02

W031

1 1..*

{complete, or}source

target

PSG
PSGName

PSG
PSGName

0..*

0..*

1..* 1..*

1..*

1..*

{complete, or}

Defined

Name
Type 1 1..*

Link
Condition

Link
Condition

Continuous Multiplex

{complete, or}

Item

Name
Domain

Lyee User Requirements Model

Begin Intermediate

Condition
Formula

Output

Condition
Formula

Output

Node
NodeID

Node
NodeID

Passive

Compound Atomic

Interaction goal

Winput Woutput Wresult Wend

End

Interaction
1

Lyee Software Requirements Model

Duplex

W04

Input

Active

Figure 4. Lyee Product Models for Software Requirements and for User Requirements.

Now we need to define how the Interaction concept could be mapped into the concepts defined in the lower LSRM
product model. Any of the LSRM concepts does not correspond the interaction of the LURM directly. However, the
Top-down mapping strategy suggests us that an interaction could be expressed as a combination of items that match
the LSRM Domain word concept.

An Atomic interaction delineates a number of input and output data: the user provides some input and receives the
output that corresponds the expected result. Therefore, the Decomposition strategy helps us to decompose every
Interaction into four kinds of Items that we call Winput, Woutput, Wresult and Wend. Each of them represents:

• Winput: the input provided by the user,
• Wresult: the result of the goal achievement,
• Woutput: the output displayed to the user,
• Wend: the end point of the interaction.

Then we consider the concept of Logical unit (from LSRM) that represents a coherent set of words used in the same
processing (reading or writing) and constrained by the same physical device (database, file, screens, etc.) used by the
program. The concept of Defined abstracts this notion in order to aggregate logically related Items processed together
and constrained by the same conceptual device. One Defined can be specialised into one or more Logical units. For
example, one Defined corresponding to a conceptual screen can be implemented by two physical screens requiring
four Logical units. To resume, the Product-driven abstraction strategy followed by the Linking strategy allows us to
create the Defined concept and to connect it with the Items composing it.

Similarly, the concept of PSG, the Precedence Succedence Graph was obtained by abstraction of the PRD concept
from the paradigm product model. A PSG specifies the ordering conditions between Defineds as the PRD do it with
Words. The Decomposition strategy was applied to represent the structure of the PSG as a graph composed of Links

6

and Nodes. Following the Top-down mapping strategy we recognize that the Link matches the LSRM InterSF
concept that captures different links between the Scenario Functions in a PRD whereas the Node corresponds the
Scenario Function concept. Thanks to the Specialisation strategy the Link was specialised into Duplex, Continuous
and Multiplex whereas the Node was specialised into Begin, End and Intermediate. Every Defined is an intermediate
link in at least one PSG. Figure 4 summarizes the abstraction process from the lower LSRM into upper LURM.

4. Pattern-Based Process Model Construction

The Pattern-based process model construction strategy is based on the concept of pattern, which has been introduced
by Alexander in architecture [Alexander77] and borrowed by IT engineers to capture software design knowledge
[Gamma94, Coad96, Coplien95, Fowler97] as well as method engineers to capture reusable method knowledge
[Rolland96, Deneckere98]. According to Alexander, a pattern refers to ‘a problem which occurs again and again in
our environment and describes the core of the solution to that problem, in such a way that you can use this solution a
million times over, without ever doing it the same way twice’. The key idea of a pattern is thus, to associate a
problem to its solution in a well identified context.

Figure 5 shows the pattern meta-model. The problem refers to the situation in which pattern can be applied and the
goal to achieve in this situation. The situation is characterised by a set of product elements. The solution is
represented by a set of steps to realise in order to resolve the problem. A pattern can be simple or compound. The
solution of a compound pattern contains steps which call other patterns and are named pattern steps in the contrary to
stand alone steps which are executed.

Problem

Solution

Compound Simple

Situation

Goal

1

1

1

1

*

1..*

Product
element

Template

Application example

Stand alone step Pattern step

Step
1..*

1

Pattern

0..1
1

*

Complex
solution

Simple
solution

*

1

1 1

1

1..*

1

*

calls

Figure 5. Pattern meta-model.

The process model for pattern construction is defined by a map based on two core intentions Identify a pattern and
Construct a pattern (Figure 6). To Identify a pattern means to identify a generic problem. As shown in Figure 6, the
problem identification can be based on the discovery of a typical situation or a generic goal in the method context.
The two cases are respectively supported by two strategies: Situation-based and Goal-driven. The Aggregation
strategy allows to combine several patterns into a compound one in order to propose solutions for complex problems
whereas the Decomposition strategy deals with the identification of sub-problems, which could also be considered as
generic ones. The identification of a new pattern situation advises us to consider that there must be another pattern
creating this situation. This case is supported by the Precedence strategy.

To Construct a pattern means to formalise its problem (the situation and the goal), to define the solution to its
problem as a set of steps to execute, to define its template and to give some examples of its application. Two
strategies named Product-driven and Goal-driven are provided for this purpose (Figure 6). The guideline supporting
the Product-driven strategy is based on the transformation of the product elements from the pattern situation into the
product element defined as the pattern target (pattern goal target). The Goal-driven strategy deals with the pattern
goal reduction into a set of atomic actions to realise in order to achieve this goal. The Succedence strategy considers
that the result product obtained by applying an already defined pattern can be considered as a potential situation for
the definition of an other pattern.

7

Stop

Identify
a pattern

Aggregation
strategy

Goal-drive
strategy

Product-driven
strategy

Succedence
strategy

Completeness
strategy

Decomposition
strategy

Start
Situation-based
strategy

Precedence
strategy

Goal-driven
strategy

Construct
a pattern

Figure 6. Pattern-based process model construction.

In order to define the patterns supporting LURM construction, we need to identify typical situations (the problem) in
the Lyee user requirements capture (the context) and to define the corresponding guidelines (the solution) assisting in
the requirements elicitation and formulation. As shown in Figure 6, we can start pattern identification process
following one of two strategies: Goal-driven or Situation-based. The guidelines supporting these two strategies
supplement each other and there is no pre-established order to realise them. In our case, we start pattern
identification process following the Goal-driven strategy and we consider the core LURM objective ‘to define user
requirements’. As stated in the previous section, the LURM defines user requirements as user-system interactions.
Therefore, we found our reasoning on the notion of atomic interaction and investigate the possibility to identify
generic activities for requirements capture within this context. We deduce that the requirements capture related to an
atomic interaction comprises four activities that can be considered as four potential pattern goals:

• to start the interaction (Formulate To Start requirement),
• to perform the action (Formulate To Act requirement),
• to prepare the output (Formulate To Output requirement) and,
• to end the interaction (Formulate To End requirement).

Each of these activities is linked to the item typology introduced in the section 3 as each activity is associated to one
type of Item:

• the Formulate To Start requirement deals with the capture of Winput,
• the Formulate To Act requirement is concerned by the calculation of Wresult,
• the Formulate To Output requirement shall help eliciting and defining Woutput,
• finally, the Formulate To End requirement considers Wend.

Each requirement activity is concerned with the elicitation and definition of these Items, their grouping in Defineds
and the positioning of those in the PSG of the interaction.

Next, we select the Situation-based strategy to Identify a pattern (Figure 6) and consider the possible situations in
which these goals are relevant. For instance, we distinguish two different situations dealing with the capture of
Winput: either the input value does not exist and is directly captured from the user or it exists in a database or a file
and is captured from this container. As a consequence, we identify two patterns having the same goal Formulate To
Start requirement but dealing with different situations Input capture from the user and Input capture form the
internal device. We call these two patterns respectively Immediate Start and Prerequisite for Start.

In the same manner we identify two generic situations for each of the four generic goals and identify so eight generic
patterns. Table 1 characterises the discovered patterns. Each of these 8 patterns deals with one single requirement
activity whereas to get the complete set of requirements for a given problem, the requirements engineer has to
perform one of each type of activity. The complete set of requirements requires that each of the following be
performed once: ‘To start’, ‘To Act’, ‘To Output’ and ‘To End’. To obtain advice on this, a new pattern, Pattern P9,
is introduced thanks to the Composition strategy.

The Succedence strategy for pattern identification suggests us to think about the construction of a compound
interaction that could be based on the iteration of an atomic interaction creation that is the iteration of the pattern P9.

8

As a result, we identify a new pattern for a compound interaction formulation that we call P10 Complex Composition
(Table 1).

Goal Situation Characterisation Pattern name
Formulate To Start requirement W input are captured directly from the user. P2 Immediate Start
Formulate To Start requirement Winput are retrieved from a database or a file. P3 Prerequisite for Start
Formulate To Act requirement Wresult are calculated by a simple formulae, which does

not require the calculation of the intermediate words.
P1 Simple Word

Formulate To Act requirement Wresult are calculated by a complex formulae, which
requires the calculation of the intermediate words and
possibly the access to the data in a file or a database.

P8 Complex Word

Formulate To Output
requirement

There is no obstacle neither in the capture of Winput nor in
the production of Wresult.

P6 Single Output

Formulate To Output
requirement

A number of different cases of output production shall be
considered due to possible obstacles either in the capture
of Winput or in the production of Wresult.

P7 Multiple Output

Formulate To End requirement The interaction ends normally without additional internal
activity.

P4 Simple End

Formulate To End requirement Some internal activity shall be performed such as storing
part or the totality of Woutputs.

P5 Compound End

Formulate requirement for an
atomic interaction

The interaction goal is atomic. P9 Simple Composition

Formulate requirement for a
compound interaction

The interaction goal is compound. P10 Complex
Composition

Table 1. Characterisation of the identified patterns.

Let’s illustrate now the construction of a pattern solution. In our example, the pattern solution takes the form of a
sequence of rules to be applied by the engineer. Each of them mentions an action to perform like ‘construct a
hierarchy of intermediate words involved in the calculation of the result word’ . Most of these actions are identifying
a requirement, i.e. referring to an element of the meta-model: Defined, Item, Node and Link in the PSG, as for
example ‘introduce a defined of type screen’.

Begin

Node1

<<bind>>
(Type = Screen)

source target
1..*1 1 11

PSG:

PsgName

Continuous <Null>

Condition

Intermediate

Node2

S input Defined

Defined

Name
Type

Type

Passive

Name
Domain

Pattern P2 : Immediate StartPattern P2 : Immediate Start

Problem:
< goal: Formulate ‘To Start’ Requirement >
< situation: Winput<= Captureuser() >

Solution:
1. Create a DefinedSinput of typescreen. Determine its name
2. Elicit Itemsaccociated to Winput

3. Link these Itemsto the Defined. Determine for each Item its nameand domain
4. Type Itemsas Inputand Passive
5. Create a PSGwith the Definedas Intermediate nodeand link from the Start nodewith a Continuous link

Template:

Begin

Node1

Begin

Node1

<<bind>>
(Type = Screen)

source target
1..*1 1 11

PSG:

PsgName

Continuous <Null>

Condition

Continuous <Null>

Condition

Intermediate

Node2

Intermediate

Node2

S input DefinedS input Defined

Defined

Name
Type

Type

Passive

Name
Domain

Passive

Name
Domain

Pattern P2 : Immediate StartPattern P2 : Immediate Start

Problem:
< goal: Formulate ‘To Start’ Requirement >
< situation: Winput<= Captureuser() >

Solution:
1. Create a DefinedSinput of typescreen. Determine its name
2. Elicit Itemsaccociated to Winput

3. Link these Itemsto the Defined. Determine for each Item its nameand domain
4. Type Itemsas Inputand Passive
5. Create a PSGwith the Definedas Intermediate nodeand link from the Start nodewith a Continuous link

Template:

Figure 7. Pattern P2 : Immediate Start.

As an example we propose the construction of the pattern P2 following the Product-driven strategy. The objective of
this pattern is to prepare a user-system interaction. The Product-driven strategy advises to instantiate the meta-model

9

elements necessary to achieve the pattern goal. In this case we need to instantiate the meta-model elements: Defined,
Item and PSG, which are necessary for the input values capture. As a consequence, the actions to perform should be:

• to create the Defined for the necessary input values capture,
• to define an Item to each input value,
• to link the Items to the Defined,
• to type Items as Input and Passive and
• to create the PSG.

Next we need to define the pattern template. The pattern template is an instance of the meta-model representing the
configuration of concepts to be instantiated in any application. In the case of the pattern P2, a PSG must be created
containing a Begin node, a Continuous link, an Intermediate node corresponding to the Defined of type screen (called
Sinput) composed of the elicited Items. Figure 7 shows the pattern P2, its problem, solution and template.

In the same manner we construct all the patterns from P1 to P8. The pattern P9 can be constructed following the
Goal-driven strategy, which advises to decompose the principal goal into sub-goals until the atomic actions had been
obtained. Thus, the objective of the pattern P9 ‘Formulate requirement for an atomic interaction’ can be
decomposed into four sub goals ‘Formulate To Start requirement’, ‘Formulate To Act requirement’’, ‘Formulate To
Output requirement’, ‘Formulate To End requirement’ in this order. As there are always two patterns that are
candidate to help achieving the goal, it is necessary to examine the situation first. As pattern situations are exclusive,
the choice of the relevant pattern to apply is easy. The obtained pattern is a compound one. It is shown in Figure 8.

Pattern P9 : Simple CompositionPattern P9 : Simple Composition

Problem:
< goal: Formulate requirement for an atomic interaction >
< situation: The interacion goal is atomic >

Solution:

1. Formulate
To Startequirement

2. Formulate
To Actrequirement

3. Formulate
To Outputrequirement

4. Formulate
To Endrequirement

Formulate requirement for an atomic interaction

Apply P2 Apply P3 Apply P1 Apply P8 Apply P6 Apply P7 Apply P1 Apply P8

Determine
the situation

to End

Apply
pattern

Determine
the situation
to Output

Apply
pattern

Determine
the situation

to Act

Apply
pattern

Determine
the situation

to Start

Apply
pattern

Pattern P9 : Simple CompositionPattern P9 : Simple Composition

Problem:
< goal: Formulate requirement for an atomic interaction >
< situation: The interacion goal is atomic >

Solution:

1. Formulate
To Startequirement

2. Formulate
To Actrequirement

3. Formulate
To Outputrequirement

4. Formulate
To Endrequirement

Formulate requirement for an atomic interaction

Apply P2 Apply P3 Apply P1 Apply P8 Apply P6 Apply P7 Apply P1 Apply P8

Determine
the situation

to End

Apply
pattern

Determine
the situation
to Output

Apply
pattern

Determine
the situation

to Act

Apply
pattern

Determine
the situation

to Start

Apply
pattern

1. Formulate
To Startequirement

2. Formulate
To Actrequirement

3. Formulate
To Outputrequirement

4. Formulate
To Endrequirement

Formulate requirement for an atomic interaction

Apply P2 Apply P3 Apply P1 Apply P8 Apply P6 Apply P7 Apply P1 Apply P8

Determine
the situation

to End

Apply
pattern

Determine
the situation
to Output

Apply
pattern

Determine
the situation

to Act

Apply
pattern

Determine
the situation

to Start

Apply
pattern

Figure 8. Pattern P9: Simple Composition.

Finally, the pattern P10 deals with the compound interaction. The goal to be achieved is to get a complete and
coherent requirement formulation for a compound interaction. This pattern should give an advice on how to
decompose a compound interaction into atomic interactions to which the pattern P9 should be applied. In fact, the
pattern helps in recognising that the interaction is not an atomic one in the first place.

Each of ten patterns captures a requirement situation and guides the formulation of the requirement in compliance
with the requirement meta-model. The ten patterns will be applied again and again in the different software projects
using Lyee. Even though actual situations are different from one project to another, each of them should match one
pattern situation and the pattern will bring the core solution to the requirements capture problem raised by this
situation.

5. Conclusion

In this paper we propose an approach for evolution-driven method engineering. Evolution in this case means that we
start method engineering with an existing paradigm model (model or meta-model) and we obtain a new model (or
meta-model) by abstracting, transforming, adapting or instantiating this paradigm model. Our process model for
evolution-driven ME captures these various evolution ways as different strategies to create the product part of the
model under construction. The corresponding process part construction is also supported by a set of strategies the
selection of which depends on the process nature and complexity. Every strategy is supported by a guideline
assisting method engineer in his or her method evolution task.

10

The flexibility offered by the map formalism that we use to express our Evolution-Driven ME process model allows
us to include other ways for method evolution in a rather simple manner. They can be integrated as different
strategies to satisfy the intention Construct a product model and Construct a process model.

In this paper we present the evaluation of our approach by the LURM construction as evolution of the LSRM. The
Abstraction strategy have been used to Construct a product model while the Pattern-driven strategy was applied to
Construct a process model. In this paper we present these two strategies in more detail and illustrate their
application. Our future preoccupation is to evaluate other proposed method evolution strategies as well as to validate
it through real projects.

References

[Alexander77] Alexander, C., S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, S. Angel, A Pattern
Language, Oxford University Press, New York, 1977.

[Benjamen99] Benjamen, A., Une Approche Multi-démarches pour la modélisation des démarches
méthodologiques. Thèse de doctorat en informatique, Université Paris 1, 1999.

[Brinkkemper98] Brinkkemper, S., M. Saeki, F. Harmsen, Assembly Techniques for Method Engineering. Proc. of
the 10th CAiSE’98. Pisa Italy, 8-12 June, 1998.

[Coad96] Coad, D., D. North, M. Mayliefd, Object Models – Strategies, patterns and applications, Yourdon
Press Computing Series, 1996.

[Coplien95] Coplien, J.O, D.O. Schmidt (Eds.), Patron Languages of Program Design. Addison-Wesley,
Reading, MA, 1995.

[Gamma94] Gamma, E., R. Helm, R. Johnson, J. Vlissides, Design Patterns : Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1994.

[Deneckere98] Deneckere, R., C. Souveyet, Patterns for extending an OO model with temporal features,
Conférence OOIS'98, Paris, Septembre 1998.

[Grundy96] Grundy, J.C., J.R. Venable, Towards an integrated environment for method engineering, Proc. IFIP
WG 8.1 Conf. on ‘Method Engineering’, Chapman and Hall, pp 45-62, 1996.

[Harmsen97] Harmsen, A.F., Situational Method Engineering. Moret Ernst & Young , 1997.
[Hofstede93] Hofstede, A.H.M. Ter., Information modelling in data intensive domains, Dissertation, University of

Nijimegen, The Netherlands 1993.
[Fowler97] Fowler, M. , Analysis Patterns : reusable objects models, Addison-Wesley, 1997.
[Jarke99] Jarke M., C. Rolland, A. Sutcliffe, R. Domges, The NATURE requirements Engineering. Shaker

Verlag, Aachen 1999.
[Negoro01a] Negoro, F., Methodology to Determine Software in a Deterministic Manner. Proceedings of ICH,

Beijing, China, 2001.
[Negoro01b] Negoro, F. A proposal for Requirement Engineering, Proceedings of ADBIS, Vilnius, Lithuania,

2001.
[Plihon96] Plihon, V., Un environnement pour l'ingénierie des méthodes, Thèse de doctorat, Université Paris 1,

1996.
[Prakash99] Prakash, N., On Method Statics and Dynamics. Information Systems. Vol.34 (8), pp 613-637. 1999.
[Prakash02] Prakash, N., M. P. S. Bhatia, Generic Models for Engineering Methods of Diverse Domains. Proc. of

CAISE’02, Toronto, Canada, LNCS Volume 2348, pp. 612., 2002.
[Ralyté01] Ralyté, J., C. Rolland, An Assembly Process Model for Method Engineering. Proceedings of the 13th

CAISE’01, Interlaken, Switzerland, 2001.
[Rolland95] Rolland, C., C. Souveyet, M. Moreno, An Approach for Defining Ways-of-Working, Information

Systems Journal, 1995.
[Rolland96] Rolland, C., N. Prakash, A proposal for context-specific method engineering, IFIP WG 8.1 Conf. on

Method Engineering, Chapman and Hall, pp 191-208, Atlanta, Gerorgie, USA, 1996.
[Rolland99] Rolland, C., N. Prakash, A. Benjamen, A Multi-Model Vew of Process Modelling, Requirements

Engineering Journal, Vol. 4 (4), pp169-187, 1999
[Saeki94] Saeki, M., K. Wen-yin, Specifying Software Specification and Design Methods, Proc. CAISE’94,

LNCS 811, Springer Verlag, pp 353-366, Berlin, 1994
[Welke92] Welke, R.J., K. Kumar, Method Engineering, A Proposal for Situation-specific Methodology

Construction, in Systems Analysis and Design : A Research Agenda, Cotterman and Senn (eds),
Wiley, pp257-268, 1992.

