An Approach for Evolution-Driven Method Engineering

Jolita Ralyté, Colette Rolland , Mohamed Ben Ayed

" Université de Genéve, CUI, Rue de Général DufotirCH-1211 Genéve 4, Switzerland
ralyte@cui.unige.ch

™ Université Paris 1 Sorbonne, CRI, 90, rue de Talbi®634 Paris cedex 13, France
rolland@univ-parisl.frmohamed.benayed@malix.univ-parisl.fr

Abstract

The paper considers the evolutionary perspectivih@fmethod engineering. It presents an approacméhod
engineering based on the evolution of an existiethod, model or meta-model into a new one satigfgifferent
engineering objective. This approach proposes abwfferent strategies to evolve the initial pagud model
into a new one and provides guidelines supporthese strategies. The approach has been evaluatir in
Franco-Japanese research project around the Ly#mododogy. A new model called Lyee User Requirement
Model has been obtained as an abstraction of tlee [Software Requirements Model. The paper illusstrétis
evolution case.

1. Introduction

In this paper we consider Method Engineering (M&jrf the evolutionary point of view. In other woreg look for

an approach supporting evolution of an existinghmeét model or meta-model in order to obtain a new better
adapted for a given engineering situation and &tisfying different engineering objective. We calgsi such a
method evolution as situation-driven and relate work to the area of Situational Method Engineer{&/E)

[Welke92], which focuses on project-specific metloodstruction.

The approach that we propose in this paper is basesbme initial modelling idea expressed as a inmda meta-
model that we call the ‘paradigm model’ and suppthie evolution of this paradigm model into a braesv model
satisfying another engineering objective. That'sywlve call this approach the Evolution-Driven Method
Engineering. We capture in it our experience acdatad in the method engineering and especiallyhan meta-
modelling domain. The hypothesis of this approacthat a new method is obtained either by abst@gdtom an
existing model or by instantiating a meta-modelnétg this approach could be situated between ddéitnal from
scratch’ ME and the assembly-based SME [Harmsen97, Brinklez&8, Ralyté01].

We use the Map formalism proposed in [Rolland9%)j8®men99] to express the process model of our agpréor
Evolution-Driven Method Engineering. Map providessaresentation system allowing to combine multipég/s of
working into one complex process model. It is based non-deterministic ordering of two fundamermahcepts
intentionsandstrategies.An intention represents a goal that can be acHidyethe performance of the process. It
refers to a task (activity) that is a part of theqess and is expressed in the intentional levedtrategy represents
the manner in which the intention can be achievidterefore, thanapis a directed labelled graph with nodes
representing intentions and labelled edges exprgssirategies. The directed nature of the map iftestwhich
intention can be done after a given one. A mapuoies two specific intentionStartandStop to begin and end the
process respectively. There are several paths Btart to Stopin the map for the reason that several different
strategies can be proposed to achieve the intentidnmap therefore includes several process mdthels are
selected dynamically when the process proceedssndiépy on the current situation. Antention achievement
guidelineis associated to every tripleseurce intention, target intention, strategproviding advice to fulfil the
target intention following the strategy given tlmisce intention has been achieved. Furthermorg,ghideline can
be refined as an entire map at a lower level afglegity.

We have evaluated our approach in the Franco-Japamdlaborative research project Ly€ehe aim of this project
was to develop a methodology supporting softwaneld@ment in two steps: requirements engineerind) code
generation. The latter was already supported by LipeeAll CASE tool [NegoroOla,b] in order to gertera

1 Lyee, which stands for GovernmentilethodologYfor SoftwarEProvidencEis a methodology for software development used
for the implementation of business software apfibes. Lyee was invented by Fumio Negoro.

programs, provided a set of well-formatted softwaaguirements are given. Thgee Software Requirements Model
(LSRM) expresses these requirements in rather éwmstl terms such as screen layouts and databasesasce
Moreover they are influenced by the LyeeALL intdsnsuch as the Lyee identification policy of pragraariables,
the generated program structure and the Lyee progpaecution control mechanism. Experience with ebas
shown the need to acquire software requirements frelatively high level user-centric requiremerfsr this
reason, we have decided to evolve the Lyee methggoWe have used the existing LSRM as a basehnadigm
model for the more abstracyee User Requirements ModeURM) construction.

In the next section we outline our process modeEfmlution-Driven ME. Section 3 details tidstraction strategy
for method product model construction whereas grafi describes thBattern-basedstrategy for method process
model definition. Both strategies are illustratedthe LURM product and process models creation aetbgely.
Some conclusions and discussions about our futark are done in the section 5.

2. Process Modd for Evolution-Driven Method Engineering

Our approach for Evolution-Driven ME useeta-modellingas its underlying method engineering techniquetaMe
modelling is known as a technique to capture kndgdeabout methods. It is a basis for understandiogpparing,
evaluating and engineering methods. One of thdtseshtained by the meta-modelling community is deéinition
of any method as composed of a product model gmd@ess model [Prakash99]. A product model defansst of
concepts, their properties and relationships thatn@eded to express the outcome of a processodess model
comprises a set of goals, activities and guideltoesupport the process goal achievement and tienaexecution.
Therefore, method construction following the metadelling technique is centred on the definitiontloése two
models. This is reflected in the map representiegprocess model for Evolution-Driven ME (Figureb¥)two core
intentions (the nodes of the mapynstruct a product modehdConstruct a process model

Adaptation
strategy

Instantiation

trategy Utilisatior

Abstraction strategy

strategy

Construct a
product model|

Simple strateg

__(Construct a
process mode

Figure 1. Process M odel for Evolution-Driven M ethod Engineering.

Pattern-

Context-driven driven

strategy

A number of product meta-models [Grundy96, Hofs8&3]d rakash02, Saeki94, Plihon96] as well as psocesa-
models [Jarke99, Rolland95, Rolland99] are avadlabid our approach is based on some of them. §isisawn in
Figure 1 by several different strategies (the ligldebdges) to achieve each of the two core intesatio

The construction of the product model depends ®Mi goal that could be to construct a method:
» by raising (or lowering) the level of abstractidnacgiven model,
* by instantiating a selected meta-model,
» by adapting a meta-model to some specific circunts,
* by adapting a model.

Each of these cases defines a strategyCeoostruct a product modehamely theAbstraction Instantiation
Adaptationand Utilisation strategies. Each of them is supported by a guidelhat consists in defining various
product model elements such as objects, links apylepties in different manner.

In our example, we use the Lyee Software Requirésridindel (LSRM) model as a baseline paradigm méatethe
more abstract Lyee User Requirements Model (LURBNstruction. In this case, th&bstraction strategys the

more appropriate one tBonstruct a product models the ME goal is to rise the level of abstractbthe LSRM
For this reason, in the next section we detail #lndtrate the guideline supporting product modehstruction
following the Abstraction strategy This guideline is based on the abstraction ofediiht elements from the
paradigm model (product and/or process model) éonents in the new product model and the refineérobthe
obtained elements until the new product model becsatisfactory.

Process model must conform to the product modeicdds steps, activities, actions always refer toesproduct
model parts in order to construct, refine or transf them. This is the reason why in the map of gl the
intention toConstruct a process modigllows the one t&€onstruct a product modeéiVe know that a process model
can take multiple different forms. It could be anple informal guideline, a set of ordered actionsactivities to
carry out, a set of process patterns to be follgwéx In our Evolution-Driven process model (Figd) we propose
four strategiesSimple Context-drivenPattern-drivenandStrategy-driverio Construct a process model

* The Simplestrategy is useful to describe a uncomplicateccgs® model that can be expressed as a textual
description or a set of actions to execute.

e TheContext-driverprocess model is based on the NATURE process hireglébrmalism [Jarke99, Rolland95].
According to this formalism, a process model carekgressed as a hierarchyaointexts A context is viewed
as a couplessituation, intention> Thesituationrepresents the part of the product undergoingtheess and
theintentionreflects the goal to be achieved in this situation

« Process model obtained following tRattern-drivenstrategy takes the form of@atalogueof Patterns Each
pattern identifies a generic problem, which coutttw quite often in the product model constructiand
proposes a generic solution applicable every timeeproblem appears. A generic solution is expreaseskt of
steps allowing to resolve the corresponding problem

< Finally, theStrategy-driverprocess model, also called the Map [Rolland99,j8aan99] (see the introduction
of this paper), permits to combine several procesdels into one complex process model.

The process model of the LURM was defined followthg Pattern-driven strategyA set of patterns has been
defined to take into account different situationghie user requirements definition. Each patteovides an advice
to capture and formulate requirements. The sedi@nesents in detail and illustrates the guidefinpporting the
Pattern-drivenstrategy for the process model construction.

3. Abstraction-Based Product M odel Construction

The Abstraction strategyor product model construction consists in definanew product model representing the
level of abstraction higher than this of its pagamdimodel. As a consequence, the objective of tlieegponding
guideline is to support the construction of a paiduodel as an abstraction of an other model (pbduprocess or
both of them). This guideline is also expressed lyap shown in Figure 2.

Product-driven

) abstraction
Process-drive

abstraction Linking strategy

Decomposition

Top—d'own strategy
mapping
Aggregation
Specialisatio strategy
strategy

Generalisation Completens

strategy strategy

Figure 2. Abstraction-Based Product Model Construction.

As the product model construction consists in tenition of its elements (objects, propertieskéj there is only
one core intention in this map callBefine product elemenThe achievement of this intention is supportedlsget
of strategies. Two strategies nanferduct-driven abstractiomndProcess-driven abstractioare provided to start

the construction process. The first one deals tithparadigm product model whereas the secondsohased on
the paradigm process model. TReoduct-driven abstractiorconsists in analysing the paradigm product model,
identifying elements that could be represented lyemabstract elements in the new model and defitliege
abstract elements. TH&rocess-driven abstractioproposes to analyse the paradigm process modetioaabstract
some of its activities into the upper level oneke Pproduct elements referenced by these more absittvities
must be integrated into the product model undesitantion. The concepts obtained following thisgy have to
match concepts (or a collection of concepts) ofptl@adigm product model. TAH®p-down mapping strategan be
applied to assure it. THeeneralisation SpecialisationAggregationandDecompositiorstrategies are used to refine
the model under construction whereaslthiking strategy helps to connect different elements isfitfiodel obtained
by applying different abstraction strategies.

In order to illustrate the abstraction-based produadel construction we present first our paradigodel, which is
the Lyee Software Requirements Model depicted gufé 3.

PNTR|| PNTN - - -
PNTA - - Logical Unit Domain Word
InterSF N LogicallD L3 — condition
PNTE — IntraSF Device L4 — formula
Conditio NEmE®
AN .
PNTC Word Domain
é ﬁ Routing Word 1P
PNTD -PNTM WordID
NextpalletlD Action Word K POP1|
PRD
PRDName 17 , %V\
1 woa Word in)
E 1 1 | Pallet/unit [pcri][Pcr2|[PBOX] [PWT1]
Scenario Functio 1 Mwoz |— Pallet
SFID Palletl
1 i
W03

Figure 3. The Lyee Software Requirements M odel (L SRM).

The central concept in the LSRM is calleWard A Word corresponds to a program variable: input wordsesgnt
values captured from the external world whereapuiuvords are produced by the system by applyiregifip
formulae. Lyee Software Requirements processinghargsm applies a formulae to obtain output wordnfrine
given input words. The execution of formulae is tcolled by theProcess Route Diagram (PRDA PRD is
composed ofScenario FunctiongSF), composed oPallets which are made o¥ectors In order to carry out the
generated program control, the function generate®wn Words such as théAction wordsand Routing words
Action wordsare used to control physical Input/Output excharnigea Lyee program, they implement application
actions such as reading a screen, submitting aydqaea database, opening or closing a file, Bmuting wordsare
used to distribute the control over varidissof a PRD.

In order to comply with the LSRM paradigm, the LURShould be centred on a notion that abstracts fitoen
concept ofWord ObviouslyWordsrequired by the Lyee processing mechanism areet®tant at this level. On the
contrary, the concern is only witbomain wordsFor that reason, the LSRM conc&amain wordis abstracted into
LURM conceptltem following the Product-driven abstraction strategyhe Specialisation strategis applied in
order to specialise tHeeminto Outputandinputto match the LSRM, which makes the difference leetwinput and
output words used in its processing mechanismOAtputis produced by the system whereasltipit is captured
from the user. In the same manner, lilygut is specialised inté\ctive andPassive The former triggers the system
actions whereas the latter represents values @abtrom the user.

Next we analyse the LSRM process model. The pamagigpcess model deals with the generation of theelLy
program structure. The result of the obtained @ogexecution must fit user’s requirements. In otherds, it must
allow the user to satisfy one of its goals. Fot tleason, in the upper user requirements leveleeg no reason with
concepts allowing to identify these user goals exutess how the user interacts with the systemmdardo achieve
them. TheProcess-driven abstraction strategtlows us to define the notion dfteraction representing the
exchanges between the user and the system frooséns view point. An interaction is goal driventive sense that
the user asks the system to achieve the goal hb&hé mind without knowing how the system will loAs a
result, we associate dnteraction goalto eachinteraction The complexity of the interaction goal defineg th
complexity of the corresponding interaction. If fhéeraction goal can be decomposed into sevevahiatgoals, the

corresponding interaction can also be decomposedséuently, we specialise the interaction iAtomic and
Compoundhanks to th&pecialisatiorstrategy.

1

- Lyee User Requirements Model

[[I l
,—ZL‘ | Wilnput | |Wolutput| | eresult” \Nlend |
v

Interaction goal

<>t Compound Atomic

Begin || End ||Intermediate|ﬁ Defined tem |
I l I © 77| Name &> | Name
oo Type 1 1.*| Domain

A

NodelD source | T

| {complete, or}

0.*
Link Output | Input |

y ..
. Condition Condition
LI& {complete, or} Formula {complete, or]

[[| f 3
| Duplex | [Continuous [Multiplex Iﬂ, m’

PNTR|| PNTN - - -
PNTA - - Logical Unit Domain Word
SNTE InterSF LogicallD L3 — condition
Condition! IntraSF Device L4 — formula
PNTC /<\ 47 Name
PNTD||PNTM| | Routing Word Word S
outin or
l ” I 9 “IwordiD -
Action Word K

PoP1]

NextpalletiD

PRD
PRDName l\. _ %V\
Word in
; 1 1 | Pallet/Unit [Pcr1][Pcr2][PBOX] [PWT1]

Pallet
Palletl Lyee Software Requirements Model

Scenario Functio
SFID

Figure 4. Lyee Product Modelsfor Software Requirements and for User Requirements.

Now we need to define how thieteractionconcept could be mapped into the concepts defimélte lower LSRM

product model. Any of the LSRM concepts does notespond thénteractionof the LURM directly. However, the
Top-down mappingtrategy suggests us thatiateractioncould be expressed as a combinatioiteshsthat match

the LSRMDomain wordconcept.

An Atomic interactiondelineates a number of input and output datauties provides some input and receives the
output that corresponds the expected result. TheretheDecomposition strateghelps us to decompose every
Interactioninto four kinds ofitemsthat we call Wiou, Woutpus Wresurand Wng Each of them represents:

* Wi the input provided by the user,

* W, the result of the goal achievement,

* Woupui the output displayed to the user,

W, the end point of the interaction.

Then we consider the conceptlafgical unit(from LSRM) that represents a coherent set of warged in the same
processing (reading or writing) and constrainedheysame physical device (database, file, scre¢n3,used by the
program. The concept @fefinedabstracts this notion in order to aggregate Idlyicalatedltemsprocessed together
and constrained by the same conceptual device.D@fieedcan be specialised into one or maagical units For
example, ond®efinedcorresponding to a conceptual screen can be ingrited by two physical screens requiring
four Logical units To resume, th€roduct-driven abstractiostrategy followed by theinking strategy allows us to
create thdefinedconcept and to connect it with tiemscomposing it.

Similarly, the concept oPSG the Precedence Succedence Graphs obtained by abstraction of tR&D concept
from the paradigm product model. PSGspecifies the ordering conditions betwdsfinedsas thePRD do it with
Words TheDecomposition strategwas applied to represent the structure ofRB&as a graph composed ldfiks

and Nodes Following the Top-down mappingtrategy we recognize that thénk matches the LSRMnterSF
concept that captures different links betweenSkenario Functionsn a PRD whereas théNode corresponds the
Scenario Functiortconcept Thanks to theSpecialisationstrategy theink was specialised intbuplex Continuous
andMultiplex whereas th&lodewas specialised intBegin End andIntermediate EveryDefinedis an intermediate
link in at least on®SG Figure 4 summarizes the abstraction process fnenfower LSRM into upper LURM.

4, Pattern-Based Process Model Construction

ThePattern-basegrocess model construction strategy is based@ndhcept of pattern, which has been introduced
by Alexander in architecture [Alexander77] and bered by IT engineers to capture software designvenge
[Gamma94, Coad96, Coplien95, Fowler97] as well &thod engineers to capture reusable method knowledg
[Rolland96, Deneckere98]. According to Alexandepattern refers to ‘a problem which occurs agaid again in
our environment and describes the core of theisoltio that problem, in such a way that you cantbi&esolution a
million times over, without ever doing it the samay twice’. The key idea of a pattern is thus, ssaxiate a
problemto itssolutionin a well identifiedcontext

Figure 5 shows the pattern meta-model. phablemrefers to thesituationin which pattern can be applied and the
goal to achieve in this situation. The situation is retleéerised by a set of product elements. Ebhution is
represented by a set stepsto realise in order to resolve the problem. A grattcan besimpleor compound The
solution of a compound pattern contains steps wbathother patterns and are nanpadtern stepsn the contrary to
standalone stepsvhich are executed.

Product
element

Application example|

@ Compounc“ Simple | | | 0.1 Template

1 1 Simple || Complex 1
solution solution
| 1 /\
calls|
4“' Stand alone steH Pattern ste;+*—

Figure5. Pattern meta-model.

[y

The process model for pattern construction is @efihy a map based on two core intentitwhentify a patternand
Construct a patterifFigure 6). Tadentify a patternrmeans to identify a generic problem. As shownigufe 6, the
problem identification can be based on the disgpwéra typical situation or a generic goal in thethod context.
The two cases are respectively supported by twategfies:Situation-basd andGoal-driven. The Aggregation
strategyallows to combine several patterns into a compaumalin order to propose solutions for complex peoid
whereas th®ecomposition strateggeals with the identification of sub-problems, @fhtould also be considered as
generic ones. The identification of a new pattétmasion advises us to consider that there mustrizgher pattern
creating this situation. This case is supportethbyrecedence strategy

To Construct a patterrmeans to formalise its problem (the situation amel goal), to define the solution to its
problem as a set of steps to execute, to definéeitgplate and to give some examples of its apjdicatTwo
strategies namelroduct-drivenand Goal-drivenare provided for this purpose (Figure 6). The gliik supporting
the Product-driven strategis based on the transformation of the product etgsfrom the pattern situation into the
product element defined as the pattern targetgpagoal target). Th&oal-drivenstrategy deals with the pattern
goal reduction into a set of atomic actions toiseain order to achieve this goal. TBaccedence strategpnsiders
that the result product obtained by applying aerady defined pattern can be considered as a paltsittiation for
the definition of an other pattern.

Situation-based

Goal-drive strategy
strategy
Precedencg
strate: ' . Aggregation
4 Identify strategy
a pattern
Succedence
b Decomposition

Product-driven

strategy strategy

Goal-driven
strategy

Completeness

Construct
a pattern
strategy

Figure 6. Pattern-based process model construction.

In order to define the patterns supporting LURMstouction, we need to identify typical situatiotise(problen) in
the Lyee user requirements captuteecontex} and to define the corresponding guidelintég §olution) assisting in
the requirements elicitation and formulation. A©wh in Figure 6, we can start pattern identificatijprocess
following one of two strategiesGoal-drivenor Situation-basedThe guidelines supporting these two strategies
supplement each other and there is no pre-estellishider to realise them. In our case, we startepat
identification process following th€oal-drivenstrategy and we consider the core LURM objectteedefine user
requirements’ As stated in the previous section, the LURM dedimiser requirements as user-system interactions.
Therefore, we found our reasoning on the notioratofmic interaction and investigate the possibitityidentify
generic activities for requirements capture withiis context. We deduce that the requirements capglated to an
atomic interaction comprises four activities thah de considered as four potential pattern goals:

» to start the interaction (Formulai® Startrequirement),

» to perform the action (Formulaie® Actrequirement),

» to prepare the output (Formuldfe Outputrequirement) and,

* to end the interaction (Formulai® Endrequirement).

Each of these activities is linked to tibem typology introduced in the section 3 as each dgtig associated to one
type ofltem

+ theFormulateTo Start requiremerdeals with the capture of W}

» theFormulateTo Act requiremenis concerned by the calculation of My,

» theFormulateTo Output requiremerghall help eliciting and defining YWpus

« finally, the FormulateTo End requiremertonsiders Wg

Each requirement activity is concerned with theitgtion and definition of theskems their grouping inDefineds
and the positioning of those in tR&Gof the interaction.

Next, we select th8ituation-basedtrategy tddentify a pattern(Figure 6) and consider the possible situations in
which these goals are relevant. For instance, wBnduish two different situations dealing with thapture of
Winput €ither the input value does not exist and isatliyecaptured from the user or it exists in a dasabor a file
and is captured from this container. As a consecgiene identify two patterns having the same gaamulateTo
Start requirementut dealing with different situationsput capture from the usesind Input capture form the
internal deviceWe call these two patterns respectiielynediate StarandPrerequisite for Start

In the same manner we identify two generic situegifor each of the four generic goals and iderstifyeight generic
patterns. Table 1 characterises the discovere@rpattEach of these 8 patterns deals with oneesimgjuirement
activity whereas to get the complete set of requéinets for a given problem, the requirements engihes to

perform one of each type of activity. The complett of requirements requires that each of the vialig be

performed once:To start’, ‘To Act’, ‘To Outputand‘To End’. To obtain advice on this, a new pattern, PatR9n
is introduced thanks to tl@omposition strategy

The Succedence stratedpr pattern identification suggests us to thinloabthe construction of a compound
interaction that could be based on the iteratioaro&tomic interaction creation that is the itematbf the pattern P9.

As a result, we identify a new pattern for a commbinteraction formulation that we c&lLO Complex Composition
(Table 1).

Goal

Situation Characterisation

Pattern name

Formulate To Start requiremen

M. are captured directly from the user.

P2 Immedsabet

Formulate To Start requiremen

i are retrieved from a database or a file.

P3 Puisiq for Start

Formulate To Act requirement

M are calculated by a simple formulae, which d
not require the calculation of the intermediate dgor

de$ Simple Word

Formulate To Act requirement

M are calculated by a complex formulae, wh
requires the calculation of the intermediate woathsl
possibly the access to the data in a file or abdesta

i&t8 Complex Word

Formulate To Output
requirement

There is no obstacle neither in the capture gf)hor in
the production of Wy

P6 Single Output

Formulate To Output
requirement

A number of different cases of output productioalshe
considered due to possible obstacles either ircaipture
of Wippue OF in the production of Wsyi

P7 Multiple Output

Formulate To End requirement

The interaction eratsnally without additional interna
activity.

1IP4 Simple End

Formulate To End requirement

Some internal actisitgll be performed such as stor
part or the totality of Wiputs

ip Compound End

Formulate requirement for an
atomic interaction

The interaction goal is atomic.

P9 Simple Compositi

Formulate requirement for a
compound interaction

The interaction goal is compound.

P10 Complex

Composition

Table 1. Characterisation of theidentified patterns.

Let’s illustrate now the construction of a pattewsiution. In our example, the pattern solution takee form of a
sequence of rules to be applied by the engineesh B& them mentions an action to perform likmristruct a
hierarchy of intermediate words involved in theccddtion of the result word Most of these actions are identifying
a requirement, i.e. referring to an element of meta-model:.Defined, Item, Nodand Link in the PSG as for
example introduce a defined of type screen

Problem:
< goal: Formulate ‘To Start’ Requirement >
< situation: W, <= Capturg,,, () >

Solution:
1. Create definedS,,, of typescreen. Determine its name
2. Elicit ltemsaccociated to W,
3. Link thesdtemsto theDefined.Determine for eactiemits nameanddomain
4. TypeltemsasinputandPassive
5. Create #SGwith theDefinedasIntermediate nodand link from theStart nodewith aContinuous link
Template: N i
Defined '.IYP.e..J
PSG
Name
PsgName Type
¢<<bind>>
! (Type = Screen)
1
Begin Source Continuous <Null> target Intermediate S input Defined ‘ﬁ Passive
Nodel Condition Node2 Name
Domain

Figure 7. Pattern P2 : Immediate Start.

As an example we propose the construction of thiemaP2 following thé’roduct-drivenstrategy. The objective of
this pattern is to prepare a user-system intemaclibeProduct-drivenstrategy advises to instantiate the meta-model

elements necessary to achieve the pattern gotilisicase we need to instantiate the meta-modeiesits:Defined
ItemandPSG which are necessary for the input values capfAsea consequence, the actions to perform should be
» to create th®efinedfor the necessary input values capture,
» to define arltemto each input value,
* to link theltemsto theDefined
» to typeltemsasinputandPassiveand
* to create th&SG

Next we need to define the pattern template. Thieepatemplate is an instance of the meta-modekesgmting the
configuration of concepts to be instantiated in application. In the case of the pattern PRSGmust be created
containing aBegin nodeaContinuous linkanintermediate nodeorresponding to thBefinedof type screen (called
Snpud cOmposed of the elicitdtems Figure 7 shows the pattern P2, its problem, soiund template.

In the same manner we construct all the patteim® 1 to P8. The pattern P9 can be constructeowioly the

Goal-drivenstrategy, which advises to decompose the pringjpal into sub-goals until the atomic actions hadrb
obtained. Thus, the objective of the pattern F®rmulate requirement for an atomic interactionan be

decomposed into four sub god®rmulate To Start requirement’, ‘Formulate To Aefquirement”, ‘Formulate To
Output requirement’, ‘Formulate To End requiremeit’ this order. As there are always two patterrat thre

candidate to help achieving the goal, it is neagssaexamine the situation first. As pattern diinias are exclusive,
the choice of the relevant pattern to apply is e@kg obtained pattern is a compound one. It isvehia Figure 8.

Problem:
< goal: Formulate requirement for an atomic inteécac>
< situation: The interacion goal is atomic >

Solution: Formulate requirementI for an atomic interaction
I I [I
1. Formulate 2. Formulate 3. Formulate 4. Formulate
To Starteﬂuirement To Actrequirement To Outputriquirement To EndrquIirement
Determine Apply Determine Apply Determine Apply Determine Apply
the situation pattern the situation pattern the situation pattern the situation pattern
to Start toAct __—\ to Output to End

Apply P2 Apply P3 Apply P1 Apply P8 Apply P6 Apply P7 Apply P1 Apply P8

Figure 8. Pattern P9: Simple Composition.

Finally, the pattern P10 deals with the compourtéraction. The goal to be achieved is to get a d¢etepand
coherent requirement formulation for a compounckriadtion. This pattern should give an advice on how
decompose a compound interaction into atomic iotenas to which the pattern P9 should be appliadatt, the
pattern helps in recognising that the interact®onadt an atomic one in the first place.

Each of ten patterns captures a requirement Stuatind guides the formulation of the requirementampliance
with the requirement meta-model. The ten patteritisbe applied again and again in the differenthsafe projects
using Lyee. Even though actual situations are diffefrom one project to another, each of them kEhmatch one
pattern situation and the pattern will bring theecsolution to the requirements capture problersediiby this
situation.

5. Conclusion

In this paper we propose an approach for evolutiiven method engineering. Evolution in this cassans that we
start method engineering with an existing paradigodel (model or meta-model) and we obtain a neweh(at

meta-model) by abstracting, transforming, adaptingnstantiating this paradigm model. Our processleh for

evolution-driven ME captures these various evotutizays as different strategies to create the pitogaxt of the
model under construction. The corresponding propessconstruction is also supported by a set ratexgies the
selection of which depends on the process natude camplexity. Every strategy is supported by a glimng

assisting method engineer in his or her methodutienl task.

The flexibility offered by the map formalism thatwise to express our Evolution-Driven ME processdehallows
us to include other ways for method evolution imather simple manner. They can be integrated derelift
strategies to satisfy the intenti@onstruct a product modahdConstruct a process model

In this paper we present the evaluation of our @ggh by the LURM construction as evolution of tH&RM. The
Abstraction strategjave been used tonstruct a product modethile thePattern-driven strategwas applied to
Construct a process modeln this paper we present these two strategiesname detail and illustrate their
application. Our future preoccupation is to evauather proposed method evolution strategies dsasdb validate
it through real projects.

References

[Alexander77] Alexander, C., S. Ishikawa, M. Silstein, M. Jacobson, |I. Fiksdahl-King, S. Angal,Pattern
Language Oxford University Press, New York, 1977.

[Benjamen99] Benjamen, A.,Une Approche Multi-démarches pour la modélisatiores d démarches
méthodologiquesThése de doctorat en informatique, UniversitésPigri999.

[Brinkkemper98] Brinkkemper, S., M. Saeki, F. HaensAssembly Techniques for Method Engineerigc. of
the 1¢" CAISE’98. Pisa lItaly, 8-12 June, 1998.

[Coad96] Coad, D., D. North, M. Maylief@bject Models — Strategies, patterns and applicegicyourdon
Press Computing Series, 1996.

[Coplien95] Coplien, J.O, D.O. Schmidt (EdsPatron Languages of Program DesigAddison-Wesley,
Reading, MA, 1995.

[Gamma94] Gamma, E., R. Helm, R. Johnson, J. MéssiDesign Patterns : Elements of Reusable Object-
Oriented SoftwareAddison-Wesley, 1994,

[Deneckere98] Deneckere, R., C. Souveyestterns for extending an OO model with temporatdfees
Conférence O0IS'98, Paris, Septembre 1998.

[Grundy96] Grundy, J.C., J.R. Venablgwards an integrated environment for method eraging, Proc. IFIP
WG 8.1 Conf. on ‘Method Engineering’, Chapman aradl,Hpp 45-62, 1996.

[Harmsen97] Harmsen, A.FSjtuational Method Engineerind/loret Ernst & Young , 1997.

[Hofstede93] Hofstede, A.H.M. Teinformation modelling in data intensive domailsssertation, University of
Nijimegen, The Netherlands 1993.

[Fowler97] Fowler, M. Analysis Patterns : reusable objects modalddison-Wesley, 1997.

[Jarke99] Jarke M., C. Rolland, A. Sutcliffe, Romges, The NATURE requirements Engineerirghaker
Verlag, Aachen 1999.

[NegoroOla] Negoro, FMethodology to Determine Software in a Determinidfianner Proceedings of ICH,
Beijing, China, 2001.

[NegoroO1lb] Negoro, FA proposal for Requirement Engineerjnigroceedings of ADBIS, Vilnius, Lithuania,
2001.

[Plihon96] Plihon, V.Un environnement pour l'ingénierie des méthodémse de doctorat, Université Paris 1,
1996.

[Prakash99] Prakash, NOn Method Statics and Dynamics. Information Syst&uwoks34 (8), pp 613-637. 1999.

[Prakash02] Prakash, N., M. P. S. BhaBeneric Models for Engineering Methods of Diverserains Proc. of
CAISE’'02, Toronto, Canada, LNCS Volume 2348, p2.62002.

[Ralyté01] Ralyté, J., C. Rollandn Assembly Process Model for Method Engineefffirgceedings of the 13th
CAISE’01, Interlaken, Switzerland, 2001.

[Rolland95] Rolland, C., C. Souveyet, M. Morern Approach for Defining Ways-of-Workintnformation
Systems Journal, 1995.

[Rolland96] Rolland, C., N. Prakash,proposal for context-specific method engineerlikéP WG 8.1 Conf. on
Method Engineering, Chapman and Hall, pp 191-2aG&ma, Gerorgie, USA, 1996.

[Rolland99] Rolland, C., N. Prakash, A. Benjamé&nMulti-Model Vew of Process ModellinRequirements
Engineering Journal, Vol. 4 (4), pp169-187, 1999

[Saekio4] Saeki, M., K. Wen-yir§pecifying Software Specification and Design Meth&doc. CAISE'94,
LNCS 811, Springer Verlag, pp 353-366, Berlin, 1994

[Welke92] Welke, R.J., K. KumarMethod EngineeringA Proposal for Situation-specific Methodology
Construction in Systems Analysis and Design : A Research Age@btterman and Senn (eds),
Wiley, pp257-268, 1992.

10

