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Abstract 

The paper considers the evolutionary perspective of the method engineering. It presents an approach for method 
engineering based on the evolution of an existing method, model or meta-model into a new one satisfying different 
engineering objective. This approach proposes several different strategies to evolve the initial paradigm model 
into a new one and provides guidelines supporting these strategies. The approach has been evaluated in the 
Franco-Japanese research project around the Lyee methodology. A new model called Lyee User Requirements 
Model has been obtained as an abstraction of the Lyee Software Requirements Model. The paper illustrates this 
evolution case.  

1. Introduction 

In this paper we consider Method Engineering (ME) from the evolutionary point of view. In other words, we look for 
an approach supporting evolution of an existing method, model or meta-model in order to obtain a new one better 
adapted for a given engineering situation and /or satisfying different engineering objective. We consider such a 
method evolution as situation-driven and relate our work to the area of Situational Method Engineering (SME) 
[Welke92], which focuses on project-specific method construction.  

The approach that we propose in this paper is based on some initial modelling idea expressed as a model or a meta-
model that we call the ‘paradigm model’ and supports the evolution of this paradigm model into a brand-new model 
satisfying another engineering objective. That’s why we call this approach the Evolution-Driven Method 
Engineering. We capture in it our experience accumulated in the method engineering and especially in the meta-
modelling domain. The hypothesis of this approach is that a new method is obtained either by abstracting from an 
existing model or by instantiating a meta-model. Hence, this approach could be situated between the traditional ‘from 
scratch’ ME and the assembly-based SME [Harmsen97, Brinkkemper98, Ralyté01].  

We use the Map formalism proposed in [Rolland99, Benjamen99] to express the process model of our approach for 
Evolution-Driven Method Engineering. Map provides a representation system allowing to combine multiple ways of 
working into one complex process model. It is based on a non-deterministic ordering of two fundamental concepts 
intentions and strategies. An intention represents a goal that can be achieved by the performance of the process. It 
refers to a task (activity) that is a part of the process and is expressed in the intentional level. A strategy represents 
the manner in which the intention can be achieved. Therefore, the map is a directed labelled graph with nodes 
representing intentions and labelled edges expressing strategies. The directed nature of the map identifies which 
intention can be done after a given one. A map includes two specific intentions, Start and Stop, to begin and end the 
process respectively. There are several paths from Start to Stop in the map for the reason that several different 
strategies can be proposed to achieve the intentions. A map therefore includes several process models that are 
selected dynamically when the process proceeds, depending on the current situation. An intention achievement 
guideline is associated to every triplet <source intention, target intention, strategy> providing advice to fulfil the 
target intention following the strategy given the source intention has been achieved. Furthermore, this guideline can 
be refined as an entire map at a lower level of granularity. 

We have evaluated our approach in the Franco-Japanese collaborative research project Lyee1. The aim of this project 
was to develop a methodology supporting software development in two steps: requirements engineering and code 
generation. The latter was already supported by the LyeeAll CASE tool [Negoro01a,b] in order to generate 

                                                           
1 Lyee, which stands for GovernmentaL MethodologY for SoftwarE ProvidencE, is a methodology for software development used 

for the implementation of business software applications. Lyee was invented by Fumio Negoro. 
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programs, provided a set of well-formatted software requirements are given. The Lyee Software Requirements Model 
(LSRM) expresses these requirements in rather low-level terms such as screen layouts and database accesses. 
Moreover they are influenced by the LyeeALL internals such as the Lyee identification policy of program variables, 
the generated program structure and the Lyee program execution control mechanism. Experience with LyeeAll has 
shown the need to acquire software requirements from relatively high level user-centric requirements. For this 
reason, we have decided to evolve the Lyee methodology. We have used the existing LSRM as a baseline paradigm 
model for the more abstract Lyee User Requirements Model (LURM) construction.  

In the next section we outline our process model for Evolution-Driven ME. Section 3 details the Abstraction strategy 
for method product model construction whereas section 4 describes the Pattern-based strategy for method process 
model definition. Both strategies are illustrated by the LURM product and process models creation respectively. 
Some conclusions and discussions about our future work are done in the section 5. 

2. Process Model for Evolution-Driven Method Engineering  

Our approach for Evolution-Driven ME uses meta-modelling as its underlying method engineering technique. Meta-
modelling is known as a technique to capture knowledge about methods. It is a basis for understanding, comparing, 
evaluating and engineering methods. One of the results obtained by the meta-modelling community is the definition 
of any method as composed of a product model and a process model [Prakash99]. A product model defines a set of 
concepts, their properties and relationships that are needed to express the outcome of a process. A process model 
comprises a set of goals, activities and guidelines to support the process goal achievement and the action execution. 
Therefore, method construction following the meta-modelling technique is centred on the definition of these two 
models. This is reflected in the map representing the process model for Evolution-Driven ME (Figure 1) by two core 
intentions (the nodes of the map) Construct a product model and Construct a process model.  
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Refinement 
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Figure 1. Process Model for Evolution-Driven Method Engineering. 

A number of product meta-models [Grundy96, Hofstede93, Prakash02, Saeki94, Plihon96] as well as process meta-
models [Jarke99, Rolland95, Rolland99] are available and our approach is based on some of them. This is shown in 
Figure 1 by several different strategies (the labelled edges) to achieve each of the two core intentions.  

The construction of the product model depends of the ME goal that could be to construct a method:  
•  by raising (or lowering) the level of abstraction of a given model, 
•  by instantiating a selected meta-model, 
•  by adapting a meta-model to some specific circumstances, 
•  by adapting a model. 

Each of these cases defines a strategy to Construct a product model, namely the Abstraction, Instantiation, 
Adaptation and Utilisation strategies. Each of them is supported by a guideline that consists in defining various 
product model elements such as objects, links and properties in different manner.  

In our example, we use the Lyee Software Requirements Model (LSRM) model as a baseline paradigm model for the 
more abstract Lyee User Requirements Model (LURM) construction. In this case, the Abstraction strategy is the 
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more appropriate one to Construct a product model as the ME goal is to rise the level of abstraction of the LSRM. 
For this reason, in the next section we detail and illustrate the guideline supporting product model construction 
following the Abstraction strategy. This guideline is based on the abstraction of different elements from the 
paradigm model (product and/or process model) into elements in the new product model and the refinement of the 
obtained elements until the new product model became satisfactory. 

Process model must conform to the product model. Process steps, activities, actions always refer to some product 
model parts in order to construct, refine or transform them. This is the reason why in the map of Figure 1 the 
intention to Construct a process model follows the one to Construct a product model. We know that a process model 
can take multiple different forms. It could be a simple informal guideline, a set of ordered actions or activities to 
carry out, a set of process patterns to be followed, etc. In our Evolution-Driven process model (Figure 1) we propose 
four  strategies: Simple, Context-driven, Pattern-driven and Strategy-driven to Construct a process model.  

•  The Simple strategy is useful to describe a uncomplicated process model that can be expressed as a textual 
description or a set of actions to execute.  

•  The Context-driven process model is based on the NATURE process modelling formalism [Jarke99, Rolland95]. 
According to this formalism, a process model can be expressed as a hierarchy of contexts. A context is viewed 
as a couple <situation, intention>. The situation represents the part of the product undergoing the process and 
the intention reflects the goal to be achieved in this situation.  

•  Process model obtained following the Pattern-driven strategy takes the form of a Catalogue of Patterns. Each 
pattern identifies a generic problem, which could occur quite often in the product model construction, and 
proposes a generic solution applicable every time the problem appears. A generic solution is expressed as set of 
steps allowing to resolve the corresponding problem. 

•  Finally, the Strategy-driven process model, also called the Map [Rolland99, Benjamen99] (see the introduction 
of this paper), permits to combine several process models into one complex process model.  

The process model of the LURM was defined following the Pattern-driven strategy. A set of patterns has been 
defined to take into account different situations in the user requirements definition. Each pattern provides an advice 
to capture and formulate requirements. The section 4 presents in detail and illustrates the guideline supporting the 
Pattern-driven strategy for the process model construction.  

3. Abstraction-Based Product Model Construction 

The Abstraction strategy for product model construction consists in defining a new product model representing the 
level of abstraction higher than this of its paradigm model. As a consequence, the objective of the corresponding 
guideline is to support the construction of a product model as an abstraction of an other model (product or process or 
both of them). This guideline is also expressed by a map shown in Figure 2.  
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Define 
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abstraction 

Specialisation
strategy

StopCompleteness
strategy
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Process-driven 
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Figure 2. Abstraction-Based Product Model Construction. 

As the product model construction consists in the definition of its elements (objects, properties, links), there is only 
one core intention in this map called Define product element. The achievement of this intention is supported by a set 
of strategies. Two strategies named Product-driven abstraction and Process-driven abstraction are provided to start 
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the construction process. The first one deals with the paradigm product model whereas the second one is based on 
the paradigm process model. The Product-driven abstraction consists in analysing the paradigm product model, 
identifying elements that could be represented by more abstract elements in the new model and defining these 
abstract elements. The Process-driven abstraction proposes to analyse the paradigm process model and to abstract 
some of its activities into the upper level ones. The product elements referenced by these more abstract activities 
must be integrated into the product model under construction. The concepts obtained following this strategy have to 
match concepts (or a collection of concepts) of the paradigm product model. The Top-down mapping strategy can be 
applied to assure it. The Generalisation, Specialisation, Aggregation and Decomposition strategies are used to refine 
the model under construction whereas the Linking strategy helps to connect different elements of this model obtained 
by applying different abstraction strategies.    

In order to illustrate the abstraction-based product model construction we present first our paradigm model, which is 
the Lyee Software Requirements Model depicted in Figure 3.  
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Figure 3. The Lyee Software Requirements Model (LSRM). 

The central concept in the LSRM is called a Word. A Word corresponds to a program variable: input words represent 
values captured from the external world whereas output words are produced by the system by applying specific 
formulae. Lyee Software Requirements processing mechanism applies a formulae to obtain output word from the 
given input words. The execution of formulae is controlled by the Process Route Diagram (PRD). A PRD is 
composed of Scenario Functions (SF), composed of Pallets which are made of Vectors. In order to carry out the 
generated program control, the function generates its own Words such as the Action words and Routing words. 
Action words are used to control physical Input/Output exchanges in a Lyee program, they implement application 
actions such as reading a screen, submitting a query to a database, opening or closing a file, etc. Routing words are 
used to distribute the control over various SFs of a PRD. 

In order to comply with the LSRM paradigm, the LURM should be centred on a notion that abstracts from the 
concept of Word. Obviously Words required by the Lyee processing mechanism are not relevant at this level. On the 
contrary, the concern is only with Domain words. For that reason, the LSRM concept Domain word is abstracted into 
LURM concept Item following the Product-driven abstraction strategy. The Specialisation strategy is applied in 
order to specialise the Item into Output and Input to match the LSRM, which makes the difference between input and 
output words used in its processing mechanism. An Output is produced by the system whereas the Input is captured 
from the user. In the same manner, the Input is specialised into Active and Passive. The former triggers the system 
actions whereas the latter represents values captured from the user.  

Next we analyse the LSRM process model. The paradigm process model deals with the generation of the Lyee 
program structure. The result of the obtained program execution must fit user’s requirements. In other words, it must 
allow the user to satisfy one of its goals. For that reason, in the upper user requirements level we need to reason with 
concepts allowing to identify these user goals and express how the user interacts with the system in order to achieve 
them. The Process-driven abstraction strategy allows us to define the notion of Interaction representing the 
exchanges between the user and the system from the user’s view point. An interaction is goal driven in the sense that 
the user asks the system to achieve the goal he/she has in mind without knowing how the system will do it. As a 
result, we associate an Interaction goal to each Interaction. The complexity of the interaction goal defines the 
complexity of the corresponding interaction. If the interaction goal can be decomposed into several atomic goals, the 
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corresponding interaction can also be decomposed. Consequently, we specialise the interaction into Atomic and 
Compound thanks to the Specialisation strategy.  
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Figure 4. Lyee Product Models for Software Requirements and for User Requirements. 

Now we need to define how the Interaction concept could be mapped into the concepts defined in the lower LSRM 
product model. Any of the LSRM concepts does not correspond the interaction of the LURM directly. However, the 
Top-down mapping strategy suggests us that an interaction could be expressed as a combination of items that match 
the LSRM Domain word concept.  

An Atomic interaction delineates a number of input and output data: the user provides some input and receives the 
output that corresponds the expected result. Therefore, the Decomposition strategy helps us to decompose every 
Interaction into four kinds of Items that we call Winput, Woutput, Wresult and Wend. Each of them represents: 

•  Winput: the input provided by the user, 
•  Wresult: the result of the goal achievement, 
•  Woutput: the output displayed to the user, 
•  Wend: the end point of the interaction. 

Then we consider the concept of Logical unit (from LSRM) that represents a coherent set of words used in the same 
processing (reading or writing) and constrained by the same physical device (database, file, screens, etc.) used by the 
program. The concept of Defined abstracts this notion in order to aggregate logically related Items processed together 
and constrained by the same conceptual device. One Defined can be specialised into one or more Logical units. For 
example, one Defined corresponding to a conceptual screen can be implemented by two physical screens requiring 
four Logical units. To resume, the Product-driven abstraction strategy followed by the Linking strategy allows us to 
create the Defined concept and to connect it with the Items composing it.  

Similarly, the concept of PSG, the Precedence Succedence Graph was obtained by abstraction of the PRD concept 
from the paradigm product model. A PSG specifies the ordering conditions between Defineds as the PRD do it with 
Words. The Decomposition strategy was applied to represent the structure of the PSG as a graph composed of Links 
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and Nodes. Following the Top-down mapping strategy we recognize that the Link matches the LSRM InterSF 
concept that captures different links between the Scenario Functions in a PRD whereas the Node corresponds the 
Scenario Function concept. Thanks to the Specialisation strategy the Link was specialised into Duplex, Continuous 
and Multiplex whereas the Node was specialised into Begin, End and Intermediate. Every Defined is an intermediate 
link in at least one PSG. Figure 4 summarizes the abstraction process from the lower LSRM into upper LURM. 

4. Pattern-Based Process Model Construction 

The Pattern-based process model construction strategy is based on the concept of pattern, which has been introduced 
by Alexander in architecture [Alexander77] and borrowed by IT engineers to capture software design knowledge 
[Gamma94, Coad96, Coplien95, Fowler97] as well as method engineers to capture reusable method knowledge 
[Rolland96, Deneckere98]. According to Alexander, a pattern refers to ‘a problem which occurs again and again in 
our environment and describes the core of the solution to that problem, in such a way that you can use this solution a 
million times over, without ever doing it the same way twice’. The key idea of a pattern is thus, to associate a 
problem to its solution in a well identified context. 

Figure 5 shows the pattern meta-model. The problem refers to the situation in which pattern can be applied and the 
goal to achieve in this situation. The situation is characterised by a set of product elements. The solution is 
represented by a set of steps to realise in order to resolve the problem. A pattern can be simple or compound. The 
solution of a compound pattern contains steps which call other patterns and are named pattern steps in the contrary to 
stand alone steps which are executed.   
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Figure 5. Pattern meta-model. 

The process model for pattern construction is defined by a map based on two core intentions Identify a pattern and 
Construct a pattern (Figure 6). To Identify a pattern means to identify a generic problem. As shown in Figure 6, the 
problem identification can be based on the discovery of a typical situation or a generic goal in the method context. 
The two cases are respectively supported by two strategies: Situation-based and Goal-driven. The Aggregation 
strategy allows to combine several patterns into a compound one in order to propose solutions for complex problems 
whereas the Decomposition strategy deals with the identification of sub-problems, which could also be considered as 
generic ones. The identification of a new pattern situation advises us to consider that there must be another pattern 
creating this situation. This case is supported by the Precedence strategy.   

To Construct a pattern means to formalise its problem (the situation and the goal), to define the solution to its 
problem as a set of steps to execute, to define its template and to give some examples of its application. Two 
strategies named Product-driven and Goal-driven are provided for this purpose (Figure 6). The guideline supporting 
the Product-driven strategy is based on the transformation of the product elements from the pattern situation into the 
product element defined as the pattern target (pattern goal target). The Goal-driven strategy deals with the pattern 
goal reduction into a set of atomic actions to realise in order to achieve this goal. The Succedence strategy considers 
that the result product obtained by applying an already defined pattern can be considered as a potential situation for 
the definition of an other pattern.   
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Figure 6. Pattern-based process model construction. 

In order to define the patterns supporting LURM construction, we need to identify typical situations (the problem) in 
the Lyee user requirements capture (the context) and to define the corresponding guidelines (the solution) assisting in 
the requirements elicitation and formulation. As shown in Figure 6, we can start pattern identification process 
following one of two strategies: Goal-driven or Situation-based. The guidelines supporting these two strategies 
supplement each other and there is no pre-established order to realise them. In our case, we start pattern 
identification process following the Goal-driven strategy and we consider the core LURM objective ‘to define user 
requirements’. As stated in the previous section, the LURM defines user requirements as user-system interactions. 
Therefore, we found our reasoning on the notion of atomic interaction and investigate the possibility to identify 
generic activities for requirements capture within this context. We deduce that the requirements capture related to an 
atomic interaction comprises four activities that can be considered as four potential pattern goals: 

•  to start the interaction (Formulate To Start requirement), 
•  to perform the action (Formulate To Act requirement), 
•  to prepare the output (Formulate To Output requirement) and, 
•  to end the interaction (Formulate To End requirement). 

Each of these activities is linked to the item typology introduced in the section 3 as each activity is associated to one 
type of Item:  

•  the Formulate To Start requirement deals with the capture of Winput, 
•  the Formulate To Act requirement is concerned by the calculation of Wresult, 
•  the Formulate To Output requirement shall help eliciting and defining Woutput, 
•  finally, the Formulate To End requirement considers Wend.  

Each requirement activity is concerned with the elicitation and definition of these Items, their grouping in Defineds 
and the positioning of those in the PSG of the interaction. 

Next, we select the Situation-based strategy to Identify a pattern (Figure 6) and consider the possible situations in 
which these goals are relevant. For instance, we distinguish two different situations dealing with the capture of 
Winput: either the input value does not exist and is directly captured from the user or it exists in a database or a file 
and is captured from this container. As a consequence, we identify two patterns having the same goal Formulate To 
Start requirement but dealing with different situations Input capture from the user and Input capture form the 
internal device. We call these two patterns respectively Immediate Start and Prerequisite for Start.  

In the same manner we identify two generic situations for each of the four generic goals and identify so eight generic 
patterns. Table 1 characterises the discovered patterns. Each of these 8 patterns deals with one single requirement 
activity whereas to get the complete set of requirements for a given problem, the requirements engineer has to 
perform one of each type of activity. The complete set of requirements requires that each of the following be 
performed once: ‘To start’, ‘To Act’, ‘To Output’ and ‘To End’. To obtain advice on this, a new pattern, Pattern P9, 
is introduced thanks to the Composition strategy.  

The Succedence strategy for pattern identification suggests us to think about the construction of a compound 
interaction that could be based on the iteration of an atomic interaction creation that is the iteration of the pattern P9. 
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As a result, we identify a new pattern for a compound interaction formulation that we call P10 Complex Composition 
(Table 1).  

Goal Situation Characterisation Pattern name 
Formulate To Start requirement W input are captured directly from the user. P2 Immediate Start 
Formulate To Start requirement Winput are retrieved from a database or a file. P3 Prerequisite for Start 
Formulate To Act requirement Wresult are calculated by a simple formulae, which does 

not require the calculation of the intermediate words. 
P1 Simple Word 

Formulate To Act requirement Wresult are calculated by a complex formulae, which 
requires the calculation of the intermediate words and 
possibly the access to the data in a file or a database.  

P8 Complex Word 

Formulate To Output 
requirement 

There is no obstacle neither in the capture of Winput nor in 
the production of Wresult. 

P6 Single Output 

Formulate To Output 
requirement 

A number of different cases of output production shall be 
considered due to possible obstacles either in the capture 
of Winput or in the production of Wresult. 

P7 Multiple Output 

Formulate To End requirement The interaction ends normally without additional internal 
activity. 

P4 Simple End 

Formulate To End requirement Some internal activity shall be performed such as storing 
part or the totality of Woutputs. 

P5 Compound End 

Formulate requirement for an 
atomic interaction 

The interaction goal is atomic. P9 Simple Composition 

Formulate requirement for a 
compound interaction 

The interaction goal is compound. P10 Complex 
Composition 

Table 1.  Characterisation of the identified patterns. 

Let’s illustrate now the construction of a pattern solution. In our example, the pattern solution takes the form of a 
sequence of rules to be applied by the engineer. Each of them mentions an action to perform like ‘construct a 
hierarchy of intermediate words involved in the calculation of the result word’ . Most of these actions are identifying 
a requirement, i.e. referring to an element of the meta-model: Defined, Item, Node and Link in the PSG, as for 
example ‘introduce a defined of type screen’.  
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5. Create a PSGwith the Definedas Intermediate nodeand link from the Start nodewith a Continuous link

Template:

 

Figure 7. Pattern P2 : Immediate Start. 

As an example we propose the construction of the pattern P2 following the Product-driven strategy. The objective of 
this pattern is to prepare a user-system interaction. The Product-driven strategy advises to instantiate the meta-model 
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elements necessary to achieve the pattern goal. In this case we need to instantiate the meta-model elements: Defined, 
Item and PSG, which are necessary for the input values capture. As a consequence, the actions to perform should be:   

•  to create the Defined for the necessary input values capture,  
•  to define an Item to each input value, 
•  to link the Items to the Defined, 
•  to type Items as Input and Passive and  
•  to create the PSG.      

Next we need to define the pattern template. The pattern template is an instance of the meta-model representing the 
configuration of concepts to be instantiated in any application. In the case of the pattern P2, a PSG must be created 
containing a Begin node, a Continuous link, an Intermediate node corresponding to the Defined of type screen (called 
Sinput) composed of the elicited Items. Figure 7 shows the pattern P2, its problem, solution and template. 

In the same manner we construct all the patterns from P1 to P8. The pattern P9 can be constructed following the 
Goal-driven strategy, which advises to decompose the principal goal into sub-goals until the atomic actions had been 
obtained. Thus, the objective of the pattern P9 ‘Formulate requirement for an atomic interaction’ can be 
decomposed into four sub goals ‘Formulate To Start requirement’, ‘Formulate To Act requirement’’, ‘Formulate To 
Output requirement’, ‘Formulate To End requirement’ in this order. As there are always two patterns that are 
candidate to help achieving the goal, it is necessary to examine the situation first. As pattern situations are exclusive, 
the choice of the relevant pattern to apply is easy. The obtained pattern is a compound one. It is shown in Figure 8.  

Pattern P9 : Simple CompositionPattern P9 : Simple Composition

Problem:
< goal: Formulate requirement for an atomic interaction >
< situation: The interacion goal is atomic >

Solution:

1. Formulate 
To Startequirement

2. Formulate 
To Actrequirement

3. Formulate 
To Outputrequirement

4. Formulate 
To Endrequirement

Formulate requirement for an atomic interaction

Apply P2 Apply P3 Apply P1 Apply P8 Apply P6 Apply P7 Apply P1 Apply P8

Determine 
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Figure 8. Pattern P9: Simple Composition. 

Finally, the pattern P10 deals with the compound interaction. The goal to be achieved is to get a complete and 
coherent requirement formulation for a compound interaction. This pattern should give an advice on how to 
decompose a compound interaction into atomic interactions to which the pattern P9 should be applied. In fact, the 
pattern helps in recognising that the interaction is not an atomic one in the first place.  

Each of ten patterns captures a requirement situation and guides the formulation of the requirement in compliance 
with the requirement meta-model. The ten patterns will be applied again and again in the different software projects 
using Lyee. Even though actual situations are different from one project to another, each of them should match one 
pattern situation and the pattern will bring the core solution to the requirements capture problem raised by this 
situation. 

5. Conclusion 

In this paper we propose an approach for evolution-driven method engineering. Evolution in this case means that we 
start method engineering with an existing paradigm model (model or meta-model) and we obtain a new model (or 
meta-model) by abstracting, transforming, adapting or instantiating this paradigm model. Our process model for 
evolution-driven ME captures these various evolution ways as different strategies to create the product part of the 
model under construction. The corresponding process part construction is also supported by a set of strategies the 
selection of which depends on the process nature and complexity. Every strategy is supported by a guideline 
assisting method engineer in his or her method evolution task.        
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The flexibility offered by the map formalism that we use to express our Evolution-Driven ME process model allows 
us to include other ways for method evolution in a rather simple manner. They can be integrated as different 
strategies to satisfy the intention Construct a product model and Construct a process model. 

In this paper we present the evaluation of our approach by the LURM construction as evolution of the LSRM. The 
Abstraction strategy have been used to Construct a product model while the Pattern-driven strategy was applied to 
Construct a process model. In this paper we present these two strategies in more detail and illustrate their 
application. Our future preoccupation is to evaluate other proposed method evolution strategies as well as to validate 
it through real projects.  
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