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Instability in the Gel'fand inverse problem at high energies

We give an instability estimate for the Gel'fand inverse boundary value problem at high energies. Our instability estimate shows an optimality of several important preceeding stability results on inverse problems of such a type.

Introduction

In this paper we continue studies on the Gel'fand inverse boundary value problem for the Schrödinger equation

-∆ψ + v(x)ψ = Eψ, x ∈ D, (1.1) 
where

D is an open bounded domain in R d , d ≥ 2, with ∂D ∈ C 2 , (1.2) 
v ∈ L ∞ (D). (1.3) As boundary data we consider the map Φ = Φ(E) such that Φ(E)(ψ| ∂D ) = ∂ψ ∂ν | ∂D (1.4) for all sufficiently regular solutions ψ of (1.1) in D = D ∪ ∂D, where ν is the outward normal to ∂D. Here we assume also that E is not a Dirichlet eigenvalue for operator -∆ + v in D.

(1.5)

The map Φ = Φ(E) is known as the Dirichlet-to-Neumann map. We consider the following inverse boundary value problem for equation (1.1):

Problem 1.1. Given Φ for some fixed E, find v.

This problem is known as the Gel'fand inverse boundary value problem for the Schrödinger equation at fixed energy (see [START_REF] Gelfand | Some problems of functional analysis and algebra[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]). At zero energy this problem can be considered also as a generalization of the Calderon problem of the electrical impedance tomography (see [START_REF] Calderón | On an inverse boundary problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]). Problem 1.1 can be also considered as an example of ill-posed problem: see [START_REF] Lavrentev | Ill-posed problems of mathematical physics and analysis[END_REF], [START_REF] Beilina | Approximate global convergence and adaptivity for coefficient inverse problems[END_REF] for an introduction to this theory.

There is a wide literature on the Gel'fand inverse problem at fixed energy. In a similar way with many other inverse problems, Problem 1.1 includes, in particular, the following questions: (a) uniqueness, (b) reconstruction, (c) stability.

Global uniqueness results and global reconstruction methods for Problem 1.1 were obtained for the first time in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF] in dimension d ≥ 3 and in [START_REF] Buckhgeim | Recovering a potential from Cauchy data in the twodimensional case[END_REF] in dimension d = 2.

Global logarithmic stability estimates for Problem 1.1 were obtained for the first time in [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] in dimension d ≥ 3 and in [START_REF] Novikov | A global stability estimate for the Gelfand-Calderon inverse problem in two dimensions[END_REF] in dimension d = 2. A principal improvement of the result of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] was obtained recently in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] (for the zero energy case): stability of [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] optimally increases with increasing regularity of v.

Note that for the Calderon problem (of the electrical impedance tomography) in its initial formulation the global uniqueness was firstly proved in [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] for d ≥ 3 and in [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF] for d = 2. Global logarithmic stability estimates for this problem were obtained for the first time in [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] for d ≥ 3 and [START_REF] Liu | Stability Estimates for the Two-Dimensional Inverse Conductivity Problem[END_REF] for d = 2. Principal increasing of global stability of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Liu | Stability Estimates for the Two-Dimensional Inverse Conductivity Problem[END_REF] for the regular coefficient case was found in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] for d ≥ 3 and [START_REF] Santacesaria | New global stability estimates for the Calderon inverse problem in two dimensions[END_REF] for d = 2. In addition, for the case of piecewise real analytic conductivity the first uniqueness results for the Calderon problem in dimension d ≥ 2 were given in [START_REF] Kohn | Determining conductivity by boundary measurements II, Interior results[END_REF]. Lipschitz stability estimate for the case of piecewise constant conductivity was obtained in [START_REF] Alessandrini | Lipschitz stability for the inverse conductivity problem[END_REF] (see [START_REF] Rondi | A remark on a paper by[END_REF] for additional studies in this direction).

The optimality of the logarithmic stability results of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Liu | Stability Estimates for the Two-Dimensional Inverse Conductivity Problem[END_REF] with their principal effectivizations of [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], [START_REF] Santacesaria | New global stability estimates for the Calderon inverse problem in two dimensions[END_REF] (up to the value of the exponent) follows from [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF]. An extention of the instability estimates of [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF] to the case of the non-zero energy as well as to the case of Dirichlet-to-Neumann map given on the energy intervals was obtained in [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF].

On the other hand, it was found in [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF], [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF] (see also [START_REF] Novikov | The ∂-approach to monochromatic inverse scattering in three dimensions[END_REF], [START_REF] Novikov | Monochromatic Reconstruction Algorithms for Two-dimensional Multi-channel Inverse Problems[END_REF]) that for inverse problems for the Schrödinger equation at fixed energy E in dimension d ≥ 2 (like Problem 1.1) there is a Hölder stability modulo an error term rapidly decaying as E → +∞ (at least for the regular coefficient case). In addition, for Problem 1.1 for d = 3, global energy dependent stability estimates changing from logarithmic type to Hölder type for high energies were obtained in [START_REF] Isakov | Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map[END_REF], [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF]. However, there is no efficient stability increasing with respect to increasing coefficient regularity in the results of [START_REF] Isakov | Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map[END_REF]. An additional study, motivated by [START_REF] Isakov | Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], was given in [START_REF] Nagayasu | Increasing stability in an inverse problem for the acoustic equation[END_REF].

The following stability estimate for Problem 1.1 was recently proved in [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF]:

Theorem 1.1 (of [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF]). Let D satisfy (1.2), where d ≥ 3. Let v j ∈ W m,1 (D), m > d, supp v j ⊂ D and ||v j || W m,1 (D) ≤ N for some N > 0, j = 1, 2, (where W m,p denotes the Sobolev space of m-times smooth functions in L p ). Let v 1 , v 2 satisfy (1.5) for some fixed E ≥ 0. Let Φ1 (E) and Φ2 (E) denote the DtN maps for v 1 and v 2 , respectively. Let s 1 = (m -d)/d. Then, for any τ ∈ (0, 1) and any α, β ∈ [0,

s 1 ], α + β = s 1 , ||v 2 -v 1 || L ∞ (D) ≤ A(1 + √ E)δ τ + B(1 + √ E) -α ln 3 + δ -1 -β , (1.6 
)

where δ = || Φ2 (E) -Φ1 (E)|| L ∞ (∂D)→L ∞ (∂D)
and constants A, B > 0 depend only on N , D, m, τ .

In particular cases, Hölder-logarithmic stability estimate (1.6) becomes coherent (although less strong) with respect to results of [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF], [START_REF] Novikov | The ∂-approach to monochromatic inverse scattering in three dimensions[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF]. In this connection we refer to [START_REF] Isaev | Energy and regularity dependent stability estimates for the Gel'fand inverse problem in multidimensions[END_REF] for more detailed infromation. Concerning twodimensional analogs of results of Theorem 1.1, see [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF], [START_REF] Novikov | Monochromatic Reconstruction Algorithms for Two-dimensional Multi-channel Inverse Problems[END_REF], [START_REF] Santacesaria | New global stability estimates for the Calderon inverse problem in two dimensions[END_REF], [START_REF] Santacesaria | Stability estimates for an inverse problem for the Schrödinger equation at negative energy in two dimensions[END_REF].

In a similar way with results of [START_REF] Isaev | Stability estimates for determination of potential from the impedance boundary map[END_REF], [START_REF] Isaev | Reconstruction of a potential from the impedance boundary map[END_REF], estimate (1.6) can be extended to the case when we do not assume that condition (1.5) is fulfiled and consider an appropriate impedance boundary map (or Robin-to-Robin map) instead of the Dirichlet-to-Neumann map.

In the present work we prove optimality of estimate (1.6) (up to the values of the exponents α, β) in dimension d ≥ 2. Our related instability results for Problem 1.1 are presented in Section 2, see Theorem 2.1 and Proposition 2.1. Their proofs are given in Section 4 and are based on properties of solutions of the Schrödinger equation in the unit ball given in Section 3.

Main results

In what follows we fix D = B d (0, 1), where

B d (x 0 , ρ) = {x ∈ R d : ||x -x 0 || E d < ρ}, x 0 ∈ R d , ρ > 0.
(2.1)

Let

||F || denote the norm of an operator

F : L ∞ (∂D) → L ∞ (∂D). (2.2) We recall that if v 1 , v 2 are potentials satisfying (1.3), (1.5) for some fixed E, then Φ2 (E) -Φ1 (E) is a compact operator in L ∞ (∂D), (2.3) 
where Φ1 , Φ2 are the DtN maps for v 1 , v 2 , respectively, see [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential[END_REF].

Our main result is the following theorem: 

v 0 ≡ 0, simultaneously, supp v ⊂ D, v L ∞ (D) ≤ ε, v C m (D) ≤ C 1 , where C 1 = C 1 (d, m) > 0, but ||v -v 0 || L ∞ (D) > A(1 + √ E) κ δ τ + B(1 + √ E) 2(s-s2) ln 3 + δ -1 -s (2.4)
for any s ∈ [0, s 2 ], where Φ, Φ0 are the DtN map for v and v 0 , respectively, and

δ = || Φ(E) -Φ0 (E)|| is defined according to (2.2).
Theorem 2.1 shows, in particular, the optimality (at least for potentials in the neighborhood of zero) of estimate (1.6) (up to the values of the exponents α, β). As a corollary of Theorem 2.1, one can obtain an optimality of the stability results of [START_REF] Novikov | Rapidly converging approximation in inverse quantum scattering in dimension 2[END_REF], [START_REF] Novikov | The ∂-approach to approximate inverse scattering at fixed energy in three dimensions[END_REF], [START_REF] Novikov | The ∂-approach to monochromatic inverse scattering in three dimensions[END_REF], [START_REF] Novikov | Monochromatic Reconstruction Algorithms for Two-dimensional Multi-channel Inverse Problems[END_REF].

In the present work Theorem 2.1 is proved by explicit instability example with complex potentials. Examples of this type were considered for the first time in [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF] for showing the exponential instability in Problem 1.1 in the zero energy case. An extention to the case of the non-zero energy as well as to the case of Dirichlet-to-Neumann map given on the energy intervals was obtained in [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF].

Let us consider the cylindrical variables:

(r 1 , θ, x ′ ) ∈ R + × R/2πZ × R d-2 , r 1 cos θ = x 1 , r 1 sin θ = x 2 ,
x ′ = (x 3 , . . . , x d ).

(2.5)

Take φ ∈ C ∞ (R 2 ) with support in B 2 (0, 1/3)∩{x 1 > 1/4} and with φ L ∞ = 1.
For integers m, n > 0, define the complex potential

v nm = n -m e inθ φ(r 1 , |x ′ |). (2.6) 
We recall that

v nm L ∞ = n -m , v nm C m ≤ C 1 , (2.7) 
where

C 1 = C 1 (d, m) > 0.
Note that C 1 is the same as in Theorem 2.1. Estimates (2.7) were given in [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF] (see Theorem 2 of [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF]).

To prove Theorem 2.1 we use, in partucular, the following proposition:

Proposition 2.1. Let D = B d (0, 1)
, where d ≥ 2. Let condition (1.5) hold with v ≡ v nm (of (2.6)) and v ≡ v 0 ≡ 0 for some E > 0 and some integers m > 0,

n > 20(1 + √ E) 2 .
Then, for any σ > 0,

Φnm (E) -Φ0 (E) H -σ (S d-1 )→H σ (S d-1 ) ≤ C 2 (1 + Q + EQ)2 -n/4 , (2.8) 
where Φnm , Φ0 are the DtN map for v nm and v 0 , respectively,

C 2 = C 2 (d, σ) > 0, Q = (-∆ + v 0 -E) -1 L 2 (D)→L 2 (D) + (-∆ + v nm -E) -1 L 2 (D)→L 2 (D) , (2.9) 
where

(-∆ + v 0 -E) -1 , (-∆ + v nm -E) -1
are considered with the Dirichlet boundary condition in D and H ±σ = W ±σ,2 denote the standart Sobolev spaces.

Analogs of estimate (2.8) (but without dependence of the energy) were given in Theorem 2 of [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF] for the zero energy case and in Theorem 2.4 of [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF] for the case of the non-zero energy and the case of the energy intervals.

We obtain Theorem 2.1, combining known results on the spectrum of the Laplace operator in the unit ball (see formula (4.9) below), Proposition 2.1, estimates (2.7) and the fact that

F L ∞ (S d-1 )→L ∞ (S d-1 ) ≤ c(d, σ) F H -σ (S d-1 )→H σ (S d-1 )
(2.10)

for sufficiently large σ. The detailed proof of Theorem 2.1 and the proof of Proposition 2.1 are given in Section 4. These proofs use, in particular, results, presented in Section 3.

Remark 2.1. In a similar way with [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF], [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF], using a ball packing and covering by ball arguments (see also [START_REF] Cristo | Examples of exponential instability for inverse inclusion and scattering problems Inverse Problems[END_REF]), the instability result of Theorem 2.1 can be extended to the case when only real-valued potentials are considered and in the neighborhood of any potential (not only v 0 ≡ 0).

Some properties of solutions of the Schrödinger equation in the unit ball

In this section we continue assume that D = B d (0, 1), where d ≥ 2. We fix an orthonormal basis in L 2 (S d-1 ) = L 2 (∂D)

{f jp : j ≥ 0, 1 ≤ p ≤ p j }, f jp is a spherical harmonic of degree j, (3.1) 
where p j is the dimension of the space of spherical harmonics of order j,

p j = j + d -1 d -1 - j + d -3 d -1 , (3.2) 
where

n k = n(n -1) • • • (n -k + 1) k! for n ≥ 0 (3.3) and n k = 0 for n < 0. (3.4)
The precise choice of f jp is irrelevant for our purposes. Besides orthonormality, we only need f jp to be the restriction of a homogeneous harmonic polynomial of degree j to the sphere and so |x| j f jp (x/|x|) is harmonic. We use also the polar coordinates (r, 

ω) ∈ R + × S d-1 , with x = rω ∈ R d .
ψ L 2 (D) ≤ 1 + (N + |E|) (-∆ + v -E) -1 L 2 (D)→L 2 (D) f L 2 (∂D) , (3.5) 
where f = ψ| ∂D , (-∆ + v -E) -1 is considered with the Dirichlet boundary condition in D.

Proof of Lemma 3.1. We expand the function f in the basis {f jp }:

f = j,p c jp f jp . (3.6) 
We have that

f 2 L 2 (∂D) = j,p |c jp | 2 . (3.7) Let ψ 0 (x) = j,p c jp r j f jp (ω). (3.8) Note that ψ 0 2 L 2 (D) = j,p |c jp | 2 r j f jp (ω) 2 L 2 (D) = = j,p |c jp | 2 1 0 r 2j+d-1 dr ≤ j,p |c jp | 2 (3.9)
Using (1.1) and the fact that ψ 0 is harmonic, we get that

(-∆ + v -E)(ψ -ψ 0 ) = (E -v)ψ 0 . (3.10) 
Since ψ| ∂D = ψ 0 | ∂D = f , using (3.10), we find that

ψ -ψ 0 L 2 (∂D) ≤ (N + |E|) (-∆ + v -E) -1 L 2 (D)→L 2 (D) ψ 0 L 2 (D) . (3.11)
Combining (3.7), (3.9), (3.11), we obtain (3.5).

Let < •, • > denote the scalar product in the Hilbert space L 2 (∂D):

< f, g >= ∂D f (x)ḡ(x)dx, (3.12) 
where f, g ∈ L 2 (∂D). 

f j1p1 , Φ1 (E) -Φ2 (E) f j2p2 ≤ C(d) 1 + (N + |E|)Q 2 -jmax , (3.13) 
where

Q = (-∆ + v 1 -E) -1 L 2 (D)→L 2 (D) + (-∆ + v 2 -E) -1 L 2 (D)→L 2 (D) , (3.14) 
Φ1 , Φ2 are the DtN map for v 1 and v 2 , respectively, and

(-∆ + v 1 -E) -1 , (-∆ + v 2 -E) -1 are considered with the Dirichlet boundary condition in D.
Analogs of estimate (3.13) (but without dependence of the energy) were given in Lemma 1 of [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF] for the zero energy case and in Lemma 3.4 of [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF] for the case of the non-zero energy and the case of the energy intervals.

We prove Lemma 3.2 for E = 0 in Section 5, using expression of solutions of equation -∆ψ = Eψ in B d (0, 1) \ B d (0, 1/3) in terms of the Bessel functions J α and Y α with integer or half-integer order α.

Proofs of Proposition 2.1 and Theorem 2.1

We continue to assume that D = B d (0, 1), where d ≥ 2 and to use the orthonormal basis {f jp : j ∈ N ∪ {0}, 1 ≤ p ≤ p j } in L 2 (S d-1 ) = L 2 (∂D). The Sobolev spaces H σ (S d-1 ) can be defined by

   j,p c jp f jp : j,p c jp f jp H σ < +∞    , j,p c jp f jp 2 H σ = j,p (1 + j) 2σ |c jp | 2 , (4.1)
see, for example, [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF].

Consider an operator A :

H -σ (S d-1 ) → H σ (S d-1
). We denote its matrix elements in the basis {f jp } by

a j1p1j2p2 =< f j1p1 , Af j2p2 > . (4.2)
We identify in the sequel an operator A with its matrix {a j1p1j2p2 }. In this section we always assume that

j 1 , j 2 ∈ N ∪ {0}, 1 ≤ p 1 ≤ p j1 , 1 ≤ p 2 ≤ p j2 .
We recall that (see formula [START_REF] Isakov | Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map[END_REF] of [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF])

A H -σ (S d-1 )→H σ (S d-1 ) ≤ 4 sup j1,p1,j2,p2 (1 + max{j 1 , j 2 }) 2σ+d |a j1p1j2p2 |. (4.3)
Proof of Proposition 2.1. In a similar way with the proof of Theorem 2 of [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF] we obtain that < f j1p1 , Φmn (E) -Φ0 (E) f j2p2 >= 0 (4.4)

for j max = max{j 1 , j 2 } ≤ n-1 2
(the only difference is that instead of the operator -∆ we consider the operator -∆ -E), where [•] denotes the integer part of a number. Note that

n -1 2 + 1 ≥ n/2 > 10(1 + √ E) 2 , v nm L ∞ (D) ≤ 1. (4.5)
Combining (4.3), (4.4), (4.5) and Lemma 3.2, we get that

Φmn (E)-Φ0 (E) H -σ (S d-1 )→H σ (S d-1 ) ≤ ≤ 4C(d) 1 + (1 + E)Q sup jmax≥n/2 (1 + j max ) 2σ+d 2 -jmax ≤ ≤ C 2 (d, σ)(1 + Q + EQ)2 -n/4 , (4.6) 
where where | • | is the cardinality of the corresponding set. We recall that according to the Weyl formula (of [START_REF] Weyl | Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)[END_REF]):

Q = (-∆ + v 0 -E) -1 L 2 (D)→L 2 (D) + (-∆ + v nm -E) -1 L 2 (D)→L 2 (D) .
N (ρ) ≤ c 1 (d)ρ d . (4.9) Lemma 4.1. Let D = B d (0, 1)
, where d ≥ 1. Then for any ρ > 1 there is some

E = E(ρ) ∈ (ρ 2 , 2ρ 2 ) such that the interval E(ρ) -c 2 ρ 2-d , E(ρ) + c 2 ρ 2-d (4.10)
does not contain Dirichlet eigenvalues of -∆ in D, where

c 2 = c 2 (d) > 0.
Proof of Lemma 4.1. We put c 2 = 2 d-1 /(c 1 (d) + 1). Then we can select k disjoint intervals of the length 2c 2 ρ 2-d in the interval (ρ 2 , 2ρ 2 ), where

k = ρ 2 2c 2 ρ 2-d = [(c 1 (d) + 1)ρ d ] > N (ρ). (4.11) 
Thus, we have that at least one of these intervals does not contain Dirichlet eigenvalues of -∆ in D = B d (0, 1).

Proof of Theorem 2.1. Let E = E(ρ) be the number of Lemma 4.1 for some ρ > 1. Using (4.10), we find that the distance from E to the Dirichlet spectrum of the operator -∆ in D is not less than c 2 ρ 2-d . Using also that E ∈ (ρ 2 , 2ρ 2 ), we get that

(-∆ -E) -1 L 2 (D)→L 2 (D) ≤ 1 c 2 ρ 2-d ≤ E (d-2)/2 /c 2 , (4.12) 
where (-∆ -E) -1 is considered with the Dirichlet boundary condition in D.

Let n = [20(1 + √ E) 2 ] + 1. (4.13) 
Using (2.7) and (4.10), we find that the distance from E to the Dirichlet spectrum of the operator

-∆ + v nm in D is not less than c 2 ρ 2-d -n -m
, where v nm is defined according to (2.6). Since m > d and E ∈ (ρ 2 , 2ρ 2 ), using (4.13), we get that

(-∆ + v nm -E) -1 L 2 (D)→L 2 (D) ≤ c 3 E (d-2)/2 , E = E(ρ), ρ ≥ ρ 1 (d, m) > 1, c 3 = c 3 (d, m) > 0, (4.14) 
where (-∆ + v nm -E) -1 is considered with the Dirichlet boundary condition in D.

Combining Proposition 2.1 and estimates (2.10), (4.12), (4.14), we find that

δ = Φnm (E) -Φ0 (E) L ∞ (S d-1 )→L ∞ (S d-1 ) ≤ c 4 E d/2 2 -n/4 , E = E(ρ), ρ ≥ ρ 1 (d, m) > 1, n = [20(1 + √ E) 2 ] + 1 c 4 = c 4 (d, m) > 0. (4.15) 
Since s 2 > m, taking ρ big enough and using (4.15), we obtain the following inequalities:

n -m < ε, (4.16) 
A(1

+ √ E) κ δ τ < 1 2 n -m , (4.17) 
B(1

+ √ E) 2(s-s2) ln 3 + δ -1 -s < 1 2 n -m , 0 ≤ s ≤ s 2 , (4.18) 
where To prove Lemma 3.2 we need some preliminaries. Consider the problem of finding solutions of the form ψ(r, ω) = R(r)f jp (ω) of equation (1.1) with v ≡ 0 and D = B d (0, 1), where d ≥ 2. We recall that:

E = E(ρ), n = [20(1 + √ E) 2 ] + 1. ( 4 
A(1 + √ E) κ δ τ + B(1 + √ E) 2(s-s2) ln 3 + δ -1 -s < < 1 2 n -m + 1 2 n -m = v nm -v 0 L ∞ (D) v nm L ∞ (D) = n -m < ε, v nm C m (D) < C 1 , supp v nm ⊂ D.
∆ = ∂ 2 (∂r) 2 + (d -1)r -1 ∂ ∂r + r -2 ∆ S d-1 , (5.1) 
where

∆ S d-1 is Laplace-Beltrami operator on S d-1 , ∆ S d-1 f jp = -j(j + d -2)f jp . (5.2)
Then we obtain the following equation for R(r):

-R ′′ - d -1 r R ′ + j(j + d -2) r 2 R = ER. (5.3) Taking R(r) = r -d-2
2 R(r), we get

r 2 R′′ + r R′ + Er 2 -j + d -2 2 2 R = 0. (5.4) 
This equation is known as the Bessel equation. For E = k 2 = 0 it has two linearly independent solutions J j+ d-2

2

(kr) and Y j+ d-2

2

(kr), where

J α (z) = ∞ m=0 (-1) m (z/2) 2m+α Γ(m + 1)Γ(m + α + 1) , (5.5) 
Y α (z) = J α (z) cos πα -J -α (z) sin πα for α / ∈ Z, (5.6) 
and

Y α (z) = lim α ′ →α Y α ′ (z) for α ∈ Z. (5.7) 
We recall also that the system of functions where

{ψ jp (r, ω) = R j (k, r)f jp (ω) : j ∈ N ∪ {0}, 1 ≤ p ≤ p j } ,
R j (k, r) = r -d-2 2 Y j+ d-2 2 (kr)J j+ d-2 2 (k) -J j+ d-2 2 (kr)Y j+ d-2 2 (k) .
(5.9)

For the proof of (5.8) see, for example, [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF].

Lemma 5.1. For any ρ > 0, integers d ≥ 2, n ≥ 10(ρ + 1) 2 and z ∈ C, |z| ≤ ρ, the following inequalities hold:

1 2 (|z|/2) α Γ(α + 1) ≤ |J α (z)| ≤ 3 2 (|z|/2) α Γ(α + 1) , (5.10) 
|J ′ α (z)| ≤ 3 (|z|/2) α-1 Γ(α) , (5.11) 1 2π (|z|/2) -α Γ(α) ≤ |Y α (z)| ≤ 3 2π (|z|/2) -α Γ(α) (5.12) |Y ′ α (z)| ≤ 3 π (|z|/2) -α-1 Γ(α + 1) (5.13)
where ′ denotes derivation with respect to z, α = n+ d-2 2 and Γ(x) is the Gamma function.

In fact, the proof of Lemma 5.1 is given in [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF] (see Lemma 3.3 of [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF]). It was shown in [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF] that inequalities (5.10) -(5.13) hold for any n > n 0 , where n 0 is such that

           n 0 > 3, exp ρ 2 /4 n 0 + 1 -1 ≤ 1/2, 3π max 1, (ρ/2) 2n0+1 Γ(n 0 ) + ρ 2 2n 0 -ρ 2 + (ρ/2) 2n0 e ρ 2 /4 Γ(n 0 ) ≤ 1/2, (5.14) 
(see formula (6.18) of [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF]). The only thing to check is that n 0 = [10(ρ + 1) 2 ] -1 satisfy (5.14), where [•] denotes the integer part of a number, The first two inequalities are obvious. The third follows from the estimate

Γ(n 0 ) = (n 0 -1)! ≥ n 0 -1 e n0-1 . 
(5.15)

The final part of the proof of Lemma 3.2 consists of the following: first, we consider the case when E = k 2 = 0 and

j 1 = max{j 1 , j 2 } ≥ 10(1 + |k|) 2 .
(5.16)

Let ψ 1 , ψ 2 denote the solutions of equation (1.1) with boundary condition ψ| ∂D = f j2p2 and potentials v 1 and v 2 , respectively. Using Lemma 3.1 for v 1 and v 2 , we get that

ψ 1 -ψ 2 L 2 (D) ≤ 2 1 + (N + |E|)Q , (5.17) 
where

Q = (-∆ + v 1 -E) -1 L 2 (D)→L 2 (D) + (-∆ + v 2 -E) -1 L 2 (D)→L 2 (D) , (5.18) 
Note that ψ 1 -ψ 2 is the solution of equation (1.1) in D ′ = B(0, 1)\ B(0, 1/3) with potential v ≡ 0 and boundary condition ψ| r=1 = 0. According to (5.8), we have that

ψ 1 -ψ 2 = j,p c jp ψ jp in D ′ (5.19)
for some c jp , where ψ jp (r, ω) = R j (k, r)f jp (ω).

(5.20)

Since R j (k, 1) = 0, we find that

∂R j (k, r) ∂r r=1 = ∂ r d-2 2 R j (k, r) ∂r r=1
.

(5.21)

For j ≥ 10(1 + |k|) 2 , using Lemma 5.1, we have that ∂Ri(k,r) ∂r r=1

Y (5.29)

α (k)J α (k) = |k| Y ′ α (k) Y α (k) - J ′ α (k) J α (k) ≤ ≤ 6|k| 
Combining (5.17) and (5.29), we get (3.13) for j 1 ≥ j 2 and E = 0. For j 1 < j 2 we use the fact that Φ * v (E) = Φ v ( Ē) in order to swap j 1 and j 2 , where Φ * v denotes the adjoint operator to Φ v . Thus we complete the proof of Lemma 3.2 for the non-zero energy case.

Estimate (3.13) for the zero energy case follows from Lemma 1 of [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF].

Theorem 2 . 1 .

 21 Let D = B d (0, 1), where d ≥ 2. Then for any fixed constants A, B, κ, τ, ε > 0, m > d and s 2 > m there are some energy level E > 0 and some potential v ∈ C m (D) such that condition (1.5) holds for potentials v and

Lemma 3 . 1 .

 31 Let D = B d (0, 1), where d ≥ 2. Let potential v satisfy (1.3) and (1.5) for some fixed E. Let ||v|| L ∞ (D) ≤ N , for some N > 0. Then for any solution ψ ∈ C(D ∪ ∂D) of equation (1.1) the following inequality holds:

Lemma 3 . 2 .

 32 Let D = B d (0, 1), where d ≥ 2. Let potentials v 1 , v 2 satisfy (1.3) and (1.5) for some fixed E. Let v 1 , v 2 be supported in B d (0, 1/3) and ||v i || L ∞ (D) ≤ N , i = 1, 2, for some N > 0. Then for any j 1 , j 2 ∈ N ∪ {0}, 1 ≤ p 1 ≤ p j1 , 1 ≤ p 2 ≤ p j2 and j max = max{j 1 , j 2 } ≥ 10(1 + |E|)2 the following inequality holds:

(4. 7 )

 7 Let N (ρ) denote the counting function of the Laplace operator in D N (ρ) = |{λ < ρ 2 : λ is a Dirichlet eigenvalue of -∆ in D}|, (4.8)

  is complete orthogonal system (in the sense of L 2 ) in the space of solutions of equation (1.1) in D ′ = B(0, 1) \ B(0, 1/3) with v ≡ 0, E = k 2 and boundary condition ψ| r=1 = 0, (5.8)

(|k|/ 2 ) 3 ( 2 Jα = j + d-2 2 . 2 L 2 ( 2 L 2 (

 23222222 -α-1 Γ(α + 1) (|k|/2) -α Γ(α) + (|k|/2) α-1 Γ(α + 1) (|k|/2) α Γ(α) = 6α,(5.22)||r -d-2 2 Y α (kr)|| L 2 ({1/3<|x|<2/5}) |Y α (k)| |k|r/2) -α Γ(α) (|k|/2) -α Γ(α) α (kr)|| L 2 ({1/3<|x|<2/5}) |J α (k)| Note that if j ≥ 10(1 + |k|) 2 then j + d-2 2 > 3.Combining (5.23) and (5.24), we get that||ψ jp || L 2 ({1/3<|x|<2/5})|Y α (k)J α (k22) and (5.25), we find that∂R j (k, r) ∂r r=1 ≤ 1000α(5/2) -α ||ψ jp (E)|| L 2 ({1/3<|x|<1}) .(5.26)Proceeding from (5.19) and using the Cauchy-Schwarz inequality, we get that|c jp | = ψ jp , ψ 1 -ψ {1/3<|x|<1}) ||ψ jp (E)|| {1/3<|x|<1}) ≤ ||ψ(E) -ψ 0 (E)|| L 2 (B(0,1)) ||ψ jp (E)|| L 2 ({1/3<|x|<1}) .(5.27)Using(5.19), we find thatf j1p1 , Φ1 (E) -Φ2 (E) f j2p2 = f j1p1 , ∂(ψ 1 -ψ 2 ) ∂ν ∂D = = f j1p1 , ∂R j1 (k, r) ∂r r=1 f j1p1 = c j1p1 ∂R j1 (k, r) ∂r r=1(5.28)Combining (5.16), (5.26), (5.27) and (5.28), we obtain that f j1p1 , Φ1 (E) -Φ2 (E) f j2p2 ≤ C(d)2 -j1 ||ψ 1 -ψ 2 || L 2 (B(0,1)) .
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