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ON THE MICROSCOPIC THEORY OF PHASE

COEXISTENCE

Salvador Miracle Solé

Centre de Physique Théorique, CNRS Luminy, Case 907
F-13288 Marseille Cedex 9, France

Abstract: Some rigorous results concerning the microscopic theory of in-
terfaces and crystal shapes in classical lattice systems are reported.

1. Introduction

It is known that the equilibrium shape of a crystal is obtained, according
to the Gibbs thermodynamic theory, by minimizing the total surface free

energy associated to the crystal-medium interface, and that this shape is
given by the Wulff construction, provided one knows the anisotropic surface

tension (or interfacial free energy per unit area). It is therefore important,
even if a complete microscopic derivation of the Wulff construction within

statistical mechanics has been proved only for some two-dimensional lattice
models (see the recent work by Dobrushin et al. [1,2] and also Ref. 3), to

study the properties of the surface tension τ(n), as a function of the unit
vector n which specifies the orientation of the interface with respect to the

crystal axes. In the first approximation the crystal can be modelled by a
lattice gas. In these notes, we shall present some new rigorous results on this

subject which relate, in particular, to the problem of the appearance of plane

facets in the Wulff equilibrium shape. For this purpose several aspects of the
microscopic theory of interfaces are analysed, and another important quantity

in this theory, the step free energy, is investigated (a complete version of this
work will appear later [4]). In the last Section we shall report on some recent

developments related to the theory of crystal growth.

2. Gibbs states and interfaces

First we recall some classical results about the Gibbs states of the Ising

model (to some extent these results were already discussed in Ref. 5). The
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model is defined on the cubic lattice L = ZZ3, with configuration space
Ω = {−1, 1}L. The value σ(i) is the spin at the site i. The energy of

a configuration σΛ = {σ(i), i ∈ Λ}, in a finite subset Λ ⊂ L, under the

boundary conditions σ̄ ∈ Ω, is

HΛ(σΛ | σ̄) = −
∑

〈i,j〉∩Λ 6=∅

σ(i)σ(j)

where 〈i, j〉 are pairs of nearest neighbour sites and σ(i) = σ̄(i) if i 6∈ Λ. The
partition function, at the inverse temperature β = 1/kT , is given by

Z σ̄(Λ) =
∑

σΛ

exp (− βHΛ(σΛ | σ̄))

It is known that this model presents, at low temperatures T < Tc (where

Tc is the critical temperature), two distinct thermodynamic pure phases,
a positively and a negatively magnetized phase. This means two extremal

translation invariant Gibbs states, which correspond to the limits, when Λ →
∞, of the finite volume Gibbs measures Z σ̄(Λ)−1 exp ( − HΛ(σΛ | σ̄)), with
boundary conditions σ̄ equal to the ground configurations (+) and (−) (such
that σ̄(i) = 1 and σ̄(i) = −1 for all i ∈ L), respectively. On the other side,

if T ≥ Tc, the Gibbs state is unique.

Each configuration inside Λ can be geometrically described by specifying
the Peierls contours, i. e., the boundaries between the spin 1 and spin −1

regions, which, under the above boundary conditions, are closed surfaces.
The energy of the configuration is equal to twice the total area of the contours.

The contours can be viewed as defects, or excitations, with respect to the
ground states of the system, and are a basic tool for the investigation of the

model at low temperatures.
In order to study the interface between the two pure phases one needs

to construct a state describing the coexistence of these phases. Let Λ be
a parallelepiped of sides L1, L2, L3, parallel to the axes, and centred at the

origin of L, and let n = (n1, n2, n3) be a unit vector in IR3, such that n3 6= 0.
Introduce the mixed boundary conditions (±,n), for which σ̄(i) = 1 if i ·n ≥
0, and σ̄(i) = −1 if i ·n < 0. These boundary conditions force the system to
produce a defect going transversely through the box Λ, a big Peierls contour

that can be interpreted as a microscopic interface. The other defects that

appear above and below can be described by closed contours inside the pure
phases.
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Consider now the microscopic interface orthogonal to the direction n0 =
(0, 0, 1). At low temperatures T > 0, we expect this interface, which at

T = 0 coincides with the plane i3 = −1/2, to be modified by deformations.

It can be described by means of its defects, or excitations, with respect to the
interface at T = 0. These defects, called walls, form the boundaries (which

may have some width), between the smooth plane portions of the interface.
In this way the interface structure, with its probability distribution in the

corresponding Gibbs state, may then be interpreted as a “gas of walls” on a
two-dimensional lattice.

Using the Peierls method, Dobrushin [6] proved the dilute character of
this gas at low temperatures, which means that the interface is essentially flat

(or rigid). The considered boundary conditions yield indeed a non translation
invariant Gibbs state. Furthermore, cluster expansion techniques have been

applied by Bricmont et al. [7,8], to study the interface structure in this case
(see also Ref. 9).

The same analysis applied to the two-dimensional model shows a dif-
ferent behaviour at low temperatures. In this case the walls belong to a

one-dimensional lattice, and Gallavotti [10] proved that the microscopic in-

terface undergoes large fluctuations of order
√
L1. The interface does not

survive in the thermodynamic limit, Λ → ∞, and the corresponding Gibbs

state is translation invariant. Moreover, the interface structure can be stud-
ied by means of a cluster expansion for any orientation of the interface (see

also Ref. 11). Such a problem in the three-dimensional case leads to very
difficult problems of random surfaces. This is one of the serious difficulties

which face the attempts to generalise the work by Dobrushin et al. [1] to
the three-dimensional Ising model, since a very accurate description of the

microscopic interface for any orientation n is needed in this work.

3. The surface tension

The free energy, per unit area, due to the presence of the interface, is the

surface tension. It can be defined by

τ(n) = lim
L1,L2→∞

lim
L3→∞

− n1

βL1L2
ln

Z(±,n)(Λ)

Z(+)(Λ)

Notice that in this expression the volume contributions proportional to the

free energy of the coexisting phases, as well as the boundary effects, cancel,
and only the contributions to the free energy of the interface are left.
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Theorem 1. The thermodynamic limit τ(n), of the interfacial free energy
per unit area, exists, and, as a function of n, extends by positive homogeneity

to a convex function f(x) = |x| τ(x/|x|) defined for any vector x ∈ IR3.

A proof of these statements was given in Ref. 12 using correlation in-

equalities (this being the reason for their general validity). Moreover, we
know (from Refs. 13 and 14 and the convexity condition) that τ(n) is strictly

positive for T < Tc and that it vanishes if T ≥ Tc.
The convexity of f(x) may be interpreted as a thermodynamic stability

condition. It is equivalent (as shown in Ref. 12) to the pyramidal inequal-

ity for the function τ(n). This condition, introduced in Ref. 1 for the two-
dimensional Ising model (triangular inequality), was conjectured to hold true

in general situations in Ref. 15.
According to the Wulff construction, the equilibrium shape of a crystal

is given by
W =

{

x ∈ IR3 | x · n ≤ τ(n) for every n
}

where τ(n) is the surface tension of the interface orthogonal to n. One

obtains in this way the shape which has the minimum surface free energy
for a given volume. Defined as the intersection of closed half-spaces, W is a

closed bounded convex set, i.e., a convex body.
It turns out that if f(x) is a convex function, then it is also the Minkowski’s

support function of the convex body W (i. e., f(x) = sup
y∈W x · y). As a

consequence of this fact the following macroscopic properties can be proved.

Theorem 2. Assume that the convexity condition is satisfied. A facet or-
thogonal to the direction n0 appears in the Wulff equilibrium crystal shape if,

and only if, the derivative ∂τ(θ, φ)/∂θ is discontinuous at the point θ = 0,
for all φ. Moreover, the one-sided derivatives ∂τ(θ, φ)/∂θ, at θ = 0+ and

θ = 0−, exist, and determine the shape of the facet.

Here, the function τ(n) = τ(θ, φ) is expressed in terms of the spherical

co-ordinates 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π of n, the vector n0 being taken as the
polar axis. Actually, the shape of the facet is given by

F =
{

x ∈ IR2 | x ·m ≤ µ(m) for every m
}

where m = (cosφ, sinφ) ∈ IR2 and µ(φ) = (∂/∂θ)θ=0+τ(θ, φ).
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4. The step free energy

The step free energy plays, also, an important role in the problem under

consideration. It is defined, again using appropriate boundary conditions,
as the free energy associated with the introduction of a step of height 1 on

the interface. This quantity can be regarded as an order parameter for the
roughening transition, analogous, in some sense, to the surface tension in the

case of a phase transition.
Let us consider again the interface orthogonal to a lattice axis, which, as

we know from Section 2, is rigid at low temperatures. It is believed, that

at higher temperatures, but before reaching the critical temperature Tc, the
fluctuations of the considered interface become unbounded when the volume

tends to infinity, so that the corresponding Gibbs state in the thermodynamic
limit is translation invariant. The interface undergoes a roughening phase

transition at a temperature T = TR.
Approximate methods, used by Weeks et al. [16], suggest TR ∼ 0.53 Tc,

a temperature slightly higher then T d=2
c (the critical temperature of the two-

dimensional Ising model), and actually van Beijeren [17] proved, using cor-

relation inequalities, that TR ≥ T d=2
c . The analogous result for the step free

energy, i. e., that τ step > 0 if T < T d=2
c , was proved in Ref. 18, as well as

that τ step = 0 if T ≥ Tc. Since then, however, it appears to be no proof of
the fact that TR < Tc.

At present one is able to study rigorously the roughening transition only
for some simplified models of the microscopic interface. Thus, Fröhlich and

Spencer [19] have proved this transition for the SOS (solid-on-solid) model,

and several restricted SOS models, which are exactly solvable, have also been
studied in this context (these models are reviewed in Refs. 20 and 21).

In order to define the step free energy we consider the box Λ as above
and and introduce the (step,m) boundary conditions, associated to the unit

vectors m = (cosφ, sinφ) ∈ IR2, by

σ̄(i) =
{

1 if i > 0 or if i3 = 0 and i1m1 + i2m2 ≥ 0
−1 otherwise

Then, the step free energy, for a step orthogonal to m (such that m2 6= 0), is

τ step(φ) = lim
L1→∞

lim
L2→∞

lim
L3→∞

−cosφ

βL1
ln

Z(step,m)(Λ)

Z(±,n0)(Λ)
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Clearly, this expression represents the residual free energy due to the consid-
ered step, per unit length.

When considering the configurations under the (step,m) boundary condi-

tions, the step may be viewed as a defect on the rigid interface. It is in fact,
a long wall going from one side to the other of the box Λ. A more careful

description of it can be obtained as follows. At T = 0, the step parallel to the
axis (i. e., for m = (0, 1)) is a perfectly straight step of height 1. At a low

temperature T > 0, some deformations appear, connected by straight por-
tions of height 1. The step structure, with its probability distribution in the

corresponding Gibbs state, can then be described as a “gas” of these defects
(to be called step-jumps), on a one-dimensional lattice. This description,

somehow similar to the description of the interface of the two-dimensional
Ising model used by Gallavotti [10], is valid, in fact, for any orientation m of

the step. It can be shown that the gas of step-jumps is a dilute gas at low
temperature and, as a consequence of this fact, cluster expansion techniques

can be applied in order to study the step structure. Actually, the step-jumps
are not independent since the rest of the system produces an effective interac-

tion between them. Nevertheless, this interaction can be treated by applying

the low temperature expansion, in terms of walls, for the rigid interface, to
the regions of the interface lying at both sides of the step. From this analysis

one gets the following result.

Theorem 3. If the temperature is low enough (i.e., if T ≤ T0 where T0 > 0
is a given constant), then the step free energy τ step, exists in the thermody-

namic limit, and extends by positive homogeneity to a strictly convex func-

tion. Moreover, it can be expressed in terms of an analytic function of T , for
which a convergent power series expansion can be obtained from the above

mentioned cluster expansion.

In fact,

τ step(m) = 2J(|m1|+ |m2|)− (1/β)((|m1|+ |m2|) ln(|m1|+ |m2|)
−|m1| ln |m1| − |m2| ln |m2|)− (1/β)ϕm(β)

where ϕm is an analytic function of z = e−2β, for |z| ≤ e−2β0 . The first two
terms in this expression, which represent the main contributions for T → 0,

come from the ground state of the system under the considered boundary
conditions. The first term can be recognised as the residual energy of the
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step at zero temperature and, the second term, as −(1/β) times the entropy
of this ground state. The same two terms occur in the surface tension of the

two-dimensional Ising model (see Ref. 22). By considering the lowest energy

excitations, it can be seen that ϕm is O(e−4β), and also, that the first term
in which this series differs from the series associated to the surface tension

of the two-dimensional Ising model, is O(e−12β).

5. Facets in the equilibrium crystal

The roughness of an interface should be apparent when considering the shape

of the equilibrium crystal associated with the system. One knows that a typ-
ical equilibrium crystal at low temperatures has smooth plane facets linked

by rounded edges and corners. The area of a particular facet decreases as the
temperature is raised and the facet finally disappears at a temperature char-

acteristic of its orientation. The reader will find information and references
on equilibrium crystals in the review articles of Refs. 20, 21, 23 and 24.

It can be argued, as discussed below, that the roughening transition cor-
responds to the disappearance of the facet whose orientation is the same as

that of the considered interface. The exactly solvable SOS models mentioned
above, for which the function τ(n) has been computed, are interesting ex-

amples of this behaviour (this subject has been reviewed in Ref. 12, Chapter

VII). For the three-dimensional Ising model, Bricmont et al. [25] have proved
a correlation inequality which establish τ step as a lower bound to the one-sided

derivative ∂τ(θ)/∂θ|θ=0+ (here τ step = τ step(0, 1) and τ(θ) = τ(0, sin θ, cos θ)).
Thus τ step > 0 implies a kink in τ(θ) at θ = 0 and, according to the Wulff

construction, a facet is expected.
In fact, τ step should be equal to this derivative. This is reasonable, since

the increment in surface tension of an interface tilted by an angle θ, with
respect to the surface tension of the rigid interface, can be approximately

identified, for θ small, with the free energy of a “gas of steps” (the density
of the steps being proportional to θ). And, again, if the interaction between

the steps can be neglected, the free energy of this gas can be approximated
by the sum of the individual free energies of the steps.

As a result of the methods described in Section 3, it is possible to study
the statistical mechanics of this “gas of steps”, and to derive the following

result.
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Theorem 4. For T < T0, we have

∂τ(θ, φ)/∂θ|θ=0+ = τ step(φ)

i. e., the step free energy equals the one-sided angular derivative of the surface

tension.

It is natural to expect that this equality is true for any T less than TR,
and that for T ≥ TR, both sides in the equality vanish, and thus, the dis-

appearance of the facet is involved (these facts can be proved for certain

SOS models of interfaces using correlation inequalities [26]). However, the
condition that the temperature is low enough is important here. Only when

it is fulfilled we have the full control on the equilibrium probabilities that is
needed in the proofs.

The above relation, together with the discussion in Section 3, implies that
one obtains the shape of the facet by means of the two-dimensional Wulff

construction applied to the step free energy τ step(m). Namely,

F =
{

x ∈ IR2 | x ·m ≤ τ step(m) for every m
}

Then, from the properties of τ step, it follows that the facet has a smooth
boundary without straight segments and, therefore, that the crystal shape

presents rounded edges and corners.

6. Nucleation and growing crystals

The phenomenon of nucleation takes place when a thermodynamic sys-
tem, instead of undergoing a phase transition, stays in a metastable phase.

The stable phase emerges via the formation of a suitable, sufficiently large
droplet (nucleus). In fact, due to the competition, already at a microscopic

level, between the volume free energy and the surface tension, small droplets
have a tendency to shrink whereas large ones prefer to grow. The activation

energy necessary for the formation of a critical nucleus, and the time which
takes to overcome this energy barrier, become larger and larger, together

with the size of the nucleus, as the parameters tend to their values at the
coexistence point. This explains the very long life of a metastable state.

Different aspects of this important subject have recently been discussed

from a rigorous point of view. We present here a brief account of the work
by Kotecký and Olivieri [27] concerning the droplet dynamics in the Ising
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model (see also Ref. 28, by the same authors, where a more complex case is
discussed). The subject was previously developped by Neves and Schonmann

[29,30], following the approach introduced by Cassandro et al [31].

The anisotropic two-dimensional Ising model, with vertical and horizontal
coupling constants J1 > J2 > 0, in the presence of a very small magnetic field

h > 0, is studied. Let Λ be a square box of side L, with periodic boundary
conditions, and let H(σ) denote the energy of a configuration σ ∈ ΩΛ =

{−1, 1}Λ. We suppose that the volume is sufficiently large, L > (2J1/h)
3.

A discrete time stochastic dynamics is then considered for this model.

Namely, the Metropolis dynamics defined by the following updating rule:
Given a configuration σ at time t one first chooses randomly a site i ∈ Λ with

uniform probability 1/|Λ|. Then one flips the spin at site i with probability

exp(−βmax{H(σ(i))−H(σ) , 0})

where σ(i)(j) = σ(j), whenever j 6= i, and σ(i)(j) = −σ(j), for j = i. This

dynamics is reversible with respect to the Gibbs measure.
The nucleation from a metastable state is studied for this model in the

limit of very low temperatures (h fixed). It turns out that the critical nucleus,
as well as the configurations on a typical path to it, differ from the Wulff

shape of an equilibrium droplet. The critical droplet is in fact a square of
side ℓ∗ = [2J2/h] + 1 ([·] denotes the integer part), while the Wulff shape

is a rectangle of sides proportional to J1, J2 (agreement could be expected,
however, in the more customary region T fixed, small, and h → 0).

A path of the process is a sequence ω = σ0, σ1, . . . , σt, . . . of configurations
in ΩΛ. We suppose that the process starts at the configuration σ0 = (−) (all

spins σ0(i) in Λ equal to −1). We are interested in the first passage from the

configuration (−) to the configuration (+), which takes place between the
moments τ(−) = max{t < τ(+) | σt = (−)} and τ(+) = min{t | σt = (+)}.

The configurations r(ℓ1, ℓ2), which have a rectangle of sides ℓ1, ℓ2 as unique
Peierls contour, play a particular role in the process. They correspond to the

local minima of the energy (in the sense that one spin flip increases the
energy). Now, the probability that starting from a given local minimum

Q the system goes to a neighbouring local minimum Q′, is determined by
the energy barrier H(S)−H(Q), where S is any configuration at which the

energy on a path from Q to Q′ reaches its maximum, but with the path
chosen to minimalise it. In other words, the configurations in S are the local
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saddle points for which the minimax

min
ω:Q→Q′

max
σ∈ω

H(σ)

is attained (here ω : Q → Q′ denotes a generic path with successive spin
flips starting from a configuration in Q and ending at Q′). The considered

probability is proportional to exp[−β(H(S)−H(Q))]. On the other side, the
system in the local minimum Q is likely to “stay” in its basin of attraction

for a time of order exp[β(H(S̄)−H(Q))], where S̄ is the local saddle point
with lowest energy through which it can escape from the local minimum Q,

not necessarily in “the direction” of Q′. These are the basic mechanisms
which determine the local dynamics. The task is then to find the class of

paths which describe the most probable evolution.

Let us consider the probability of reaching a global saddle point, defined
by the same minimax condition extended to all paths from the configuration

(−) to the configuration (+). These configurations give rise to the critical
nucleus.

It can be seen that the set of all global saddle points coincides with the
set P of all configurations having as unique contour a rectangle, of sides

ℓ∗, ℓ∗ − 1, or ℓ∗ − 1, ℓ∗, with a unit square attached to one of its longer sides.
The relative energy of any σ̄ ∈ P is

Γ = H(σ̄)−H((−)) = 2(J1 + J2)ℓ
∗ − h((ℓ∗)2 − ℓ∗ + 1)

It is proved that the first excursion from (−) to (+) passes through a

configuration from P and the time needed for this to happen is of the order
exp(βΓ). Introducing the time τP = min{t > τ(−) | σt ∈ P}, the precise

statement can be formulated as follows.

Theorem 5. We have

lim
T→0

Prob [τP < τ(+)] = 1

and, moreover, for any ǫ > 0,

lim
T→0

Prob [exp(β(Γ− ǫ)) < τP < exp(β(Γ + ǫ))] = 1

In addition, from the arguments in the proof of this result, one is getting

very detailed information about a typical path followed by the process σt

during its first excursion from (−) to (+).
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a) First it passes through a monotonously growing sequence of subcritical
rectangles r(ℓ1, ℓ2), such that |ℓ1−ℓ2| = 0 or 1, up to the critical square

r(ℓ∗, ℓ∗).

b) After the vertical edge stays constant at the value ℓ∗ while the horizontal
edge grows up to L. Finally the vertical edge grows from ℓ∗ to L.

The precise statements involve the notion of ǫ-typical path, that is de-

termined not only in terms of geometrical properties, but also with specified
times of passage (by means of bounds analogous to those used above for τP)

through certain configurations. The path is an ǫ-typical path (for any given
ǫ > 0) with a probability which tends to 1 when T → 0.

Finally, let us mention that Schonmann [32] has recently discussed the
regime in which the temperature is kept fixed and the field h > 0 is scaled to

zero. As conjectured in Ref. 33, for the Ising model in any dimension d ≥ 2,
if the temperature is low enough, the relaxation time goes in this regime as

an exponential of 1/hd−1. Moreover, before a time which grows also as an

exponential of 1/hd−1 the system stays in a metastable situation.

Acknowledgements: It is a pleasure to thank Roman Kotecký for very

valuable discussions.
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