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Prediction of physical particular phenomenon is based on partial knowledge of this phenomenon. Theses knowledges help us to conceptualize this phenomenon according to different models. Hidden Markov Models (HMM) can be used for modeling complex processes. We use this kind of models as tool for fault diagnosis systems. Nowadays, industrial robots living in stochastic environment need faults detection to prevent any breakdown. In this paper, we wish to find the best Hidden Markov Model topologies to be used in predictive maintenance system. To this end, we use a synthetic Hidden Markov Model in order to simulate a real industrial CMMS * . In a stochastic way, we evaluate relevance of Hidden Markov Models parameters, without a priori knowledges. After a brief presentation of a Hidden Markov Model, we present the most used selection criteria of models in current literature. We support our study by an example of simulated industrial process by using our synthetic model. Therefore, we evaluate output parameters of the various tested models on this process: topologies, learning algorithms, observations distributions, epistemic uncertainties. Finally, we come up with the best model which will be used to improve maintenance policy and worker safety.

INTRODUCTION

According to the Global Energy Statistical Yearbook 2011, Enerdata 1 gives alarming conclusions: after the 1% decrease observed in 2009, energy consumption soared by 5.5% in 2010, and results in a growth in CO 2 energy emissions close to 6%, to their highest level ever. Despite heavy investment to remain competitive, most industry are not concerned with the green thinking, whereas implementing energy reducing measures such as having an efficient maintenance policy, is not so expensive and can save in energy costs. Obviously, fault diagnostics techniques can reduce maintenance downtime and thus reduce consumption of energy. According to (Vrignat, Avila, Duculty & Kratz 2010), we find two keywords in maintenance definition: maintain and restore. The first one refers to preventive action. The second refers to corrective action. Thus, maintenance optimization for reliability determines "optimal" preventive maintenance. Events preceding a problem in maintenance activities are often recurrent. Special events series should inform us on next failure. For example, in mechanical systems, noises, vibrations precede a failure. The loss of performances reflects failure or technical faults. We also show in [START_REF] Vrignat | Use of HMM for evaluation of maintenance activities[END_REF]) that our model provides a good failure prediction. We make a reference model, named synthetic model, which fits to real industrial processes. Our research consists in evaluating different Hidden Markov Models topologies, with parameters outcoming from this industrial synthetic model. In this work, the emphasis is on measuring relevance of Hidden Markov Models parameters, based on several criteria used in current literature. Then, we try to give the best HMM topology. The structure of this paper is as follows: in section 2, we outline MOSIM'12 -June 06-08, 2012 -Bordeaux -France hidden Markov model and define its parameters. After determining the stochastic nature of our synthetic model, we present criteria used to evaluate relevance and uncertainties of HMM, in section 3. We show the evaluation process in section 4. Finally, we use our synthetic model to compare several HMM topologies, from among a candidate set with previous criterion and try to give the best one, in section 5.

HIDDEN MARKOV MODEL

Hidden Markov Model ( [START_REF] Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF], [START_REF] Fox | Robot introspection through learned hidden markov models[END_REF]) is an automaton with hidden states which consists of unobservable variable. This one represents the system status to be modeled. Only output variable is observable. Moreover, we get observations sequence from output of the automaton. From now, we rename observations sequence as symbols, representing these observations (see an example of model topology in figure 1). This is precisely relevance of these symbols that we attempt to evaluate. Hidden Markov Model is characterized by:

• State number;

• Number of distinct observation symbols per state, observation symbols corresponding to the physical output of the system being modeled;

• Distribution probability of state transitions;

• Distribution probability of observation symbols;

• Initial states distribution.

S1 S2 S3 S4

Symbols production 1: SEC 2: OT 3: NTR 4: OBS 5: . . .

Symbols production HMM π

Figure 1: Four states Hidden Markov Model.

Markov Assumption

States prediction is not made more accurate by additional a priori knowledge information, i.e. all useful information for future prediction is contained in present state of the process.

P (X n+1 = j|X 0 , X 1 , . . . , X n = i) = P (X n+1 = j|X n = i).
(1)

Definitions for discrete Hidden Markov Model

Let us describe variables for HMM:

• Let N , the number of workable hidden states and S = {s 1 , s 2 , . . . , s N }, the set of this variable. Let q t , the value of this variable at time t;

• Modeled process, must match to first-order Markov assumption (see §2.1);

• Let T , the full number of observation symbols and let X = {x 1 , x 2 , . . . , x T }, observations sequence of the modeled process;

• Let A = {a ij }, distribution probability of state transitions with:

a ij = P (q t+1 = s j |q t = s i ) 1 ≤ i, j ≤ N, (2) 
• Let B = {b j (m)}, distribution probability of observation symbols in j state, with:

b j (m) = P (X t = x m |q t = s j ) 1 ≤ j ≤ N 1 ≤ m ≤ T, (3) 
with X t , value of observation variable at time t.

• Let π = {π i }, initial states distribution with:

π = P (q 1 = s i ) 1 ≤ i ≤ N, (4) 
• Hidden Markov Model will be set as: (A, B, π).

Learning algorithms and decoding algorithms

To achieve learning models, we use two different algorithms:

• Baum-Welch learning [START_REF] Baum | A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains[END_REF], decoding by Forward Variable [START_REF] Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF].

Estimate iteratively η = (A, B, π), with an observation sequence of X = {x 1 , x 2 , . . . , x T },

Maximize → P (U = X|η), (5) 
• Segmental K-means learning [START_REF] Juang | The segmental k-means algorithm for estimating parameters of hidden markov models, Acoustics, Speech and Signal Processing[END_REF], decoding by Viterbi [START_REF] Vrignat | Maintenance policy: degradation laws versus hidden markov model availability indicator[END_REF].

Optimizing probability → P (X, S = Q * |η). (6)

Q * : Sequence of hidden states that most likely generated the sequence as calculated by the Viterbi algorithm. S = (S 1 , . . . , S T ) is a T tuple of random values defined on S MOSIM'12 -June 06-08, 2012 -Bordeaux -France

• Decoding algorithm by Forward Variable:

α t (j) = P (x 1 , x 2 , . . . , x t , Q t = s j |η). (7) 
• Viterbi decoding algorithm:

δ t (j) = max (q1,...,qt-1∈S t-1 ) {P (S 1 = q 1 , . . . , S t-1 = q t-1 , S t = s j ), U 1 = x 1 , . . . , U t = x t |η}.

(8)

EVALUATION METHODS

A lot of criteria in model selection are proposed in literature. We try to evaluate the best Hidden Markov Model topology proposed in [START_REF] Vrignat | Use of HMM for evaluation of maintenance activities[END_REF], by using Shannon's entropy [START_REF] Hocker | Shannon entropy based time-dependent deterministic sampling for efficient on-the-fly quantum dynamics and electronic structure[END_REF], especially maximum entropy principle used in [START_REF] Chandrasekaran | Maximum entropy relaxation for graphical model selection given inconsistent statistics, Laboratory for Information and Decision Systems[END_REF]. Calculation is made with states and observations: symbols productions of synthetic HMM. To emphasize our analysis, we also use some criteria which penalize likelihood value, in order to overcome over-parameterization models, like Akaike (AIC) [START_REF] Shang | Bootstrap variants of the akaike information criterion for mixed model selection[END_REF] and Bayes (BIC) [START_REF] Chen | Speaker, environment and channel change detection and clustering via the bayesian information criterion[END_REF] criteria. We begin to determine the stochastic nature of our given symbols.

NIST 2 Tests

First of all, we have to establish that we use stochastic density of probability 

Shannon's entropy

We now study notions of Shannon's entropy. It is a function which calculate the information rate con-tained in an information source. This source can be a text written in any language, an electrical signal or an unspecified electronic file. . .

Entropy Definition

Shannon's entropy is defined in [START_REF] Cover | Elements of information theory[END_REF] as follows:

H(S) = - n i=1 P i log b P i , (9) 
P i is the average probability to find the i symbol in S.

Maximum entropy principles

The two principles of entropy's maximization in [START_REF] Agouzal | On the relation between the maximum entropy principle and the principle of least effort: The continuous case[END_REF] are the following:

• Principle of probabilities assignment to a distribution when we haven't enough informations on it;

• For all probability distributions that satisfy the constraints, we choose the one which has the maximum entropy according to Shannon. [START_REF] Chandrasekaran | Maximum entropy relaxation for graphical model selection given inconsistent statistics, Laboratory for Information and Decision Systems[END_REF]) use this 2 nd principle for models selection, and [START_REF] Arminjon | Maximum entropy principle and texture formation[END_REF] for building even more accurate models, by adding information. Our step consists in comparing the average entropies for various models. Value of average entropy would be then maximum for the most relevant model.

Entropic Filter

We now introduce "Entropic Filter" concept. According to the 2 nd principle of entropy stated in §3.2.2, we choose the model whose average entropy is maximum.

On the other side, outliers values can generate miscalculation in real entropy value of the model. Especially N T R symbols (Nothing To Report) which are not useful for evaluation (entropy is maximum). SP (Stop Production) symbols have likewise been eliminated (entropy is null). Indeed, they are totally discriminated for S1 state of HMM. To improve calculation of entropy, it is therefore better to eliminate these values. This approach is used through ID3 and C4.5 [START_REF] Quinlan | C4.5: Programs for Machine Learning[END_REF]) algorithm when creating decision tree, removing recursively attribute with zero entropy. In order to improve the calculation of entropy, we propose to eliminate discriminated symbols of zero entropy and the most representative symbols, where entropy is maximum. This operation will be MOSIM'12 -June 06-08, 2012 -Bordeaux -France named "Entropic Filter". We then calculate the average entropy of models to assess relevance of observation sequences. The best model is the one which has the best average entropy, after entropic filtering.

Maximum likelihood

Let us now turn to studying maximum likelihood principle. Let P α , a statistical model, and X, an observation sequence, the probability to see X according to P can be measured by f (X, α) function which represents the density of X when α appears. Since α is unknown, it seems natural to promote values of α where f (X, α) is maximum: it is the notion of likelihood of α for observation X.

-Expression of likelihood V :

V (x 1 , . . . , x n ; α) = n i=1 f (x i ; α), (10) 
α is mathematical expectation.

A strictly increasing transformation does not change a maximum. Maximum likelihood can also be written as:

log(V (x 1 , . . . , x n ; α)), (11) 
Then

log(V (x 1 , . . . , x n ; α)) = n i=1 log(f (x i ; α)). (12) 
-For a discrete sample:

f (X; α) = P α (X = x i ), (13) 
P α (X = x i ) represents discrete probability where α appears.

-Maximum likelihood for a discrete sample P α (x i ) representing the discrete probability where α appears:

log(V (x 1 , . . . , x n ; α)) = n i=1 log(P α (x i )). ( 14 
)
Actually, we maximize the logarithm of likelihood function to compare several models. According to [START_REF] Olivier | Prediction with vague prior knowledge[END_REF], principle of maximum likelihood results in overparameterization of the model to have good performances. Penalization of likelihood value can overcome this disadvantage. Most famous penalized loglikelihood criterion is the AIC [START_REF] Shang | Bootstrap variants of the akaike information criterion for mixed model selection[END_REF], even if it is not completely satisfactory: it improves maximum likelihood principle but also led to an over-parameterization. Other traditional criteria, BIC and HQC, ensure a better estimation by penalizing oversizing models.

Akaike Information Criterion

According to [START_REF] Ash | Information theory[END_REF]), entropy of a random variable is a regularity measurement. We can easily extend this concept to a model having several random variables. In their report, [START_REF] Lebarbier | Le critère bic : fondements théoriques et interprétation[END_REF]) describe all assumptions necessary to its implementation.

AIC = -2 ln V + 2k, (15) 
k is the number of free parameters, 2k is the penalty, V is the likelihood.

The best model is the one which has the weakest AIC. This criterion uses maximum likelihood principle seen in ( 14). It penalizes models with too many variables, and avoids over-learning models. In the literature, Akaike Information Criterion (AIC) is often associated with another known criterion, called Bayes Information Criterion (BIC).

Bayesian Information Criterion

BIC penalizes more over-parameterized models. It was introduced in [START_REF] Schwarz | Estimating the dimension of a model[END_REF] and is different for the correction term:

BIC = -2 ln V + k ln(n), (16) 
k is the number of free parameters of Markov Model [START_REF] Avila | Optimisation de modèles Markoviens pour la reconnaissance de l'écrit[END_REF], n is the number of data, k ln(n) is the penalty term.

Like AIC, the best model is the one which gets the minimum value of BIC. Choosing between these two criteria is to choose between a predictive model and an explanatory model [START_REF] Lebarbier | Le critère bic : fondements théoriques et interprétation[END_REF]. It checks the validity of a particular model but it is mainly used to compare several models together. AIC criterion is less relevant than BIC for over-learning models.

Statical tests

Most statistical tests assume that samples are taken at random to achieve [START_REF] Steinebach | romano: Testing statistical hypotheses[END_REF]). This sounds easy but is actually quite difficult to achieve.

Kolmogorov-Smirnov test

Kolmogorov-Smirnov test is a statistical test that may be used to determine if a set of data comes from a particular probability distribution [START_REF] Roblès | A statistical test suite for random and pseudorandom number generators for cryptographic applications[END_REF], [START_REF] Bercu | Modélisation stochastique et simulation -Cours et applications[END_REF]).

Empirical distribution function F n (x) for X 1 , . . . , X n MOSIM'12 -June 06-08, 2012 -Bordeaux -France sample is defined by:

F n (x) = 1 n n i=1 δ Xi≤x , (17) 
δ Xi≤x = 1 si X i ≤ x, 0 sinon .
The Kolmogorov-Smirnov test statistic is defined as follows:

D n = sup x |F n (x) -F (x)|. ( 18 
)

Aspin-Welch test

Aspin-Welch's test [START_REF] Welch | Welch's k-sample test[END_REF], is defined by t statistic in the following formula:

t = x 1 -x 2 σ 2 ( 1 n 1 + 1 n 2 ) , (19) 
σ 2 = n 1 σ 2 1 + n 2 σ 2 2 n 1 + n 2 -2 . ( 20 
)
• x i : the i th sample mean,

• σ: an estimator of the common standard deviation of the two samples,

• σ i : samples standard deviation,

• n i : sample size.

Epistemic uncertainties

This uncertainty is explicitly due to the design of the mathematical model. It is related to the human interpretation of the phenomenon which leads to imperfections in the design. We examine epistemic errors on our synthetic model and determine elements with the lowest uncertainty.

For a n measures series of x 1 , x 2 , . . . , x i , . . . , x n , the uncertainty on the average according to [START_REF] Pibouleau | Assimiler et utiliser les statistiques, Ellipses Marketing, technosup[END_REF] is:

∆x = σ √ n = 1 n(n -1) n i=1 (x i -x) 2 . ( 21 
)
• σ: samples standard deviation.

Evaluation process

We try to evaluate the best Hidden Markov Model topologies presented in figure 2, by using all criteria shown above. 

EVALUATION PROCESS

We use synthetic model to produce about 1000 data events. These simulated symbols, according to real maintenance by using synthetic model ( §4.2) to simulate real industrial environnement. We choose "λ i " (failure rate) and "µ i " (repair rate) of HMM parameters [START_REF] Vrignat | Use of HMM for evaluation of maintenance activities[END_REF], to match as possible, with maintenance recording (table 1).

Synthetic model

We make our synthetic model with Matlab by using four states oriented topology 2 presented in figure 2(b). We use this model feature because it has good performance in maintenance activities [START_REF] Vrignat | Use of HMM for evaluation of maintenance activities[END_REF]. Then, we build sequences of data (also named "signature") using this model as the reference model, by injecting stochastic symbols in this HMM.

We use these symbols sequences as Markov chain (see These simulated symbols, according to real industrial process [START_REF] Vrignat | Use of HMM for evaluation of maintenance activities[END_REF], are obtained by using uniform and Normal (Gaussian) distribution (see fig- ures 5 and6). We use these symbols to train three different HMM topologies, described in figure 2 

RESULTS AND DISCUSSION

We first discuss the choice of synthetic model reference as the oriented model 2. Knowing transition probabilities of states/symbols, we tested several different topologies on different learning algorithms. At the end of the comparatives tests, we concluded that the best topology, according to failure detection, among different learning algorithms, was the topology 2 [START_REF] Vrignat | Use of HMM for evaluation of maintenance activities[END_REF]. 

× × Kolmogorov-Smirnov × × × Best uncertainty × × ×
Table 5: General results for some criteria.

CONCLUSION

After testing randomness of our synthetic model generator, we have applied all criteria studied above on three different HMM topologies. We have successfully applied this method to three different models. The first one, uses Shannon's entropy and entropic filter. Given a set of observations sequences simulated by our synthetic model, we verified that the

Symbols generated by HMM reference (Normal distribution)

Average entropy -states / symbols q q q q q q Topology1 Topology2 Topology3 Uncertainties on the average q q q q q q Topology1 Topology2 Topology3 We gave heterogeneous methods to help expert of maintenance to choose and select the best way to optimize his maintenance policy. Indeed, when HMM output will indicate an orange level (S2), the expert would decide for a preventive maintenance before the breakdown. Good relevance and good errors rate for topology N • 2, Baum-Welch algorithm / decoding by Forward Variable and a Gaussian distribution of observation sequences, allow us to apply these results as part of preventive maintenance applications. Indeed, in our work on industrial breakdown prediction, determining the best model is expected to reduce significantly failure rate in production. Minimizing failure rate, will reduce dangerous human intervention in maintenance, especially in an unsafe working environment. Decreasing machines failures will furthermore reduce power consumption and thus reduce release of CO 2 .

In further work, we will try to test robustness of our synthetic model with different noises. Our research goals are to validate a real choice of a model: topology, symbol,. . . without a priori knowledge on results.

Figure 2 :

 2 Figure 2: Four states Hidden Markov Models.

Figure 4 :

 4 Figure 4: Degradation of process.

FigureFigure 6 :

 6 Figure 5: HMM sequences example, Normal distribution.

  learning, with entropy filter Segmental K-means learning, with entropy filter HMM-reference, without entropy filter Baum-Welch learning, without entropy filter Segmental K-means learning, without entropy filter → best entropy (a) Average entropy, Gaussian distribution Kolmogorov-Smirnov test B.W. HMM1 S.K. HMM1 B.W. HMM2 S.K. HMM2 B.W. HMM3 S.

Figure 9 :

 9 Figure 9: Evaluation results.

Table 1 :

 1 MOSIM'12 -June 06-08, 2012 -Bordeaux -France Example of recorded events from a maintenance database.

	Synthetic model		Name Dupond	Date 11/01/2007	Ope. Lubrication	Cd PM	IT 20	N 1	Code 9
	Hidden Markov		Dupond Dupond	11/01/2007 12/01/2007	Lubrication Lubrication	PM SEC	20 30	2 3	9 5
		Model 2		Dupond Dupond	12/01/2007 13/01/2007	Lubrication Padlock	PM PM	30 10	4 5	5 6
		(reference)		Dupond Dupond	13/01/2007 13/01/2007	Padlock Padlock	NTR NTR	30 30	6 7	5 5
					Dupond	16/01/2007	Lubrication	SP	90	8	1
					Dupond	19/01/2007	Padlock	OT	10	9	3
	Symbols generated Symbols generated	Symbols generated Symbols generated				
	by Uniform by Uniform		by Normal by Normal				
	distribution distribution		distribution distribution				
					carried out on industrial process. We recall the mean-
					ing of selected symbols resulting from observations, in
	Topologies 1, 2 & 3		table 2. "SP" symbol corresponds to a stop of produc-
					tion units: process state = "STOP" in table 2. It is a
	Estimation of HMM	Decoding sequences	critical condition that our research tries to minimize.
	Baum-Welch Baum-Welch		Forward Variable	Process state = "RUN" when production units are running without failure. We study here this kind of
								Process states
								RUN
	Segmental K-means Segmental K-means		Viterbi	1	STOP (Troubleshooting / Stop Production) Interventions type SP
					2	SM	(Setting Machine)
					3	OT	(Other)	
					4	OBS	(Observation)
					5	PM	(Preventive Maintenance, Production not stopped)
					6	SEC	(Security)
	Sequence analysis of 3 Topologies	7 8	PUP CM	(Planified Upgrading) (Cleaning Machine)
	-Shannon's entropy,			9 10	PMV NTR	(Preventive Maintenance Visit) (Nothing to report)
	-Maximum likelihood, AIC, BIC,					
	-Kolmogorov-Smirnov & Aspin-Welch.				
	Uncertainty Analysis				
	-Epistemic uncertainties.					
	Give the most					
	relevant model					
	Figure 3: Matching model method, using synthetic				
	model.							
	industrial process, are obtained by using uniform				
	and normal distribution. Correlatively, we produce				
	states for others topologies by using the same pro-				
	cess. Afterwards, these states are used to compare				
	states models. Insofar as states are obtained by dif-				
	ferent learning and decoding algorithms (diagram of				
	this process is given in figure 3): Baum-Welch learn-				
	ing, decoding by Forward Variable and Segmental K-				
	means learning, decoding by Viterbi.				
	4.1 Simulated	industrial	Computerized				
	Maintenance Management System				
	Nowadays, every industrial factory uses preventive				
	maintenance. Maintenance agents can consign their				
	actions and observations in a centralized database				
	(see table 1). For example, symbols "PM, OT,				
	SP, . . . " could characterize maintenance activities				

Table 2 :

 2 Symbolic coding system of maintenance interventions.

table 3

 3 

	), to model degradation level of a process (ex-

Table 3 :

 3 Sequence of a message from maintenance database.

  MOSIM'12 -June 06-08, 2012 -Bordeaux -France most relevant model obtained a good "entropic" score. That corroborates[START_REF] Vrignat | Use of HMM for evaluation of maintenance activities[END_REF]) results which showed that topology N • 2 was the one which came closest to real industrial process. This criterion also showed that Baum-Welch learning algorithm with Forward Variable decoding gave best results. Moreover Shannon's entropy showed that Normal distribution was the best one to simulate industrial observations. Maximum likelihood and BIC emphasized that HMM 2 was the best topology. Unfortunately, these criteria were too near each other to make conclusions about learning algorithm. With Aspin-Welch and Kolmogorov-Smirnov test, we could verify that the most relevant model had the "goodness of fit" i.e. how well model fits the set of observations sequences. The statistical way told us the same conclusions than entropic results (topology, learning algorithm and distribution). Same goes for errors of epistemic uncertainties: topology N • 2, Baum-Welch learning algorithm with Forward Variable decoding and normal distribution of stochastic symbols gave the lowest error rate. Thus, we specified our analysis from[START_REF] Roblès | A statistical test suite for random and pseudorandom number generators for cryptographic applications[END_REF] paper.

National Institute of Standards and Technology

The probability (under the null hypothesis of randomness) that the chosen test statistic will assume values that are equal to or worse than the observed test statistic value when considering the null hypothesis. The p-value is frequently called the "tail probability".