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), based on upstream industrial synthetic Hidden Markov Model. Our synthetic model gives us simulation such as real industrial Computerized Maintenance Management System. Evaluation is made by two statistical tests. Therefore, we evaluate two learning algorithms: Baum-Welch Baum et al. (1970) and segmental K-means Viterbi (1967). We also evaluate two different distributions for stochastic generation of synthetic HMM labels. After a brief introduction on Hidden Markov Model, we present some statistical tests used in current literature for model selection. Afterwards, we support our study by an example of simulated industrial process by using synthetic HMM. This paper examines stochastic parameters of the various tested models on this process, for finally come up with the most relevant model and the best learning algorithm for our predictive maintenance system.

INTRODUCTION

Fault diagnostics techniques can reduce maintenance downtime. According to [START_REF] Vrignat | Use of HMM for evaluation of maintenance activities[END_REF], we can find two keywords in maintenance definition: maintain and restore. The first one refers to preventive action. The second refers to corrective action. Thus, maintenance optimization for reliability determines "optimal" preventive maintenance. Events preceding a problem in maintenance activities are often recurrent. Special events series should inform us on next failure. For example, in mechanical systems, noises, vibrations precede failure. The loss of performances reflects failure or technical faults. Our works, [START_REF] Vrignat | Use of HMM for evaluation of maintenance activities[END_REF], have shown that it was possible to model degradation levels of a process and results have shown that our approach combined with work of [START_REF] Zille | Modelling and performance assessment of complex maintenance programs for multicomponent systems[END_REF] can provide decision support for industrial maintenance. We also showed in [START_REF] Vrignat | Use of HMM for evaluation of maintenance activities[END_REF] that our model provided good failure prediction. Moreover, we make a reference model, named synthetic model, which fits to real industrial processes. Our goals consist here to evaluate three different Hidden Markov Models topologies, with parameters outcome from this industrial synthetic model. The paper deals with the measurement of relevance on Hidden Markov Models parameters, based on several statistical criteria used in current literature. The objective of this work is to evaluate the best Hidden Markov Model, by using Kolmogorov-Smirnov test [START_REF] Wang | Model selection for linear mixed models using predictive criteria[END_REF], [START_REF] Drezner | A modified kolmogorov-smirnov test for normality[END_REF]) and Aspin-Welch test [START_REF] Welch | Welch's k-sample test[END_REF], [START_REF] Held | A score regression approach to assess calibration of continuous probabilistic predictions[END_REF]). Calculation is made with states and observations of three different HMM topologies (figure 2). Symbols (or observations) are produced by a synthetic HMM (the reference model), using two different learning algorithms and two different distributions of symbols. The structure of this paper is as follows: in section 2, we outline hidden Markov model and define its parameters. We present criteria used to evaluate relevance of HMM parameters, in section 3. We show the evaluation process in section 4. Finally, we use our synthetic model to compare several HMM topologies, from among a candidate set, with previous criterion and then we try to give the best one, in section 5.

HIDDEN MARKOV MODEL

We have chosen Hidden Markov Model to describe industrial maintenance events. We first recall what are HMM: A Hidden Markov Model [START_REF] Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF], [START_REF] Fox | Robot introspection through learned hidden markov models[END_REF]) is an automaton with hidden states which consists of unobservable variable. This one represents the system status to be modeled. Only output variable is observable. Moreover, we get observations sequence from output of the automaton. From now, we rename observations sequence as symbols, representing these observations (see an example of model topology in figure 1). This is precisely relevance of these symbols that we attempt to evaluate. Hidden Markov Model is characterized by: 

Symbols production HMM

π λ 1 , µ 1 λ 2 , µ 2 λ 3 , µ 3
Fig. 1. Four states Hidden Markov Model.

Markov Assumption

Basically, states prediction is not made more accurate by adding a priori knowledge information, i.e. all useful information for future prediction is contained in present state of the process.

P (X n+1 = j|X 0 , X 1 , . . . , X n = i) = P (X n+1 = j|X n = i).
(1)

Definitions for discrete Hidden Markov Model

We now describe variables for HMM:

• Let N , the number of workable hidden states and E = {E 1 , E 2 , . . . , E N }, the set of this variable. Let q t , the value of this variable at time t; • Modeled process, must match to first-order Markov assumption (see §2.1); • Let T , the full number of observation symbols and let X = {x 1 , x 2 , . . . , x T }, observations sequence of the modeled process; • Let A = {a ij }, distribution probability of state transitions with:

a ij = P (q t+1 = E j |q t = E i ) 1 ≤ i, j ≤ N, (2) 
• Let B = {b j (m)}, distribution probability of observation symbol in j state, with:

b j (m) = P (X t = x m |q t = E j ) 1 ≤ j ≤ N 1 ≤ j ≤ T, (3) 
with X t , value of observation variable at time t. • Let π = {π i }, initial state distribution with:

π = P (q 1 = E i ) 1 ≤ i ≤ N, (4) 
• Hidden Markov Model will be set as: (A, B, π).

STATISTICAL TESTS

Most statistical tests assume that samples are taken randomly to achieve [START_REF] Steinebach | romano: Testing statistical hypotheses[END_REF]. This sounds easy but it is actually quite difficult to achieve.

NIST 1 Tests

In [START_REF] Rukhin | A statistical test suite for random and pseudorandom number generators for cryptographic applications[END_REF], authors propose a statistical package consisting in 15 different tests. These tests were developed to test randomness of random number generators. NIST has verified the performance of these tests using a Kolmogorov-Smirnov test of uniformity on the p-values 2 (see § 3.2). The purpose of this test is to determine whether the number of ones and zeros in a sequence are approximately the same as would be expected for a truly random sequence.

In our study, we use the frequency test of the NIST. This test validates that our synthetic model gives real stochastic symbols. The Decision Rule of the test, at the 1% Level, is: If the computed p-values is < 0.01, then we conclude that the sequence is non-random. Otherwise, we conclude that the sequence is random.

Kolmogorov-Smirnov test

Kolmogorov-Smirnov test is a statistical test that may be used to determine if a set of data comes from a particular probability distribution [START_REF] Rukhin | A statistical test suite for random and pseudorandom number generators for cryptographic applications[END_REF], [START_REF] Bercu | Modélisation stochastique et simulation -Cours et applications[END_REF]).

Empirical distribution function F n (x) for X 1 , . . . , X n sample is defined by:

F n (x) = 1 n n i=1 δ Xi≤x , (5) 
δ Xi≤x = 1 si X i ≤ x, 0 sinon .
The Kolmogorov-Smirnov test statistic is defined as follows:

D n = sup x |F n (x) -F (x)|. ( 6 
)
1 National Institute of Standards and Technology 2 The probability (under the null hypothesis of randomness) that the chosen test statistic will assume values that are equal to or worse than the observed test statistic value when considering the null hypothesis. The p-value is frequently called the "tail probability".

Aspin-Welch test

Aspin-Welch's test [START_REF] Welch | The generalization of student's problem when several different population varlances are involved[END_REF], [START_REF] Welch | Welch's k-sample test[END_REF]), is defined by t statistic in the following formula:

t = x 1 -x 2 σ 2 ( 1 n 1 + 1 n 2 ) , (7) 
σ 2 = n 1 σ 2 1 + n 2 σ 2 2 n 1 + n 2 -2 , (8) 
• x i : the i th sample mean,

• σ: an estimator of the common standard deviation of the two samples, • σ i : samples standard deviation,

• n i : sample size.

EVALUATION PROCESS

We have used synthetic model to produce about 1000 data events. These simulated symbols, according to real industrial process, are obtained by using uniform and normal distribution. Correlatively, we produced states for others topologies by using the same process. Afterwards, these states are used to compare states models. Insofar as states are obtained by different learning and decoding algorithms (diagram of this process is given in figure 3):

• Baum-Welch learning [START_REF] Baum | A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains[END_REF]), decoding by Forward Variable [START_REF] Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF]), • Segmental K-means learning [START_REF] Juang | The segmental kmeans algorithm for estimating parameters of hidden markov models. Acoustics, Speech and Signal Processing[END_REF]), decoding by Viterbi, [START_REF] Viterbi | Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[END_REF]).

HMM topologies

Our studied models are represented by automata with four oriented states. This stochastic automata represent the degradation level of an industrial process, S4 to S1, see figure 2. {S4, S3, S2} states, when process is running ("RUN"), and {S1} state, when process is stopped ("STOP"). Topology 1 figure 2(a), describes all possible transitions. With topology 2 figure 2(b), we need to go through all states (S2 and S3) to go from hight level of availability (S4) to low level of availability (S1). Figure 2(c) shows the difference between topologies 2 and 3: S1 becomes a first state of breakdown.

Simulated industrial CMMS 3

Nowadays, every industrial factory uses preventive maintenance. Maintenance operators consign their actions and observations in a centralized database. We show an example of such database in table 1. For instance, symbols "PM, OT, SP, . . . " could characterize maintenance activities carried out on industrial process. We recall the meaning of selected symbols resulting from observations, in table 2. "SP" symbol corresponds to a stop of production units: process state = "STOP" in table 2. It is a critical condition that our research tries to minimize. Process state = "RUN" when production units are running without failure. We study here this kind of maintenance by using synthetic 

Industrial application

We try to understand the "signature" of industrial CMMS by using HMM topologies. Furthermore, our approach can provide decision support for organizing daily maintenance. Our results presented in [START_REF] Vrignat | Use of HMM for evaluation of maintenance activities[END_REF], provide good estimation of failure probability. Hence, we can help experts to schedule maintenance activities.

Synthetic model

We have made our synthetic model with Matlab by using four states oriented topology 2 presented in figure 2(b).

We have used this model feature because it has good performance in maintenance activities [START_REF] Vrignat | Use of HMM for evaluation of maintenance activities[END_REF]). Then, we built sequences of data (also named "signature") using this model as the reference model, by injecting stochastic symbols in this HMM. We have used these symbols sequences as Markov chain (see table 3), to model degradation level of a process (example in figure 4). These 
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 4 Fig. 4. Degradation of process.

Fig. 7 .

 7 Fig. 7. First sequence, using normal distribution determining the best model is expected to reduce significantly failure rate in production and in the same time, to reduce power consumption. In further work, we will try

Table 2 .

 2 Symbolic coding system of maintenance interventions.

Table 3 .

 3 Sequence of a message from maintenance database. synthetic model generator, we have successfully applied these two tests on three different HMM topologies. The first one, uses Aspin-Welch and the second one, uses Kolmogorov-Smirnov test. Given a set of observations sequences simulated by our synthetic model, we verified that the most relevant model had the "goodness of fit" i.e. how well model fits the set of observations sequences. In a statistical way, topology of model 2 is the best one. This corroborates results that model 2 is the one which comes closest to real industrial process in[START_REF] Vrignat | Use of HMM for evaluation of maintenance activities[END_REF]. Thus, we specified our analysis from[START_REF] Roblès | Evaluation of relevance of stochastic parameters on hidden markov models[END_REF] paper. This criterion also shown that Baum-Welch learning algorithm with Forward Variable decoding gives best results with normal distribution of stochastic symbols. In our work on industrial breakdown prediction,

	simulated symbols, according to real industrial process
	(Vrignat et al. (2010)), are obtained by using uniform
	and Gaussian distribution. We have used these symbols to
	train three different HMM topologies, described in figure 2,
	by using two different learning and decoding algorithms:
	Baum-Welch learning, decoding by Forward Variable, and
	Segmental K-means learning, decoding by Viterbi as we
	seen before.									
	1000 symbols were produced by reference model (distribu-
	tion in figures 5 and 6). Each sequence ends with a stop of
	production (symbol SP in red) see figure 4. Then, we got
	11 sequences in our 1000 simulated symbols. You can see
	distribution symbols/states for the first sequence: HMM 1,
	HMM 1/Baum-Welch and HMM 1/Segmental K-means al-
	gorithms, in figure 7. Finally, we obtained states sequences
	for each HMM outside. Later, these states are used to
	make comparisons between 3 different HMM topologies
	(figure 2), with statistical tests studied in section 3. Results
	are shown in section 5. Diagram of our evaluation process
	is given in figure 3.							
				States / Symbols, Normal distribution	
	150	1 2								
		3								
		4								
	100									
	50									
	0									
		SP	SM	OT	OBS	PM	SEC	PUP	CM	PMV	NTR
	Fig. 5. HMM sequences example, Normal distribution
					5. RESULTS		
	First, we have verified the randomness of stochastic states
	generated by the synthetic model (figure 5 and 6). The
	random number generator is tested by frequency test § 3.1.