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Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation

We establish the stability in the energy space for sums of solitons of the one-dimensional Gross-Pitaevskii equation when their speeds are mutually distinct and distinct from zero, and when the solitons are initially well-separated and spatially ordered according to their speeds.

Introduction

In this paper, we focus on the one-dimensional Gross-Pitaevskii equation

i∂ t Ψ + ∂ 2 x Ψ + Ψ 1 -|Ψ| 2 = 0, (GP) 
for a function Ψ : R × R → C, supplemented with the boundary condition at infinity

|Ψ(x, t)| → 1, as |x| → +∞. (1) 
The Gross-Pitaevskii equation is a defocusing nonlinear Schrödinger equation. In one spatial dimension, solutions with finite Ginzburg-Landau energy

E(Ψ) := 1 2 R |∂ x Ψ| 2 + 1 4 R (1 -|Ψ| 2 ) 2 ,
are globally defined, and the energy is conserved along the flow.

In 1972, V.E. Zakharov and A.B. Shabat [START_REF] Zakharov | Interaction between solitons in a stable medium[END_REF] have shown that the Gross-Pitaevskii equation supplemented with condition (1) is integrable by means of an inverse scattering transform. As a consequence, they exhibited exact soliton and multi-soliton solutions. It is generally believed that such solutions play a central role in the long-time asymptotics of the flow, and sometimes conjectured that any initial datum with finite Ginzburg-Landau energy should eventually resolve into a multi-soliton solution plus a vanishing (in an appropriate sense) dispersive tail. Detailed asymptotic expansions for smooth and fast decaying solutions, based on their scattering data at the initial time, have actually been obtained by A.H. Vartanian in [START_REF] Vartanian | Long-time asymptotics of solutions to the Cauchy problem for the defocusing nonlinear Schrödinger equation with finite-density initial data. II. Dark solitons on continua[END_REF], using reductions to Riemann-Hilbert problems. To our knowledge, for initial data in the energy space, there is no rigorous evidence supporting the aforementioned behaviour further than the orbital stability of a single soliton (see e.g. [START_REF] Lin | Stability and instability of traveling solitonic bubbles[END_REF][START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF][START_REF] Béthuel | Orbital stability of the black soliton for the Gross-Pitaevskii equation[END_REF][START_REF] Gérard | Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation[END_REF]). The main goal of this paper is to provide a partial justification through the proof of the orbital stability in the energy space of some finite sums of solitons along the Gross-Pitaevskii flow. Our approach does not make any use of the integrability of the equation, and is largely influenced by the corresponding study of the generalized Kortewegde Vries equation (see [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF]) and of the nonlinear Schrödinger equation with vanishing data at infinity (see [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF]) by Y. Martel, F. Merle and T.-P. Tsai. The main ingredient is a monotonicity formula for the momentum (see Subsection 3.2).

Soliton solutions to the Gross-Pitaevskii equation

A soliton with speed c is a solution to (GP) which takes the form

Ψ(x, t) := U c (x -ct).
Its profile U c is a solution to the ordinary differential equation

-ic∂ x U c + ∂ 2 xx U c + U c 1 -|U c | 2 = 0. (2) 
The solutions to [START_REF] Béthuel | Orbital stability of the black soliton for the Gross-Pitaevskii equation[END_REF] with finite energy are classified and indeed explicit. For |c| ≥ √ 2, all of them are identically constant. When |c| < √ 2, there exist non-constant solutions with finite energy. Up to the invariances of the problem, i.e. the multiplication by a constant of modulus one and the invariance by translation, they are uniquely given by the expression

U c (x) = 2 -c 2 2 th √ 2 -c 2 x 2 + i c √ 2 . (3) 
Notice that the soliton U c does not vanish on R when c = 0. As a matter of fact, our stability analysis below requires non-vanishing solutions. Indeed, it is performed on a reformulation of (GP) which only makes sense for such solutions, and which we introduce next.

Hydrodynamical form of the Gross-Pitaevskii equation

Provided a solution Ψ to (GP) does not vanish, it may be written, at least formally, as

Ψ := ̺ exp iϕ,
where ̺ := |Ψ|. Still on a formal level, the functions η := 1 -̺ 2 and v := ∂ x ϕ are then solutions to an hydrodynamical form of (GP), namely

     ∂ t η = ∂ x 2v -2ηv , ∂ t v = ∂ x η -v 2 -∂ x ∂ x η 2(1 -η) + (∂ x η) 2 4(1 -η) 2 .

(HGP)

For k ≥ 0, we introduce the Hilbert spaces X k (R) := H k+1 (R) × H k (R), equipped with the norm

(η, v) 2 X k := η 2 H k+1 + v 2 H k ,
and their open subsets 1 N V k (R) := (η, v) ∈ X k (R), s.t. max x∈R η(x) < 1 , 1 The notation N V stands for non-vanishing.

consisting of states with non-vanishing corresponding Ψ. In the sequel, we set X(R) := X 0 (R) and N V(R) := N V 0 (R).

The Ginzburg-Landau energy 2

E(η, v) := R e(η, v) := 1 8 R (∂ x η) 2 1 -η + 1 2 R (1 -η)v 2 + 1 4 R η 2 , (4) 
and the momentum

P (η, v) := R p(η, v) := 1 2 R ηv,
are well-defined and smooth functionals on N V(R). In view of (4), the space N V(R) is the energy space for states (η, v) satisfying the non-vanishing condition max x∈R η(x) < 1.

Concerning the Cauchy theory for (HGP), we have Theorem 1 ([18]). Let k ∈ N and (η 0 , v 0 ) ∈ N V k (R). There exists a maximal time T max > 0 and a unique solution (η, v) ∈ C 0 ([0, T max ), N V k (R)) to equation (HGP) with initial datum (η 0 , v 0 ). The maximal time T max is continuous with respect to the initial datum (η 0 , v 0 ), and is characterized by

lim t→Tmax max x∈R η(x) = 1 if T max < +∞.
The flow map (η 0 , v 0 ) → (η, v) is locally well-defined and continuous from N V k (R) to C 0 ([0, T ], N V k (R)) for any T < T max . Moreover, the energy E and the momentum P are constant along the flow.

We refer to [18] for a proof. It is a consequence of the Cauchy theory for (GP) in Zhidkov spaces Z k (R) (see e.g. [START_REF] Zhidkov | Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory[END_REF][START_REF] Gallo | Schrödinger group on Zhidkov spaces[END_REF][START_REF] Gérard | The Cauchy problem for the Gross-Pitaevskii equation[END_REF]), and the fact that the mapping Ψ → (η, v) is locally Lipschitz from Z k (R) to X k (R) provided that (η, v) ∈ N V(R). The uniqueness part requires slightly more care.

Statement of the main result

When c = 0, the solitons U c described in Subsection 1.1 do not vanish and may thus be written under the form U c := ̺ c exp iϕ c .

In view of formula (3), the maps η c := 1 -̺ 2 c and v c := ∂ x ϕ c are given by 3

η c (x) = 2 -c 2 2ch √ 2-c 2 x 2 2 and v c (x) = - cη c (x) 2 1 -η c (x) = - c(2 -c 2 ) 2 2ch √ 2-c 2 x 2 2 -2 + c 2 . ( 5 
)
2 When Ψ may be written as Ψ = ̺ exp iϕ, the quantities E (Ψ) and E(η, v), with η = 1 -̺ 2 and v = ∂xϕ, are exactly equal. 3 A striking point in formula [START_REF] Chiron | The KdV/KP-I limit of the nonlinear Schrödinger equation[END_REF] is the fact that, up to some scaling, the map ηc is exactly the soliton of the Korteweg-de Vries equation ∂tu + ∂ 3 x u + u∂xu = 0.

(KdV)

Like the Gross-Pitaevskii equation, the Korteweg-de Vries equation indeed owns a family of solitons uσ, given, up to translations, by uσ(x) := 3σ ch(

√ σx 2 ) 2
, for some positive speed σ. Actually, the link between the two equations does not reduce to the level of the solitons. Both of them are integrable by means of the inverse scattering transform (see e.g. [START_REF] Miura | The Korteweg-de Vries equation: a survey of results[END_REF] for the Korteweg-de Vries equation), and moreover, as was pointed out in [START_REF] Béthuel | Orbital stability of the black soliton for the Gross-Pitaevskii equation[END_REF][START_REF] Béthuel | On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation I[END_REF] (see also [START_REF] Chiron | The KdV/KP-I limit of the nonlinear Schrödinger equation[END_REF]), the Korteweg-de Vries equation appears as the limit of system (HGP) in some long-wave regime.

In the sequel, we set Q c,a := η c,a , v c,a := η c (•a), v c (•a) , for 0 < |c| < √ 2 and a ∈ R. We introduce the set of admissible speeds as

Adm N := c := (c 1 , . . . , c N ) ∈ (- √ 2, √ 2) N , s.t. c k = 0, ∀1 ≤ k ≤ N ,
and, for c ∈ Adm N and a := (a 1 , . . . , a N ) ∈ R N , we define

R c,a := η c,a , v c,a = N k=1 Q c k ,a k = N k=1 η c k ,a k , N k=1 v c k ,a k = N k=1 η c k (• -a k ), N k=1 v c k (• -a k ) .
In the sequel, we refer to small perturbations of the functions R c,a as chains of solitons. We also denote

ν c := min 2 -c 2 k , 1 ≤ k ≤ N . Our main result is Theorem 2. Let c * ∈ Adm N be such that c * 1 < . . . < c * N . (6) 
There exist positive numbers α * , L * and A * , depending4 only on c * , such that the following holds. Assume that (η 0 , v 0 ) ∈ N V(R) satisfies

α 0 := (η 0 , v 0 ) -R c * ,a 0 X ≤ α * , (7) 
for some points a 0 = (a 0 1 , . . . , a 0 N ) ∈ R N such that

L 0 := min a 0 k+1 -a 0 k , 1 ≤ k ≤ N -1 ≥ L * . ( 8 
)
Then the unique solution (η, v) to (HGP) with initial datum (η 0 , v 0 ) is globally defined on [0, +∞), and there exists a function a = (a 1 , . . . , a

N ) ∈ C 1 ([0, +∞), R N ) such that N k=1 a ′ k (t) -c * k ≤ A * α 0 + exp - ν c * L 0 33 , (9) 
and

(η(•, t), v(•, t)) -R c * ,a(t) X ≤ A * α 0 + exp - ν c * L 0 33 , (10) 
for any t ∈ [0, +∞).

In different terms, chains of solitons with strictly ordered speeds are preserved along the Gross-Pitaevskii flow in positive time. Since the initial speeds are strictly ordered, the mutual distances between the individual solitons appearing in the chain increase proportionally with time, so that the interactions between solitons decrease to zero. As a matter of fact, integrating (9) yields

a k+1 (t) -a k (t) ≥ c * k+1 -c * k -2A * α 0 + exp - ν c * L 0 33 t + a k+1 (0) -a k (0).
A typical example of chain of solitons is given by the exact multi-solitons constructed by Zakharov and Shabat [START_REF] Zakharov | Interaction between solitons in a stable medium[END_REF] (see also [START_REF] Faddeev | Hamiltonian methods in the theory of solitons[END_REF]). In particular, Theorem 2 provides the orbital stability of multisolitons in the energy space in positive time.

In view of the time reversibility of the Gross-Pitaevskii equation, Theorem 2 also provides the stability in negative time of chains of solitons with reversely ordered speeds. To our knowledge, the question of the stability in the energy space of chains of solitons for both positive and negative times remains open when the chain includes at least two solitons. For the generalized Korteweg-de Vries equations, results of this type have recently been obtained by Martel and Merle [START_REF] Martel | Stability of two soliton collision for nonintegrable gKdV equations[END_REF][START_REF] Martel | Inelastic interaction of nearly equal solitons for the quartic gKdV equation[END_REF].

Finally, we believe that our arguments still apply to non-integrable versions of the nonlinear Schrödinger equation with non-vanishing condition at infinity, provided individual solitons are themselves orbitally stable. The latter condition has recently been treated in details in a work by Chiron [START_REF] Chiron | Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one[END_REF], where numerous examples are presented.

Elements in the proofs

We will present a detailed description of the elements in the proof of Theorem 2 in Subsections A to G below. We precede this description by a voluntarily oversimplified overview in the case of a two-soliton, in the hope that this may ease the reading of the detailed description.

The solitons Q c may be characterized as minimizers of some variational problems. In terms of

Q c = (η c , v c ), equation (2) reduces to E ′ (Q c ) + cP ′ (Q c ) = 0. (11) 
Equation ( 11) is the Euler-Lagrange equation for the minimization of the Ginzburg-Landau energy E under fixed scalar momentum P , and the speed c is the corresponding Lagrange multiplier. As a matter of fact, we have

E(Q c ) = min E(η, v), (η, v) ∈ X(R) s.t. η < 1 and P (η, v) = P (Q c ) , (12) 
for any c ∈ (-√ 2, √ 2) \ {0} (see e.g. [START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF]), and Q c is the only minimizer up to the invariances of the problem. This minimizing property, combined with the conservation of E and P by the Gross-Pitaevskii flow, yields the orbital stability of single solitons. Instability of a chain of solitons, should it happen, could thus only arise from their mutual interactions. Assume for simplicity that at some fixed time the solution at hand is a chain of two solitons

(η, v) ≃ Q c 1 ,a 1 + Q c 2 ,a 2 ,
where a 2a 1 ≫ 1. In particular, the total energy E and momentum P satisfy

E ≃ E(Q c 1 ) + E(Q c 2 ) and P ≃ P (Q c 1 ) + P (Q c 2 ).
Assume next that at some later time, interaction has occurred and

(η, v) ≃ B 1 (• -b 1 ) + B 2 (• -b 2 ),
where still b 2b 1 ≫ 1, but B 1 and B 2 need no longer be solitons. Set

δP := P (Q c 1 ) -P (B 1 ).
Since the total momentum is an invariant of the flow, we also have

δP ≃ P (B 2 ) -P (Q c 2 ),
so that δP may be understood as the amount of momentum transfered from Q c 1 ,a 1 towards Q c 2 ,a 2 (we let aside here the possibility of transfer to the background).

From [START_REF] Lin | Stability and instability of traveling solitonic bubbles[END_REF], we infer that the energies E(B 1 ) and E(B 2 ) are necessarily larger than the energies of the corresponding solitons with momentum P (B 1 ), respectively P (B 2 ). Since, in particular from [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry I[END_REF],

d dc E(Q c ) = -c d dc P (Q c ) ,
we obtain at first order in δP ,

E(B 1 ) E(Q c 1 ) + c 1 δP (13) 
and

E(B 2 ) E(Q c 2 ) -c 2 δP. ( 14 
)
On the other hand, by conservation of the total energy, we have

E(Q c 1 ) + E(Q c 2 ) ≃ E(B 1 ) + E(B 2 ),
so that, by ( 14),

E(B 1 ) E(Q c 1 ) + E(Q c 2 ) -E(B 2 ) E(Q c 1 ) + c 2 δP. (15) 
Combining ( 13) and ( 15) yields

(c 2 -c 1 )δP 0. ( 16 
)
The last and key observation is a monotonicity formula, which states that in the above configuration necessarily δP 0.

Therefore, if the speeds are ordered as in Theorem 2, namely c 2 > c 1 , then ( 16) may hold only if δP = 0. Orbital stability of the chain then follows from the orbital stability of the individual solitons.

Remark 1. The monotonicity formula [START_REF] Miura | The Korteweg-de Vries equation: a survey of results[END_REF] has a simple physical interpretation. Momentum is a signed quantity which, in the present normalization, is non-negative for "waves" or "particles" travelling to the left and non-positive for those travelling to the right. Since Q c 1 ,a 1 is located at the left of Q c 2 ,a 2 (recall that a 2a 1 ≫ 1 by assumption), the momentum transferred from Q c 1 ,a 1 towards Q c 2 ,a 2 (i.e. δP ) needs to travel from the left to the right, 5 and is therefore non-positive. Equivalently (and alternatively from the point of view of

Q c 2 ,a 2 ), the momentum transferred from Q c 2 ,a 2 towards Q c 1 ,a 1 , i.e.
-δP , needs to travel from the right to the left, and is therefore non-negative.

We are now in position to present the detailed description of the elements in the proof. For later reference, we mention the explicit values

P (Q c ) = arctan c √ 2 -c 2 + c √ 2 -c 2 2 -sign(c) π 2 , (18) 
and

E(Q c ) = (2 -c 2 ) 3 2 3 . ( 19 
)
5 To be more precise, the transferred momentum needs to travel from the left to the right in a reference frame attached to Qc 1 ,a 1 , i.e. moving at speed c1. Dispersive waves have a speed larger or equal in absolute value than the speed of sound √ 2 given by the dispersion relation. Since solitons are subsonic, a dispersive (hence sonic or supersonic) wave going to the right in the reference frame attached to a soliton also goes to the right in the frame of the lab. This peculiarity is a major difference between the Gross-Pitaevskii equation and the nonlinear Schrödinger equations with zero density at spatial infinity, where the speeds of solitons and dispersive waves may overlap.

A Minimizing properties of solitons

We will rely on a quantitative version of the minimizing property [START_REF] Lin | Stability and instability of traveling solitonic bubbles[END_REF]. Define the quadratic form

H c := E ′′ (Q c ) + cP ′′ (Q c ).
In explicit form,

H c (ε) := 1 4 R (∂ x ε η ) 2 1 -η c + 1 4 R 2- ∂ 2 xx η c (1 -η c ) 2 - (∂ x η c ) 2 (1 -η c ) 3 ε 2 η + R (1-η c )ε 2 v +(c-2v c )ε η ε v , (20) 
where we have written ε = (ε η , ε v ). We have Proposition 1. There exists Λ c > 0 such that

H c (ε) ≥ Λ c ε 2 X , (21) 
for any ε ∈ X(R) satisfying the orthogonality conditions

ε, ∂ x Q c L 2 (R) = P ′ (Q c )(ε) = 0. ( 22 
)
Moreover, Λ c is uniformly bounded from below by a positive constant for c in a compact subset of (-

√ 2, √ 2) \ {0}.
Remark 2. The first orthogonality condition in ( 22) is related to the invariance with respect to translations of (HGP). It may be rephrased according to the equality

ε, ∂ x Q c L 2 = 1 2 d dy (η, v) -Q c (• -y) 2 L 2 |y=0 = 0.
It is possible to choose the condition involving the momentum P as an orthogonality condition due to the property

d dc P (Q c ) = 0,
which follows from the explicit value (18) of P (Q c ).

In particular, if ε := (η, v) -Q c satisfies the orthogonality conditions (22), then

(E + cP )(η, v) ≥ (E + cP )(Q c ) + Λ c ε 2 X + O ε 3 X , (23) 
as ε X → 0.

Our next goal is to obtain a coercivity inequality in the spirit of (23) for functions (η, v) which do not belong to a small neighbourhood of a single soliton but instead to a neighbourhood of a finite sum of well-separated solitons like the one described by [START_REF] Faddeev | Hamiltonian methods in the theory of solitons[END_REF] and [START_REF] Gallo | Schrödinger group on Zhidkov spaces[END_REF]. We begin with the treatment of the orthogonality conditions in that case.

B Orthogonal decomposition of a chain of solitons

Given a positive parameter L, we define the set of admissible positions as

Pos N (L) := a := (a 1 , . . . , a N ) ∈ R N , s.t. a k+1 > a k + L, ∀1 ≤ k ≤ N -1 ,
and, for α > 0 and c = (c 1 , . . . , c N ) ∈ Adm N , we set

U c (α, L) := (η, v) ∈ X(R), s.t. inf a∈Pos N (L) (η, v) -R c,a X < α , and 
µ c := min |c k |, 1 ≤ k ≤ N .
When α is small enough and L is sufficiently large, we claim that the set U c (α, L) provides a suitable framework to perform satisfactory decompositions. More precisely, we have Proposition 2. Let c * ∈ Adm N . There exist positive numbers α 1 , L 1 and K 1 , depending only on c * , and two continuously differentiable functions

C ∈ C 1 (U c * (α 1 , L 1 ), Adm N ) and A ∈ C 1 (U c * (α 1 , L 1 ), R N ) such that for any (η, v) ∈ U c * (α 1 , L 1 ), the function ε := (η, v) -R c,a ,
where c = (c 1 , . . . , c N ) := C(η, v) and a = (a 1 , . . . , a N ) := A(η, v), satisfies the orthogonality conditions

ε, ∂ x Q c k ,a k L 2 = P ′ (Q c k ,a k )(ε) = 0, (24) 
for any

1 ≤ k ≤ N . Moreover, if (η, v) -R c * ,a * X ≤ α,
for some a * = (a * 1 , . . . , a * N ) ∈ Pos N (L), with L ≥ L 1 and α ≤ α 1 , then

ε X + N k=1 |c k -c * k | + N k=1 |a k -a * k | ≤ K 1 α. (25) 
Increasing L 1 and decreasing α 1 in the statement of Proposition 2 if necessary, one may further infer from (25) the following facts which we will use throughout.

Corollary 1. Under the assumptions of Proposition 2, whenever

(η, v) ∈ U c * (α 1 , L) with L ≥ L 1 , it follows that (η, v) ∈ N V(R), since 1 -η ≥ µ 2 c * 8 . (26) 
Moreover, we have

A(η, v) ∈ Pos N L -1 , (27) 
ν C(η,v) ≥ ν c * 2 , ( 28 
)
and µ C(η,v) ≥ µ c * 2 . ( 29 
)
C Almost minimizing properties close to a sum of solitons

Given c * := (c * 1 , . . . , c * N ) ∈ Adm N and (η, v) ∈ U c * (α 1 , L 1 ), we write (η, v) = R c,a + ε,
according to Proposition 2, where ε satisfies the orthogonality conditions (24). Our next goal is to show that the sum R c,a possesses almost minimizing properties. Since each soliton Q c k ,a k has its own speed c k , the function E + cP , whose coercivity properties were exhibited in (23) in the case of a single soliton Q c , has to be replaced by some function which, close to each location point a k , resembles E + c k P .

More precisely, we define the functions6 

Ψ k (x) :=        1 if k = 1, 1 2 1 + th ν c * 16 x - a k-1 + a k 2 if 2 ≤ k ≤ N, 0 if k = N + 1.
We next set

F (η, v) := E(η, v) + N k=1 c k P k (η, v),
where

P k (η, v) := R p(η, v) Ψ k -Ψ k+1 .
Notice that by construction,

N k=1 Ψ k -Ψ k+1 = Ψ 1 -Ψ N +1 = 1,
and that, provided the points a k are sufficiently far apart one from each other, we have for each

k, Ψ k -Ψ k+1 ≃ 1 in a neighborhood of Q c k ,a k and Ψ k -Ψ k+1 ≃ 0 in the neighborhood of Q c j ,a j , for j = k.
Notice also that, even though it does not explicitly appear in the notation, Ψ k depends on (η, v) through the points a k . This will be of particular importance when we introduce time dependence later on.

In order to estimate the function F , we localize the function ε according to the following decomposition. Let 0 < τ < ν c * /16 to be defined later (see (38)), depending only on c * . We set

Φ k (x) := 1 2 th τ x -a k + L 1 4 -th τ x -a k - L 1 4 ,
for 1 ≤ k ≤ N , and

Φ k,k+1 :=          1 2 1 -th τ x -a 1 + L 1 4 if k = 0, 1 2 th τ x -a k -L 1 4 -th τ x -a k+1 + L 1 4 if 1 < k < N, 1 2 1 + th τ x -a N -L 1 4 if k = N.
Once more, we note that by construction,

N k=1 Φ k + N k=0 Φ k,k+1 = 1, (30) 
and that each term in the sum is non-negative. We finally define

ε k := Φ k (• + a k ) 1 2 ε(• + a k ), (31) 
for 1 ≤ k ≤ N , and

ε k,k+1 := Φ 1 2 k,k+1 ε, ( 32 
) for 0 ≤ k ≤ N . Proposition 3. Assume that (η, v) = R c,a + ε ∈ U c * (α 1 , L), with L ≥ L 1 . Then, E(η, v) = N k=1 E(Q c k ) + 1 2 N k=1 E ′′ (Q c k )(ε k , ε k ) + 1 2 N k=0 E ′′ (0)(ε k,k+1 , ε k,k+1 ) + O τ + exp -τ L 1 2 ε 2 X + O ε 3 X + O L exp - ν c * L 2 , (33) 
and

P k (η, v) =P (Q c k ) + 1 2 P ′′ (Q c k )(ε k , ε k ) + 1 2 P ′′ k (0)(ε k,k+1 , ε k,k+1 ) + 1 2 P ′′ k (0)(ε k-1,k , ε k-1,k ) + O L exp - ν c * L 16 + O exp - τ L 1 2 ε 2 X . (34) 
Remark 3. Here and in the sequel, we have found convenient to simplify the presentation of our estimates by introducing the notation O. We adopt as a definition that one is allowed to substitute a quantity S by the notation O(T ) if and only if there exists a positive constant K, depending only on c * , such that |S| ≤ KT.

Later on, we will analyze the evolution in time of the evaluation of F along a solution (η, v) of (HGP). The analysis is complicated by the fact that the speeds c k are themselves functions of (η, v). To circumvent this difficulty, it turns out that it is sufficient to consider instead of F the function G defined on

U c * (α 1 , L 1 ) by G(η, v) := E(η, v) + N k=1 c * k P k (η, v).
Notice here that the speeds are the reference speeds c * k . Concerning the functional G, we have the following consequence of Proposition 3.

Corollary 2. Assume that (η, v) = R c,a + ε ∈ U c * (α 1 , L), with L ≥ L 1 . Then, G(η, v) = N k=1 E(Q c * k ) + c * k P (Q c * k ) + 1 2 N k=1 H c k (ε k ) + 1 2 N k=0 H k 0 (ε k,k+1 ) + O N k=1 |c k -c * k | 2 + O τ + exp - τ L 1 2 ε 2 X + O ε 3 X + O L exp - ν c * L 16 ,
where we have set

H 0 0 (ε 0,1 ) = E ′′ (0) + c 1 P ′′ 1 (0) (ε 0,1 , ε 0,1 ), H k 0 (ε k,k+1 ) = E ′′ (0) + c k P ′′ k (0) + c k+1 P ′′ k+1 (0) (ε k,k+1 , ε k,k+1 ), ∀1 ≤ k ≤ N -1, H N 0 (ε N,N +1 ) = E ′′ (0) + c N P ′′ N (0) (ε N,N +1 , ε N,N +1 ).
It is not possible to invoke Proposition 1 directly to obtain a lower bound on the terms H c k (ε k ) since ε k only satisfies the orthogonality conditions (22) asymptotically as L 1 → +∞. We obtain Lemma 1. Under the assumptions of Corollary 2, there exists a positive constant Λ * , depending only on c * , such that

H c k (ε k ) ≥ Λ * ε k 2 X + O L 1 2 1 exp - τ L 1 2 ε 2 X , (35) 
for any 1 ≤ k ≤ N , and such that

H k 0 (ε k,k+1 ) ≥ Λ * ε k,k+1 2 X , (36) 
for any 0 ≤ k ≤ N . Moreover, N k=1 ε k 2 X + N k=0 ε k,k+1 2 X ≥ ε 2 X . (37) 
In view of Corollary 2 and Lemma 1, we now fix the value of τ , sufficiently small, and then increase the value of L 1 , if necessary, in such a way that7 

O τ + L 1 2 1 exp - τ L 1 2 ε 2 X ≤ Λ * 4 ε 2 X . (38) 
With these choices we obtain

Corollary 3. Assume that (η, v) = R c,a + ε ∈ U c * (α 1 , L), with L ≥ L 1 . Then, G(η, v) ≥ N k=1 E(Q c * k ) + c * k P (Q c * k ) + Λ * 4 ε 2 X + O ε 3 X + O N k=1 |c k -c * k | 2 + O L exp - ν c * L 16 , (39) 
as well as

G(η, v) ≤ N k=1 E(Q c * k )+c * k P (Q c * k ) +O ε 2 X +O N k=1 |c k -c * k | 2 +O L exp - ν c * L 16 . (40) 
Notice that, up to this point, the entire analysis has been independent of time. In the next section, we combine the previous results with information extracted from equation (HGP).

D Dynamics of the modulation parameters

In this subsection, as well as in Subsections E and F below, c * ∈ Adm N is fixed and we assume that T > 0, and

(η, v) ∈ C 0 ([0, T ], X(R)) is a given solution to equation (HGP) such that for some α ≤ α 1 and L ≥ L 1 , η(•, t), v(•, t) ∈ U c * (α, L), for any t ∈ [0, T ]. For t ∈ [0, T ], we define c(t) = (c 1 (t), . . . , c N (t)) := C v(•, t), η(•, t) and a(t) = (a 1 (t), . . . , a N (t)) := A v(•, t), η(•, t) , and ε(•, t) := η(•, t), v(•, t) -R c(t),a(t) ,
where the functions C and A are given by Proposition 2.

The following proposition expresses the fact that the modulation parameters should follow those of the underlying solitons, as long as the solution remains close to them. 

2 ≥ L 1 , depending only on c * , such that, if α ≤ α 2 and L ≥ L 2 , then c ∈ C 1 ([0, T ], Adm N ), a ∈ C 1 ([0, T ], R N
), and we have the estimates

N k=1 |a ′ k (t) -c k (t)| + |c ′ k (t)| = O ε(•, t) X + O L exp - ν c * L 2 , ( 41 
)
for any t ∈ [0, T ].
From now on, we make the additional assumption that our base set of speeds c * satisfies the inequalities

c * 1 < • • • <c * N , (42) 
and we set

σ * = 1 2 min c * k+1 -c * k , 1 ≤ k ≤ N -1 > 0.
As a consequence of ( 25), ( 41) and (42), we obtain Corollary 4. There exist positive numbers α 3 ≤ α 2 and L 3 ≥ L 2 , depending only on c * , such that if α ≤ α 3 and L ≥ L 3 , then for any t ∈ [0, T ],

a k+1 (t) -a k (t) > a k+1 (0) -a k (0) + σ * t ≥ (L -1) + σ * t, (43) 
for each 1 ≤ k ≤ N -1, and 
2 -(a ′ k (t)) 2 ≥ ν c * 2 , (44) 
for each 1 ≤ k ≤ N .

E Evolution in time of G and monotonicity formula

We define the function G on [0, T ] by

G(t) := G η(•, t), v(•, t) ,
where G was introduced in Subsection C. We rewrite G according to the equality

G(t) = E(t) + c * 1 P (t) + N k=2 c * k -c * k-1 Q k (t), (45) 
where

E(t) := E(η(•, t), v(•, t)), P (t) := P (η(•, t), v(•, t)),
and

Q k (t) := R Ψ k (x)p η(x, t), v(x, t) dx = N j=k P j (t).
In case N = 1 (i.e. there is only one soliton), it follows from the conservation of energy and momentum that G is constant in time. In the general case, we have the following monotonicity formula.

Proposition 5. There exist positive numbers α 4 ≤ α 3 and L 4 ≥ L 3 , depending only on c * , such that if α ≤ α 4 and L ≥ L 4 , then

d dt Q k (t) ≤ O exp - ν c * (L + σ * t) 16 , for any t ∈ [0, T ].
As a consequence of the ordering condition (42), we thus obtain

Corollary 5. If α ≤ α 4 and L ≥ L 4 , then d dt G(t) ≤ O exp - ν c * (L + σ * t) 16 , for any t ∈ [0, T ].
F Uniform control on ε X

We are now in position to obtain a uniform control on ε(•, t) X combining the previous results with simple algebraic identities. We divide the analysis in a number of steps, each one providing a uniform control on an intermediate quantity.

Step

1. Control on |Q k (t) -Q k (0)|.
Since E and P are conserved by the flow, we obtain from (45),

Q j (0) -Q j (t) = G(0) -G(t) + 1 c * j -c * j-1 k =j (c * k -c * k-1 ) Q k (t) -Q k (0) , (46) 
for any 2 ≤ j ≤ N . On the one hand, we have by (40) for G(0), and (39) for G(t),

G(0)-G(t) ≤ O ε(•, 0) 2 X +O ε(•, t) 3 X +O N k=1 |c k (t)-c * k | 2 +O L exp - ν c * L 16 . (47) 
On the other hand, from Proposition 5 and assumption (42) on the speeds, we have

1 c * j -c * j-1 k =j (c * k -c * k-1 ) Q k (t) -Q k (0) ≤ O exp - ν c * L 16 . (48) 
Combining ( 46), (47) and (48) for the upper bound part, and using once more Proposition 5 for the lower bound part, we derive

N k=2 Q k (t)-Q k (0) = O ε(•, 0) 2 X +O ε(•, t) 3 X +O N k=1 |c k (t)-c * k | 2 +O L exp - ν c * L 16 . (49) 
Step 2. Control on

|P (Q c k (t) ) -P (Q c k (0) )|.
It follows from Proposition 3 that

P (t) -Q 2 (t) = P 1 (t) = P (Q c 1 (t) ) + O ε(•, t) 2 X + O L exp(- ν c * L 16 , (50) 
and that for 2

≤ k ≤ N , Q k (t) -Q k+1 (t) = P k (t) = P (Q c k (t) ) + O ε(•, t) 2 X + O L exp - ν c * L 16 . (51) 
Combining ( 50) and ( 51) with (49) and the conservation of the momentum P , we obtain

N k=1 P (Q c k (t) ) -P (Q c k (0) ) = O ε(•, 0) 2 X + O ε(•, t) 2 X + O N k=1 |c k (t) -c * k | 2 + O L exp - ν c * L 16 . (52) 
Step 3.

Control on |c k (t) -c * k |.
Combining (52) with the fact that

d dc P (Q c ) = (2 -c 2 ) 1 2 = 0,
and the inequality

N k=1 c k (t) -c * k ≤ N k=1 c k (t) -c k (0) + N k=1 c k (0) -c * k ,
we obtain the existence of positive numbers α 5 ≤ α 4 and L 5 ≥ L 4 , depending only on c * , such that if α ≤ α 5 and L ≥ L 5 , then

N k=1 c k (t) -c * k = O ε(•, 0) 2 + O ε(•, t) 2 + O N k=1 |c k (0) -c * k | + O L exp - ν c * L 16 .
Finally, from Proposition 2 we may bound

N k=1 |c k (0) -c * k | by O( ε(•, 0) X )
, and therefore obtain

N k=1 c k (t) -c * k = O ε(•, 0) + O ε(•, t) 2 + O L exp - ν c * L 16 . ( 53 
)
Step 4. Control on ε(•, t) X .

Combining Corollary 3 for (η, v) := (η(•, t), v(•, t)), and Corollary 5, we obtain, if α ≤ α 4 and

L ≥ L 4 , Λ * 4 ε(•, t) 2 X = O ε(•, 0) 2 X + O N k=1 |c k (t) -c * k | 2 + O L exp - ν c * L 16 + O ε(•, t) 3 X .
It follows therefore from (53) that there exist positive numbers α 6 ≤ α 5 and L 6 ≥ L 5 , depending only on c * , such that if α ≤ α 6 and L ≥ L 6 , then

ε(•, t) 2 X ≤ O ε(•, 0) 2 X + O L exp - ν c * L 16 . (54) 

G Proof of Theorem 2 completed

Let (η 0 , v 0 ) be as in the statement of Theorem 2. We first impose the condition α * < α 6 and L * > L 6 + 2, so that by continuity of the flow, since L 0 ≥ L * by assumption,

T stop := sup t ≥ 0, s.t. (η(•, s), v(•, s)) ∈ U c * (α 6 , L 0 -2), ∀s ∈ [0, t] > 0. Notice that T stop < T max since U c * (α 6 , L 0 -2) ⊂ N V(R).
By (54) we have

ε(•, t) X = O α 0 + exp - ν c * L 0 33 . (55) 
Combining ( 55) with ( 53) and (54) yields a positive number K 6 , depending only on c * , such that

(η(•, t), v(•, t)) -R c * ,a(t) X ≤ K 6 α 0 + exp - ν c * L 0 33 , (56) 
for any t ∈ [0, T stop ). On the other hand, by definition of L 0 , we have (η(0), v(0)) ∈ U c * (α * , L 0 ). In particular, by Proposition 2,

min a k+1 (0) -a k (0), 1 ≤ k ≤ N -1 ≥ L 0 -1,
so that, by Corollary 4, we finally have

min a k+1 (t) -a k (t), 1 ≤ k ≤ N -1 = min a k+1 (0) -a k (0), 1 ≤ k ≤ N -1 > L 0 -2, ( 57 
)
for any t ∈ [0, T stop ).

We therefore additionally impose the condition that α * and L * satisfy

K 6 α * + exp - ν c * L * 33 < α 6 , so that T stop = +∞,
and in particular, ( 56) and (57) hold for any t ∈ [0, +∞). Finally, combining Proposition 4 and (53), we obtain

N k=1 |a ′ k (t) -c * k | ≤ K 7 α 0 + exp - ν c * L 0 33 ,
and the proof of Theorem 2 is completed by setting A * = max{K 6 , K 7 }.

Outline of the paper

In Section 2, we present the proofs of the results stated in Subsections A, B and C of the introduction, which are related to the minimizing properties of solitons and sums of solitons. Section 3 is instead devoted to the proofs of the results related to the dynamical properties of (HGP), and which are stated in Subsections D and E of the introduction. Finally, for the sake of completeness, we provide in Appendix A a quantitative version of the implicit function theorem which we use in Section 2 in order to define the modulation parameters.

2 Minimizing properties around a soliton and a sum of solitons

Minimizing properties of solitons

In this subsection we present the proof of Proposition 1. It is reminiscent from arguments developed in [START_REF] Lin | Stability and instability of traveling solitonic bubbles[END_REF].

Proof of Proposition 1. Let us recall that the quadratic form H c is defined in [START_REF] Zakharov | Interaction between solitons in a stable medium[END_REF] as

H c (ε) := 1 4 R (∂ x ε η ) 2 1 -η c + 1 4 R 2 - ∂ 2 xx η c (1 -η c ) 2 - (∂ x η c ) 2 (1 -η c ) 3 ε 2 η + R (1 -η c )ε 2 v + (c -2v c )ε η ε v .
Equation [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry I[END_REF] writes for η c as

∂ 2 xx η c -(2 -c 2 )η c + 3η 2 c = 0. (2.1)
Invoking ( 5) and (2.1), the expression of H c may be recast as

H c (ε) = L c (ε η ) + R (1 -η c ) ε v + c 2(1 -η c ) 2 ε η 2 , (2.2) 
where

L c (ε η ) := 1 4 R (∂ x ε η ) 2 1 -η c + 1 4 R 2 -c 2 -6η c + 3η 2 c (1 -η c ) 2 ε 2 η .
The Sturm-Liouville operator L c associated to the quadratic form L c , namely

L c (ε η ) := -∂ x ∂ x ε η 4(1 -η c ) + 2 -c 2 -6η c + 3η 2 c 4(1 -η c ) 2 ε η ,
is a self-adjoint, unbounded operator on L 2 (R), with domain H 2 (R). Since η c (x) → 0 as |x| → +∞ by [START_REF] Chiron | The KdV/KP-I limit of the nonlinear Schrödinger equation[END_REF], it follows from the Weyl criterion that its essential spectrum is equal to [(2c 2 )/4, +∞). On the other hand, one can translate the invariance with respect to translations of equation (HGP) into the property that the function ∂ x η c belongs to the kernel of L c . Again in view of ( 5), the function ∂ x η c has exactly one zero. As a consequence, one can infer from standard Sturm-Liouville theory (see e.g. [START_REF] Dunford | Linear operators. Part II. Spectral theory. Self-adjoint operators in Hilbert space[END_REF]) that the operator L c has exactly one negative eigenvalue -µ -. Moreover, the associated eigenspace, as well as the kernel of L c , are of dimension one. We will denote η -an eigenfunction of L c for the eigenvalue -µ -. Notice in particular, that there exists a constant 0

< µ + ≤ 2 -c 2 such that L c (ε η ) ≥ µ + ε η 2 L 2 , (2.3) 
as soon as

ε η , η - L 2 = ε η , ∂ x η c L 2 = 0.
Coming back to the quadratic form H c , we notice that the associated operator H c , namely

H c (ε) := L c (ε η ) + c 2 4(1 -η c ) 3 ε η + c 2(1 -η c ) ε v , c 2(1 -η c ) ε η + (1 -η c )ε v , is a self-adjoint, unbounded operator on L 2 (R) 2 , with domain H 2 (R) × L 2 (R).
Moreover, it again follows from the Weyl criterion that its essential spectrum is equal to [(2c 2 )/(3 + √ 1 + 4c 2 ), +∞). In view of ( 5) and (2.2), we next check that

H c η -, - cη - 2(1 -η c ) 2 < 0, and H c ∂ x η c , ∂ x v c = 0,
so that H c has at least one negative eigenvalue, and the dimension of its kernel is at least one. Assume next that either H c owns another negative eigenvalue, or its kernel is at least of dimension two. Then, there exists a non-positive direction ε

= (ε η , ε v ) for H c such that ε η , η - L 2 (R) = ε η , ∂ x η c L 2 (R) = 0. In view of (2.
2), this is in contradiction with (2.3). Therefore, H c has exactly one negative eigenvalue -λ -, with eigenfunction χ -:= (χ - η , χ - v ), while its kernel is spanned by

∂ x Q c = (∂ x η c , ∂ x v c ).
As a consequence, there exists a positive constant

λ + ≤ (2 -c 2 )/(3 + √ 1 + 4c 2 ) such that H c (ε) ≥ λ + ε 2 L 2 ×L 2 := λ + ε η 2 L 2 + ε v 2 L 2 , (2.4) 
for any pair ε in the closed subspace

P + c := (ε η , ε v ) ∈ H 1 (R) × L 2 (R), s.t. ε, χ - L 2 ×L 2 = ε, ∂ x Q c L 2 ×L 2 = 0 . (2.5)
The next step in the proof consists in checking that estimate (2.4) remains available (up to a further choice of λ + ), when the orthogonality conditions in (2.5) are replaced by conditions (22). The proof is reminiscent from [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry I[END_REF]. We consider the map S(c) := E(Q c ) + cP (Q c ), which is well-defined and smooth on (-√ 2, √ 2) \ {0} in view of ( 18) and [START_REF] Vartanian | Long-time asymptotics of solutions to the Cauchy problem for the defocusing nonlinear Schrödinger equation with finite-density initial data. II. Dark solitons on continua[END_REF]. Using [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry I[END_REF], we compute

S ′ (c) = E ′ (Q c )(∂ c Q c ) + cP ′ (Q c )(∂ c Q c ) + P (Q c ) = P (Q c ),
so that, by (18),

S ′′ (c) = P ′ (Q c )(∂ c Q c ) = (2 -c 2 ) 1 2 .
On the other hand, taking the derivative with respect to c of the identity

E ′ (Q c ) + cP ′ (Q c ) = 0, we get H c (∂ c Q c ), ε L 2 ×L 2 + P ′ (Q c )(ε) = 0, (2.6) 
for any ε ∈ X(R).

For ε = ∂ c Q c , this gives H c (∂ c Q c ) = -P ′ (Q c )(∂ c Q c ) = -(2 -c 2 ) 1 2 < 0. (2.7) 
At this stage, we can decompose

∂ c Q c as ∂ c Q c = αχ -+ β∂ x Q c + r c , with r c ∈ P + c . As a consequence, H c (∂ c Q c ) = -λ -α 2 + H c (r c ),
so that inequality (2.7) is equivalent to the fact that α = 0, combined with the existence of a number 0 ≤ δ < 1 such that

H c (r c ) = δλ -α 2 . (2.8)
According to the value of δ, two situations can occur. If δ = 0, then r c is equal to 0. Since α = 0, conditions (22) are actually identical to the conditions in (2.5), so that (2.4) remains available under conditions (22). If δ > 0, we can decompose a pair ε which satisfies conditions (22), as ε := aχ -+ r, with r ∈ P + c , and compute

H c (ε) = -λ -a 2 + 1 -δ 2 H c (r) + 1 + δ 2 H c (r).
In view of (2.4), the quadratic form H c is positive on P + c . Therefore, we can apply the Cauchy-Schwarz inequality to write

H c (ε) ≥ -λ -a 2 + (1 + δ) H c (r c ), r 2 L 2 ×L 2 2H c (r c ) + 1 -δ 2 H c (r).
At this stage, it follows from ( 22) and (2.6) that

H c (r c ), r L 2 ×L 2 = H c (∂ c Q c ), ε L 2 ×L 2 + λ -aα = λ -aα.
Combining with (2.8), we are led to

H c (ε) ≥ 1 -δ 2 λ -a 2 + H c (r) ,
so that by (2.4),

H c (ε) ≥ 1 -δ 2 min λ -, λ + ε 2 L 2 ×L 2 .
As a conclusion, up to a possible further choice of the positive constant λ + , estimate (2.4) still holds when ε satisfies conditions (22).

In order to complete the proof of estimate [START_REF] Zhidkov | Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory[END_REF], it remains to replace the L 2 -norm of ε η in (2.4) by an H 1 -norm. Given a number 0 < τ < 1, we write

H c (ε) = τ 4 R (∂ x ε η ) 2 1 -η c + τ H c (ε) - 1 4 R (∂ x ε η ) 2 1 -η c + (1 -τ )H c (ε).
In view of formulae ( 5) and ( 20), there exists a positive constant K c , possibly depending on c, such that

H c (ε) - 1 4 R (∂ x ε η ) 2 1 -η c ≤ K c ε 2 L 2 ×L 2 ,
so that, under conditions (22), we can take benefit of (2.4) to get

H c (ε) ≥ τ 4 R (∂ x ε η ) 2 1 -η c + (1 -τ )λ + -τ K ε 2 L 2 ×L 2 .
Since η c (0) = (2c 2 )/2 = max{|η c (x)|, x ∈ R} by ( 5), we deduce that

H c (ε) ≥ τ 2c 2 R (∂ x ε η ) 2 + (1 -τ )λ + -τ K ε 2 L 2 ×L 2 .
Choosing τ sufficiently small yields estimate [START_REF] Zhidkov | Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory[END_REF]. Finally, since H c depends analytically on c and the first two eigenvalues of H c are simple, the optimal constant in (21) depends continuously on c, from which the last statement in Proposition 1 follows.

Orthogonal decomposition of a chain of solitons

We now turn to the proof of Proposition 2. One key property in the proof is the exponential decay of the functions η c and v c . As a matter of fact, one can derive from formulae (5) that, given any integer p, there exists a positive constant K, depending only on p, such that

0≤j+k≤p |∂ j x ∂ k c η c (x)| + c 1+2j+2k |∂ j x ∂ k c v c (x)| ≤ K(2 -c 2 ) exp -(2 -c 2 ) 1 2 |x| . (2.9)
for any 0 < |c| < √ 2 and x ∈ R. A crucial consequence of (2.9) is the property that two solitons with same speed, as well as two sums of solitons with same speeds, can be closed in X(R) only if their center(s) of mass are closed. More precisely, we have Proof. The proof is by induction on the integer N . When N = 1, we have

Step 1. Given a positive number δ, there exists a positive number α such that, if

Q c,a -Q c,b X < α, then, |a -b| < δ.
The proof is by contradiction. Assuming that Step 1 is false, there exist a positive number δ and a sequence

(a n ) n∈N ∈ R N such that Q c (• -a n ) -Q c X → 0, (2.10) 
as n → +∞, and simultaneously, |a n | ≥ δ for any n ∈ N. If the sequence (a n ) n∈N were unbounded, then, up to some subsequence, it would tend to +∞, or -∞. In any case, taking the limit n → +∞ into (2.10), we would get that 2 Q c X = 0, which is not possible. As a consequence, the sequence (a n ) n∈N is bounded. Up to a subsequence, it converges to a real number a such that |a| ≥ δ, and simultaneously,

Q c (• -a) -Q c X = 0.
This identity implies that Q c (•na) = Q c for any n ∈ N. Since a = 0, this ensures, taking the limit n → +∞ and invoking (2.9), that Q c = 0, which provides the desired contradiction.

Step 2. End of the proof.

We now assume that the conclusions of Lemma 2.1 are available up to the integer N -1, and that they are not for the integer N . Then, there exist a positive number δ, a sequence (L j ) j∈N tending to +∞ as j → +∞, and two sequences (a (n,j) ) (n,j)∈N 2 and (b (n,j) ) (n,j)∈N 2 such that a (n,j) ∈ Pos N (L j ) and b (n,j) ∈ Pos N (L j ),

for any n ∈ N, R c,a (n,j) -R c,b (n,j) X(R) → 0, (2.11) 
as n → +∞, and simultaneously,

N k=1 a (n,j) k -b (n,j) k > δ.
(2.12)

Without loss of generality, we can moreover assume that a

(n,j) N ≤ b (n,j) N = 0.
In this situation, if the sequence (a (n,j) N ) n∈N were unbounded for an integer j, then, up to a subsequence, it would tend to -∞ as n → +∞. At this stage, we can invoke (2.9) to certify the existence of a universal constant K such that

R c,a (n,j) -R c,b (n,j) X(R) ≥ R c,a (n,j) -R c,b (n,j) X((-L j /2,+∞)) ≥ Q c N X(R) -K N k=1 2 -c 2 k c k |x|≥L j /2 exp -2(2 -c 2 k ) 1 2 |x| dx 1 2
, for n large enough. In the limit n → +∞, we deduce combining with (2.11) that

Q c N X(R) ≤ K N k=1 (2 -c 2 k ) 3 4 c k exp -(2 -c 2 k ) 1 2 L j ,
which is again not possible when j → +∞. Hence, there exists an integer J such that, given any j ≥ J, the sequence (a (n,j) N ) n∈N is bounded. Up to some subsequence, it converges to a non-positive number α j . Assume next that α j ≤ -L j /2. For n large enough, we can rely on (2.9) to write

1 ℓ=0 ∂ ℓ x η c,a (n,j) (x) -∂ ℓ x η c,b (n,j) (x) + ∂ ℓ x η c N (x) + v c,a (n,j) (x) -v c,b (n,j) (x) + v c N (x) ≤ K N k=1 2 -c 2 k c k exp -(2 -c 2 k ) 1 2 x - 3L j 8 ,
for any x ≥ -L j /8. As above, this gives

Q c N X(R) ≤ R c,a (n,j) -R c,b (n,j) X(R) + K N k=1 (2 -c 2 k ) 3 4 c k exp - (2 -c 2 k ) 1 2 L j 2 ,
which is not possible at the limit n → +∞, when L j is large enough. Therefore, we can assume, up to a further choice of J, that α j ≥ -L j /2 for any j ≥ J.

Invoking once again (2.9), we next write

1 ℓ=0 ∂ ℓ x η c,a (n,j) (x) -∂ ℓ x η c,b (n,j) (x) -∂ ℓ x η c N ,a (n,j) N (x) + ∂ ℓ x η c N (x) + v c,a (n,j) (x) -v c,b (n,j) (x) -v c N ,a (n,j) N (x) + v c N (x) ≤ K N -1 k=1 2 -c 2 k c k exp -(2 -c 2 k ) 1 2 (x -L j ) ,
for any x ≥ -3L j /4, so that

Q c N ,a (n,j) N -Q c N X(R) ≤ R c,a (n,j) -R c,b (n,j) X(R) + K N -1 k=1 (2 -c 2 k ) 3 4 c k exp - (2 -c 2 k ) 1 2 L j 2 .
(2.13) The expression in the right-hand side of (2.13) tends to 0 when n → +∞ and L j → +∞. Up to a further choice of J, one can invoke Step 1 to show that

a (j,n) N ≤ δ 4 , (2.14) 
for any j ≥ J and any n ≥ n j . Moreover, one can rephrase (2.13) as

N -1 k=1 Q c k ,a (n,j) k -Q c k ,b (n,j) k X(R) ≤ 2 R c,a (n,j) -R c,b (n,j) X(R) + K N k=1 (2 -c 2 k ) 3 4 c k exp - (2 -c 2 k ) 1 2 L j 2 .
(2.15)

Once again, the expression in the right-hand side of (2.15) tends to 0 when n → +∞ and L j → +∞. Since Lemma 2.1 is true for the integer N -1, we deduce that

N -1 k=1 a (j,n) k -b (j,n) k ≤ δ 4 ,
for any j and n large enough. Combining with (2.14), we obtain a contradiction with (2.12). Lemma 2.1 follows by induction on the integer N .

Estimate (2.9) and Lemma 2.1 are enough to consider the proof of Proposition 2.

Proof of Proposition 2. The proof is reminiscent from [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF]. It relies on the quantified version of the implicit function theorem provided by Proposition A.1. We consider the map Ξ defined by

Ξ(η, v, σ, b) := ε, ∂ x Q σ 1 ,b 1 L 2 , . . . , ε, ∂ x Q σ N ,b N L 2 , P ′ (Q σ 1 ,b 1 )(ε), . . . , P ′ (Q σ N ,b N )(ε) .
In order to simplify the notation, we have set here ε := (η, v) -R σ,b . The map Ξ is well-defined and smooth from X(R)×Adm N ×R N to R 2N . Moreover, it fulfills the assumptions of Proposition A.1 so that we can state

Step 1. Let 0 < τ < 1 and set

Adm N (τ ) := c ∈ (- √ 2, √ 2) N , s.t. µ c > τ and ν c > τ .
There exist positive numbers δ, Λ and M , depending only on τ , such that, given any (c, a) ∈ Adm N (τ ) × Pos N (M ), there exists a map γ c,a

∈ C 1 (B(R c,a , δ), Adm N (τ /2) × R N ) such that, given any (η, v) ∈ B(R c,a , δ), (σ, b) = γ c,a (η, v) is the unique solution in B((c, a), Λδ) of the equation Ξ(η, v, σ, b) = 0.
Moreover, the map γ c,a is Lipschitz on B(R c,a , δ), with Lipschitz constant at most Λ.

For c ∈ Adm N (τ ) and a ∈ R N , we check that

Ξ(R c,a , c, a) = 0.
Similarly, we compute

∂ σ j Ξ k (R c,a , c, a) = -∂ c Q c j ,a j , ∂ x Q c k ,a k L 2 , ∂ b j Ξ k (R c,a , c, a) = ∂ x Q c j ,a j , ∂ x Q c k ,a k L 2 ,
as well as

∂ σ j Ξ N +k (R c,a , c, a) = -P ′ (Q c k ,a k )(∂ c Q c j ,a j ), ∂ b j Ξ N +k (R c,a , c, a) = P ′ (Q c k ,a k )(∂ x Q c j ,a j ),
for any 1 ≤ j, k ≤ N . When j = k, we infer from formulae (5) that

∂ σ k Ξ k (R c,a , c, a) = ∂ a k Ξ N +k (R c,a , c, a) = 0, (2.16) 
and

∂ a k Ξ k (R c,a , c, a) = ∂ x Q c k 2 L 2 = (2 -c 2 k ) 3 2 3 > 0,
whereas by (18),

∂ σ k Ξ N +k (R c,a , c, a) = - d dc P (Q c ) |c=c k = -(2 -c 2 k ) 1 2 < 0.
In particular, the diagonal matrix A c with the same diagonal elements as d σ,b Ξ(R c,a , c, a) is a continuous isomorphism from R 2N to R 2N , with operator norm bounded from below by τ 3 /3.

On the other hand, when j = k, it follows from (2.9) that

∂ c Q c j ,a j , ∂ x Q c k ,a k L 2 + ∂ x Q c j ,a j , ∂ x Q c k ,a k L 2 + P ′ (Q c k ,a k )(∂ c Q c j ,a j ) + P ′ (Q c k ,a k )(∂ x Q c j ,a j ) ≤ K 2 (2 -c 2 j ) 1 2 (2 -c 2 k ) 1 2 1 + 1 c 3 j c 3 k R exp -ν j,k (|x -a j | + |x -a k |) dx = K 2 (2 -c 2 j ) 1 2 (2 -c 2 k ) 1 2 1 + 1 c 3 j c 3 k |a j -a k | + 1 ν j,k exp -ν j,k |a j -a k | ,
where we have set ν j,k := min{(2c 2 j )

1 2 , (2 -c 2 k ) 1 2 }.
Assuming that a ∈ Pos N (L) for some positive number L, there exists a positive constant K τ , depending only on τ , such that

|∂ σ j Ξ k (R c,a , c, a)| + |∂ a j Ξ k (R c,a , c, a)| + |∂ σ j Ξ N +k (R c,a , c, a)| + |∂ a j Ξ N +k (R c,a , c, a)| ≤ K τ (L + 1) exp -ν c L .
Combining with (2.16), we deduce when L is large enough, that

d σ,b Ξ(R c,a , c, a) := A c Id + H(c, a) ,
where the operator norm of H(c, a) is less than 1/2.

We now turn to the differential

d η,v Ξ(R c,a , c, a)(f, g) := (f, g), ∂ x Q c 1 ,a 1 L 2 , . . . , (f, g), ∂ x Q c N ,a N L 2 , P ′ (Q c 1 ,a 1 )(f, g), . . . , P ′ (Q c N ,a N )(f, g) .
Since the operator norm of A -1 c is bounded by 3/τ 3 , we infer from (2.9) that d η,v Ξ(R c,a , c, a) may be written as

d η,v Ξ(R c,a , c, a) = A c T c,a ,
where T c,a is a continuous linear mapping from X(R) to R N with operator norm depending only on τ .

Finally, again by (2.9), the operator norm of the second order differential d 2 Ξ(η, v, σ, b) is bounded by a constant K τ , depending only on τ , when (η, v, σ, b) ∈ X(R)×Adm N (τ /2)×R N . It then remains to notice that Assumption (iv) of Proposition A.1 is satisfied when U = Adm N (τ ) and V = Adm N (τ /2), and to apply Proposition A.1 to the map Ξ, in order to obtain the statements in Step 1.

Step 2. End of the proof.

Let τ = min{µ * c /2, ν * c /2}. We denote δ 1 , Λ 1 and M 1 , the constants provided by Step 1, and β 1 , the number provided by Lemma 2.1 for δ = Λ 1 δ 1 /3. We set α 1 := min{δ 1 /3, β 1 /4} and 

L 1 := M 1 . When (η, v) ∈ U c * (α 1 , L 1 ), there exists b ∈ Pos N (L 1 ) such that (η, v) ∈ B(R c * ,b , 2α 1 ). Since 2α 1 ≤ δ 1 and L 1 = M 1 ,
N (L 1 ) such that (η, v) ∈ B(R c * ,b 2 , 2α 1 ), we have R c * ,b -R c * ,b 2 X < 4α 1 ≤ β 1 , so that, by Lemma 2.1, b -b 2 < Λ 1 δ 1 3 . (2.17)
On the other hand, the map

γ c * ,b is Lipschitz on B(R c * ,b , 2α 1 ), with Lipschitz constant at most Λ 1 . Hence, (c, a) -(c * , b) = γ c * ,b (η, v) -γ c * ,b (R c * ,b ) ≤ Λ 1 α 1 ≤ Λ 1 δ 1 3 .
Combining with (2.17 Concerning the smoothness of C and A, we consider (µ, w) ∈ U c * (α 1 , L 1 ) such that

(µ, w) -(η, v) X < α 1 . Given b ∈ Pos N (L 1 ) such that (η, v) ∈ B(R c * ,b , α 1 ), we deduce that (µ, w) -R c * ,b X < 2α 1 ,
so that, by definition,

C(η, v), A(η, v) = γ c * ,b (η, v) and (C(µ, w), A(µ, w)) = γ c * ,b (µ, w).
At this stage, recall that the map γ c * ,b is of class C 1 on B(R c * ,b , 2α 1 ). As a consequence, the functions C and A are also of class

C 1 on B((η, v), α 1 ) ∩ U c * (α 1 , L 1 ), therefore, on U c * (α 1 , L 1 ).
We next consider the proof of (25

). When (η, v) ∈ B(R c * ,a * , α), with a * ∈ Pos N (L), α ≤ α 1 and L ≥ L 1 , the values of C(η, v) and A(η, v) are equal to (C(η, v), A(η, v)) = γ c * ,a * (η, v).
In view of the Lipschitz continuity on B(R c * ,a * , α) of the map γ c * ,a * , we infer that

|c -c * | + |a -a * | ≤ Λ 1 (η, v) -R c * ,a * X ≤ Λ 1 α.
(2.18)

On the other hand, letting ε = (η, v) -R c,a , we have

ε X ≤ (η, v) -R c * ,a * X + R c * ,a * -R c,a X < α + R c * ,a * -R c,a X . (2.19) 
In view of formulae ( 5), there exists a universal constant K such that

R c * ,a * -R c,a X ≤ 1 0 ∂ σ R c+t(c * -c),a+t(a * -a) (c * -c) + ∂ * a R c+t(c * -c),a+t(a * -a) (a * -a) X dt ≤ K (c * , a * ) -(c, a) .
Combining with (2.18) and (2.19), we are led to

ε X < 1 + KΛ 1 α.
In view of (2.18), it is sufficient to set K 1 := 1 + (K + 1)Λ 1 in order to derive (25).

Finally, conditions (24) are direct consequences of the definitions of the maps γ c * ,b . This completes the proof of Proposition 2.

Corollary 1 is a direct consequence of Proposition 2. andset (c, a) := (C(η, v), A(η, v)) as in the proof of Proposition 2. In view of (25), one can decrease α 1 so that

Proof of Corollary 1. Let (η, v) ∈ U c * (α 1 , L), with L ≥ L 1 ,
|c -c * | ≤ min µ c * 2 , ν 2 c * 8 √ 2 ,
which is enough to obtain (28) and (29).

One can next increase L 1 so that L 1 > 2, and decrease again α 1 so that K 1 α 1 ≤ 1/2. In this case, we can deduce from (25) that

|a -a * | ≤ 1 2 ,
for any a * ∈ Pos N (L) such that

(η, v) -R c * ,a * X ≤ α.
It follows that a belongs to Pos N (L -1) as mentioned in ( 27).

Finally, one can infer from formula (5) that

min 1 -η c (x), x ∈ R = 1 -η c (0) = c 2 2 , for any c ∈ (- √ 2, √ 2 
). Combining with the exponential decay of the functions η c provided by (2.9), we deduce that we can enlarge again L 1 so that

min 1 -η c,a (x), x ∈ R ≥ µ 2 c * 4 , (2.20) 
when c satisfies (29) and a ∈ Pos N (L 1 -1). On the other hand, we can a last time decrease α 1 so that, combining (25) with the Sobolev embedding theorem, we have

ε η L ∞ (R) ≤ µ 2 c * 8 .
Since η = η c,a + ε η , this is sufficient to guarantee that η satisfies (26), so that the pair (η, v) belongs to N V(R). This completes the proof of Corollary 1.

Almost minimizing properties close to a sum of solitons

The goal of this subsection is to establish the almost minimizing properties close to a sum of solitons stated in Subsection C of the introduction. When establishing the estimates of E and P k given by ( 33) and (34), we will make use of the following elementary inequality to bound various interaction terms using (2.9).

Lemma 2.2. Let (a, b) ∈ R 2 , with a < b, (ν a , ν b ) ∈ (0, +∞) 2 , and set y ± := max{±y, 0}. Then,

exp -ν a (• -a) + exp -ν b (• -b) - L p ≤ 2 p min{ν a , ν b } + b -a 1 p exp -min{ν a , ν b }(b -a) ,
for any 1 ≤ p ≤ +∞.

We will also use the following pointwise estimates on the functions Φ k , Φ k,k+1 and Ψ k .

Lemma 2.3. Let 1 ≤ k ≤ N and x ∈ R. We have

Φ k (x) ≤ exp -2τ |x -a k | - L 1 4 + , and 
|1 -Φ k (x)| ≤ exp -2τ x -a k + L 1 4 + + exp -2τ x -a k - L 1 4 - . Similarly, for 1 ≤ k ≤ N -1, Φ 0,1 (x) ≤ exp -2τ x -a 1 + L 1 4 + , Φ k,k+1 (x) ≤ exp -2τ x -a k - L 1 4 - exp -2τ x -a k+1 + L 1 4 + , Φ N,N +1 (x) ≤ exp -2τ x -a N - L 1 4 - , while, for 2 ≤ k ≤ N -1, Ψ 1 (x) -Ψ 2 (x) ≤ exp - ν c * 8 x - a 1 + a 2 2 + , Ψ k (x) -Ψ k+1 (x) ≤ exp - ν c * 8 x - a k-1 + a k 2 - exp - ν c * 8 x - a k-1 + a k 2 + , Ψ N (x) -Ψ N +1 (x) ≤ exp - ν c * 8 x - a N -1 + a N 2 + , and 
1 -Ψ 1 (x) + Ψ 2 (x) ≤ exp - ν c * 8 x - a 1 + a 2 2 - , 1 -Ψ k (x) + Ψ k+1 (x) ≤ exp - ν c * 8 x - a k-1 + a k 2 + + exp - ν c * 8 x - a k-1 + a k 2 - , 1 -Ψ N (x) + Ψ N +1 (x) ≤ exp - ν c * 8 x - a N -1 + a N 2 + .
Proof. The estimates in Lemma 2.3 follow from the inequality

1 -sign(x)th(x) ≤ 2 exp(-2|x|),
which holds for any x ∈ R.

We are now in position to present the Proof of Proposition 3. We begin with (33). We expand the energy E according to the Taylor rule by

E(η, v) = E(R c,a + ε) = E(R c,a ) + E ′ (R c,a )(ε) + 1 2 E ′′ (R c,a )(ε, ε) + R(η, v),
where

E(R c,a ) = R (∂ x η c,a ) 2 8(1 -η c,a ) + 1 2 (1 -η c,a )v 2 c,a + 1 4 η 2 c,a , (2.21) 
E ′ (R c,a )(ε) = R ∂ x η c,a ∂ x ε η 4(1 -η c,a ) + (∂ x η c,a ) 2 ε η 8(1 -η c,a ) + (1 -η c,a )v c,a ε v + 1 2 η c,a -v 2 c,a ε η , (2.22) 
E ′′ (R c,a )(ε, ε) = R (∂ x ε η ) 2 4(1 -η c,a ) + ∂ x η c,a ε η ∂ x ε η 2(1 -η c,a ) 2 + (∂ x η c,a ) 2 ε 2 η 4(1 -η c,a ) 3 -2v c,a ε η ε v + 1 -η c,a ε 2 v + ε 2 η 2 , (2.23) 
and

R(η, v) := 1 8 R (∂ x η c,a ) 2 ε 3 η (1 -η)(1 -η c,a ) 3 + 2∂ x η c,a ∂ x ε η ε 2 η (1 -η)(1 -η c,a ) 2 + (∂ x ε η ) 2 ε η (1 -η)(1 -η c,a ) -4ε η ε 2 v .
Following Corollary 1, we may assume that (26), ( 27), ( 28) and (29), as well as estimate (2.20), hold. From (2.9) and (29), we obtain

|η c k ,a k (x)| + |∂ x η c k ,a k (x)| + |v c k ,a k (x)| = O exp - ν c * |x -a k | 2 , (2.24) 
for any x ∈ R and any 1 ≤ k ≤ N . From (26), (2.20), (2.24), and the expression (2.21) for E(R c,a ), we compute using Lemma 2.2 with p = 1,

E(R c,a ) = N k=1 E(Q c k ) + O L exp - ν c * L 2 . (2.25) 
Similarly, expression (2.22) for E ′ may be simplified using the Hölder inequality and Lemma 2.2 with p = 2 as

E ′ (R c,a )(ε) = N k=1 E ′ (Q c k ,a k )(ε) + O L 1 2 exp - ν c * L 2 ε X .
Since ε X ≤ K 1 α 1 by (25) and since

E ′ (Q c k ,a k )(ε) = E ′ (Q c k ,a k )(ε) + c k P ′ (Q c k ,a k )(ε) = 0,
by ( 11) and ( 24), we deduce that

E ′ (R c,a )(ε) = O L 1 2 exp - ν c * L 2 . (2.26) 
From ( 26), (2.20) and (2.24), as well as the Sobolev embedding theorem, we also infer that

R(η, v) = O ε 3 X . (2.27) 
We finally turn to the term E ′′ (R c,a )(ε, ε) which requires somewhat more care. We rewrite expression (2.23) as

E ′′ (R c,a )(ε, ε) := R J(R c,a , ε),
and we decompose according to the partition of unity (30) as

R J(R c,a , ε) = N k=1 R J(R c,a , ε)Φ k + N k=0 R J(R c,a , ε)Φ k,k+1 .
Invoking once more the decay estimates (2.24), we obtain from Lemma 2.2 with p = +∞, and Lemma 2.3,

R J(R c,a , ε)Φ k = R J(Q c k ,a k , ε)Φ k + O exp - τ L 1 2 ε 2 X .
(2.28)

Taking into account the formula

∂ x Φ 1 2 k ε η = Φ 1 2 k ∂ x ε η + ∂ x Φ k 2Φ 1 2 k ε η ,
we obtain, after a change of variable corresponding to a translation by

a k , R J(Q c k ,a k ,ε)Φ k = R J(Q c k , ε k ) - R ∂ x Φ k ε 2 η 32Φ k (1 -η c k ,a k ) + ε η ∂ x ε η 8(1 -η c k ,a k ) + ∂ x η c k ,a k ε 2 η 8(1 -η c k ,a k ) 2 ∂ x Φ k . (2.29) Since |∂ x Φ k | = O(τ ) and |∂ x Φ k |/|Φ k | = O(τ ), we deduce from (2.29), R J(Q c k ,a k , ε)Φ k = E ′′ (Q c k )(ε k , ε k ) + O τ ε 2 X . (2.30) 
In a similar manner, we write using Lemma 2.2 with p = +∞, and Lemma 2.3,

R J(R c,a , ε)Φ k,k+1 = R J(0, ε)Φ k,k+1 + O exp - τ L 1 2 ε 2 X ,
and then

R J(0, ε)Φ k,k+1 = R J(0, ε k,k+1 ) + O τ ε 2 X = E ′′ (0)(ε k,k+1 , ε k,k+1 ) + O τ ε 2 X .
Estimate (33) follows combining with (2.25), (2.26), (2.27), (2.28) and (2.30).

We turn now to (34). We expand the functional P k , which is exactly quadratic, as

P k (η, v) = P k (R c,a + ε) = P k (R c,a ) + P ′ k (R c,a )(ε) + 1 2 P ′′ k (R c,a )(ε, ε),
where

P k (R c,a ) = 1 2 R η c,a v c,a Ψ k -Ψ k+1 , (2.31) 
P ′ k (R c,a )(ε) = 1 2 R η c,a ε v + v c,a ε η Ψ k -Ψ k+1 , (2.32) 
P ′′ k (R c,a )(ε, ε) = R ε η ε v Ψ k -Ψ k+1 . (2.33) 
Invoking here again (2.24), Lemma 2.2 with p = 1, and Lemma 2.3, we estimate (2.31) as

P k (R c,a ) = N j=1 P k (Q c j ,a j ) + O L exp - ν c * L 2 .
For j = k, we obtain from Lemma 2.2 with p = 1, and Lemma 2.3,

P k (Q c j ,a j ) = O L exp - ν c * L 16 , while P k (Q c k ,a k ) = P (Q c k ) + O L exp - ν c * L 16 .
Concerning (2.32), we obtain similarly from Lemma 2.2 with p = 2, and Lemma 2.3,

P ′ k (R c,a )(ε) = P ′ (Q c k ,a k )(ε) + O L 1 2 exp - ν c * L 16 = O L 1 2 exp - ν c * L 16 ,
where we have used (24) for the last equality.

Finally, we decompose the integral in (2.33) as

R ε η ε v Ψ k -Ψ k+1 = N j=1 R ε η ε v Ψ k -Ψ k+1 Φ j + N j=0 R ε η ε v Ψ k -Ψ k+1 Φ j,j+1 . When j = k, we obtain R ε η ε v Ψ k -Ψ k+1 Φ j = O exp - τ L 1 2 ε 2 X , while for j = k, R ε η ε v Ψ k -Ψ k+1 Φ k = R ε η Φ 1 2 k ε v Φ 1 2 k + R ε η ε v Φ k Ψ k -Ψ k+1 -1 = P ′′ (Q c k )(ε k , ε k ) + O exp - τ L 1 2 ε 2 X .
Also, when j = k and j = k -1, we obtain

R ε η ε v Ψ k -Ψ k+1 Φ j,j+1 = O exp - τ L 1 2 ε 2 X .
The remaining two terms (corresponding to j = k and j = k -1) are simply grouped together as

R ε η ε v Ψ k -Ψ k+1 Φ k-1,k + Φ k,k+1 = P ′′ k (0)(ε k-1,k , ε k-1,k ) + P ′′ k (0)(ε k,k+1 , ε k,k+1 ).
The proof of estimate (34), and therefore of Proposition 3, is completed.

As a consequence of Proposition 3, we derive Proof of Corollary 2. We write

E(Q c k ) = E(Q c * k ) + E ′ (Q c * k )(Q c k -Q c * k ) + O |c k -c * k | 2 ,
and

P (Q c k ) = P (Q c * k ) + P ′ (Q c * k )(Q c k -Q c * k ) + O |c k -c * k | 2 .
In view of Proposition 3, the conclusion follows from the identity

E ′ (Q c * k ) + c * k P ′ (Q c * k ) = 0,
and from the inequalities (in order to recover the operators

H c k and H k 0 ) (c * k -c k )P ′′ (Q c k )(ε k , ε k ) ≤ |c * k -c k | R |ε η ||ε v | ≤ O |c k -c * k | 2 + O ε 4 X , and 
(c * k -c k )P ′′ k (0)(ε j,j+1 , ε j,j+1 ) ≤ |c * k -c k | R |ε η ||ε v | ≤ O |c k -c * k | 2 + O ε 4 X .
We next prove Lemma 1.

Proof of Lemma 1. Let 1 ≤ k ≤ N . Under the assumptions of Corollary 2, the pair ε satisfies the orthogonality conditions (24). In particular, we can write

ε k , ∂ x Q c k L 2 = R ε, ∂ x Q c k ,a k R 2 Φ k = R ε, ∂ x Q c k ,a k R 2 Φ k -1 , and 
P ′ (Q c k )(ε k ) = 1 2 R ε, (v c k ,a k , η c k ,a k ) R 2 Φ k = 1 2 R ε, (v c k ,a k , η c k ,a k ) R 2 Φ k -1 .
Arguing as in the proof of Proposition 3, we infer that

R |ε| |∂ x Q c k ,a k | + |(v c k ,a k , η c k ,a k )| Φ k -1 = O L 1 2 1 exp - τ L 1 2 ε L 2 , so that ε k , ∂ x Q c k L 2 = O L 1 2 1 exp - τ L 1 2 ε L 2 ,
and

P ′ (Q c k )(ε k ) = O L 1 2 1 exp - τ L 1 2 ε L 2 .
(2.34)

We next write the following orthogonal decomposition of ε k ,

ε k := ε k , ∂ x Q c k L 2 ∂ x Q c k L 2 u k + ε k , (v c k , η c k ) L 2 (v c k , η c k ) L 2 v k + r k , (2.35) in which u k := ∂ x Q c k / ∂ x Q c k L 2 , v k := (v c k , η c k )/ (v c k , η c k ) L 2
, and r k satisfies the orthogonality conditions (22). In view of Proposition 1, we have

H c k (r k ) ≥ Λ c k r k 2 X .
On the other hand, since ∂ x Q c k and hence u k belongs to the kernel of the quadratic form H c k , we can write

H c k (ε k ) = H c k (r k ) + 2 P ′ (Q c k )(ε k ) (v c k , η c k ) L 2 H c k (v k ), ε k L 2 + P ′ (Q c k )(ε k ) 2 (v c k , η c k ) 2 L 2 H c k (v k ).
It follows from (2.34) that

H c k (ε k ) ≥ Λ c k r k 2 X + O L 1 2 1 exp - τ L 1 2 ε 2 L 2 .
(2.36)

Next, we similarly deduce from (2.35) that

r k X -ε k X ≤ ε k , ∂ x Q c k L 2 ∂ x Q c k L 2 u k X + P ′ (Q c k )(ε k ) (v c k , η c k ) L 2 v k X = O L 1 2 1 exp - τ L 1 2 ε L 2 ,
and therefore from (2.36),

H c k (ε k ) ≥ Λ c k 2 ε k 2 X + O L 1 2 1 exp - τ L 1 2 ε 2 X .
(2.37)

We now turn to the terms H k 0 (ε k,k+1 ). For 1 ≤ k ≤ N -1, we write

c k P ′′ k (0) + c k+1 P ′′ k+1 (0) (ε k,k+1 , ε k,k+1 ) = R c k Ψ k -Ψ k+1 + c k+1 Ψ k+1 -Ψ k+2 ε k,k+1 η ε k,k+1 v . Since c k (Ψ k -Ψ k+1 ) + c k+1 (Ψ k+1 -Ψ k+2 ) ≤ max |c k |, |c k+1 | ,
we obtain

H k 0 (ε k,k+1 ) ≥ E ′′ (0) -max |c k |, |c k+1 | P ′′ (0) (ε k,k+1 , ε k,k+1
). On the other hand, the quadratic form E ′′ (0) -√ 2P ′′ (0) is non-negative, so that

H k 0 (ε k,k+1 ) ≥ 1- max{|c k |, |c k+1 |} √ 2 E ′′ (0)(ε k,k+1 , ε k,k+1 ) ≥ 1 4 1- max{|c k |, |c k+1 |} √ 2 ε k,k+1 2 
X . (2.38) Similarly,

H 0 0 (ε 0,1 ) ≥ 1 - |c 1 | √ 2 E ′′ (0)(ε 0,1 , ε 0,1 ) ≥ 1 4 1 - |c 1 | √ 2 ε 0,1 2 X , (2.39) 
and

H N 0 (ε N,N +1 ) ≥ 1 - |c N | √ 2 E ′′ (0)(ε N,N +1 , ε N,N +1 ) ≥ 1 4 1 - |c N | √ 2 ε N,N +1 2 X .
(2.40)

In view of (2.37), (2.38), (2.39) and (2.40), we set

Λ * = min Λ c k 2 , 1 4 1 - |c k | √ 2 , 1 ≤ k ≤ N ,
so that (35) and (36) follow. Notice that Corollary 1 and the last statement of Proposition 1 ensure that Λ * only depends on c * .

In order to complete the proof of Lemma 1, we now derive (37). In view of definitions (31) and (32), we may write

N k=1 ε k 2 X = N k=1 R ∂ x (ε η Φ 1 2 k ) 2 + Φ k ε 2 η + ε 2 v ,
and

N k=0 ε k,k+1 2 
X = N k=0 R ∂ x (ε η Φ 1 2 k,k+1 ) 2 + Φ k,k+1 ε 2 η + ε 2 v . Expanding of the derivatives ∂ x (ε η Φ 1 2 k ) and ∂ x (ε η Φ 1 2 k,k+1
) and summing, we are led to

N k=1 ε k 2 X + N k=0 ε k,k+1 2 
X = R N k=1 Φ k + N k=0 Φ k,k+1 (∂ x ε η ) 2 + ε 2 η + ε 2 v + R ∂ x N k=1 Φ k + N k=0 Φ k,k+1 ε η ∂ x ε η + N k=1 R (∂ x Φ k ) 2 4Φ k ε 2 η + N k=0 R (∂ x Φ k,k+1 ) 2 4Φ k,k+1 ε 2 η . Since N k=1 Φ k + N k=0 Φ k,k+1 = 1,
and Φ k > 0 on R (so that the last two sums in the previous identity are non-negative), we finally deduce that

N k=1 ε k 2 X + N k=0 ε k,k+1 2 
X ≥ R (∂ x ε η ) 2 + ε 2 η + ε 2 v = ε 2 X .
This completes the proof of Lemma 1.

Proof of Corollary 3. Inequality (39) follows from Corollary 2, Lemma 1 and inequality (38), while inequality (40) follows from Corollary 2 and the fact that H c k and H 0 are continuous quadratic forms, with continuous bounds depending only on c * , in view of Corollary 1.

Dynamical properties

In this section, we focus on the evolution in time under (HGP) of various quantities introduced so far. In particular, we present the proofs of Propositions 4 and 5.

Dynamics of the modulation parameters

Proof of Proposition 4. We first derive the conclusions of Proposition 4 when the pair (η, v) is a smooth solution to (HGP), for which we are allowed to compute the differential equations satisfied by the modulation parameters a k (t) and c k (t). We next complete the proof using a density argument.

Step 1. Regularity and estimates for smooth solutions.

In this step, we make the further assumption that (η, v) ∈ C 0 ([0, T ], X 3 (R)), from which it follows by equation (HGP) that (η, v) ∈ C 1 ([0, T ], X(R)), and then from Proposition 2 that c ∈ C 1 ([0, T ], Adm N ) and a ∈ C 1 ([0, T ], R N ). We derive from (HGP) that ε := (ε η , ε v ) is solution to the equations

∂ t ε η =2∂ x ε v -ε η v c,a -ε v η c,a -ε η ε v - N k=1 j =k ∂ x η c k ,a k v c j ,a j - N k=1 c ′ k ∂ c η c k ,a k + N k=1 a ′ k -c k ∂ x η c k ,a k , (3.1) 
and

∂ t ε v =∂ x ε η -2v c,a ε v -(ε v ) 2 - N k=1 j =k ∂ x v c k ,a k v c j ,a j + N k=1 ∂ 2 x ∂ x η c k ,a k 2(1 -η c k ,a k ) -∂ 2 x ∂ x η c,a + ∂ x ε η 2(1 -η c,a -ε η ) + N k=1 ∂ x 3(∂ x η c k ,a k ) 2 4(1 -η c k ,a k ) 2 -∂ x 3(∂ x η c,a + ∂ x ε η ) 2 4(1 -η c,a -ε η ) 2 - N k=1 c ′ k ∂ c v c k ,a k + N k=1 a ′ k -c k ∂ x v c k ,a k . (3.2) 
Here and in the sequel, we have dropped the explicit mention to the dependence in t when this does not lead to a confusion.

We next differentiate the orthogonality conditions (22) to obtain

d dt ε(•, t), ∂ x Q c k (t),a k (t) L 2 = d dt P ′ (Q c k (t),a k (t) )(ε(•, t)) = 0,
for any 1 ≤ k ≤ N . Expanding the previous identities according to the chain rule and combining the resulting equations with (3.1) and (3.2) yields the system

M (t) c ′ (t) a ′ (t) -c(t) = Φ(t), (3.3) 
where the coefficients (M k,j (t)) 1≤j,k≤2N of the 2N -dimensional matrix M (t) are given by

M k,j (t) := P ′ (Q c k ,a k )(∂ c Q c j ,a j ) -δ j,k P ′ (∂ c Q c k ,a k )(ε), M k,j+N (t) := -P ′ (Q c k ,a k )(∂ x Q c j ,a j ) + δ j,k P ′ (∂ x Q c k ,a k )(ε), M k+N,j (t) := ∂ c Q c j ,a j , ∂ x Q c k ,a k L 2 -δ j,k ε, ∂ c ∂ x Q c k ,a k L 2 , M k+N,j+N (t) := -∂ x Q c j ,a j , ∂ x Q c k ,a k L 2 + δ j,k ε, ∂ 2 x Q c k ,a k L 2 ,
and the components (Φ k (t)) 1≤k≤2N of the 2N -vector Φ(t) are given by

Φ k (t) := -2 ε v -ε η v c,a -ε v η c,a -ε η ε v , ∂ x v c k ,a k L 2 -ε η -2v c,a ε v -(ε v ) 2 , ∂ x η c k ,a k L 2 -c k P ′ (∂ x Q c k ,a k )(ε) - ∂ x η c,a + ∂ x ε η 2(1 -η c,a -ε η ) - N j=1 ∂ x η c j ,a j 2(1 -η c j ,a j ) , ∂ 2 x η c k ,a k L 2 + 3(∂ x η c,a + ∂ x ε η ) 2 4(1 -η c,a -ε η ) 2 - N j=1 3(∂ x η c j ,a j ) 2 4(1 -η c j ,a j ) 2 , ∂ x η c k ,a k L 2 + N j=1 N l=1 l =j η c j ,a j v c l ,a l , ∂ x v c k ,a k L 2 + v c j ,a j v c l ,a l , ∂ x η c k ,a k L 2 , (3.4) 
Φ k+N (t) :=2 ε η v c,a + ε v η c,a + ε η ε v -ε v , ∂ 2 x η c k ,a k L 2 -ε η -2v c,a ε v -(ε v ) 2 , ∂ 2 x v c k ,a k L 2 -c k ε, ∂ 2 x Q c k ,a k L 2 - ∂ x η c,a + ∂ x ε η 2(1 -η -ε η ) - N j=1 ∂ x η c j ,a j 2(1 -η c j ,a j ) , ∂ 3 x v c k ,a k L 2 + 3(∂ x η c,a + ∂ x ε η ) 2 4(1 -η c,a -ε η ) 2 - N j=1 3(∂ x η c j ,a j ) 2 4(1 -η c j ,a j ) 2 , ∂ 2 x v c k ,a k L 2 + N j=1 N l=1 l =j η c j ,a j v c l ,a l , ∂ 2 x η c k ,a k L 2 + v c j ,a j v c l ,a l , ∂ 2 x v c k ,a k L 2 .
(3.5)

We next write the matrix M (t) under the form M (t) := D(t) + H(t), where D(t) refers to the diagonal matrix with diagonal coefficients

D k,k (t) := P ′ (Q c k )(∂ c Q c k ) = (2 -c 2 k ) 1 2 = 0, D k+N,k+N (t) := ∂ x Q c k 2 L 2 = (2 -c 2 k ) 3 2 3 = 0,
where 1 ≤ k ≤ N . In particular, D(t) is invertible, and its inverse is uniformly bounded with respect to t in view of (28). In order to estimate the matrix H(t), we first invoke the identities

P ′ (Q c k ,a k )(∂ x Q c k ,a k ) = ∂ c Q c k ,a k , ∂ x Q c k ,a k L 2 = 0.
Since the remaining terms involve either ε or distinct solitons, we can rely on computations similar to the ones in the proof of Proposition 3 to get

H k,j (t) = O ε L 2 + O L exp - ν c * L 2 .
Hence, there exists α 2 ≤ α 1 and L 2 ≥ L 1 such that for α ≤ α 2 and L ≥ L 2 , the operator norm of the matrix D(t) -1 H(t) is less than 1/2, so that M (t) is invertible. Moreover, the operator norms of the matrices M (t) -1 are uniformly bounded with respect to t.

At this stage, we have proved that

N k=1 |a ′ k (t) -c k (t)| + |c ′ k (t)| = O Φ(t) R 2N , for any t ∈ [0, T ]. Inspection of Φ(t)
shows that, similar to H k,j above, it only contains terms involving either ε or distinct solitons. Therefore we obtain

N k=1 |a ′ k (t) -c k (t)| + |c ′ k (t)| = O ε L 2 + O L exp - ν c * L 2 ,
which corresponds to (41).

Step 2. Density argument.

We consider a sequence

(η n 0 , v n 0 ) in N V 3 (R) such that (η n 0 , v n 0 ) → (η 0 , v 0 ) in X(R),
as n → +∞, and we denote (η n , v n ) the corresponding solutions to (HGP). It follows from Theorem 1 that the solutions (η n , v n ) are well-defined on [0, T ] for n sufficiently large and that

(η n , v n ) → (η, v) in C 0 ([0, T ], X(R)), (3.6) 
as n → +∞. In particular, for n large enough, the compactness of the segment

[0, T ] ensures that (η n (•, t), v n (•, t)) belongs to U c * (α, L) for any t ∈ [0, T ].
As a consequence, one can apply

Step 1 to (η n , v n ). This yields maps c n and a of class C 1 on [0, T ] such that the orthogonality conditions ( 22) are satisfied by the pair

ε n := (ε n η , ε n v ) = (η n , v n ) -R c n ,a n .
Moreover, combining the Lipschitz continuity of the maps C and A on some tubular neighborhood of the compact set {(η(t), v(t)), t ∈ [0, T ]} with (3.6), we have

(c n (t), a n (t)) → (c(t), a(t)) in C 0 ([0, T ], R 2N ), (3.7) 
as n → +∞. Recall that, by formulae ( 5), the maps (c, a)

→ ∂ α c ∂ β x Q c (• -a) are continuous from (- √ 2, √ 2) \ {0} × R into L 2 (R) 2 for any (α, β) ∈ N 2 .
Combined with (3.7), this shows that the matrices M n (t) converge towards the matrices M (t), uniformly with respect to t, as n → +∞.

Since the map

A → A -1 is continuous from GL N (R) to M N (R), the inverses (M n (t)) -1 also converge towards the inverses M (t) -1 uniformly with respect to t ∈ [0, T ].
We next turn to the vectors Φ n (t). In view of (3.6) and (3.7), we can write

ε n = (η n , v n ) -R c n ,a n → (η, v) -R c,a = ε in C 0 ([0, T ], X(R)), (3.8) 
as n → +∞. On the other hand, in view of formulae [START_REF] Chiron | The KdV/KP-I limit of the nonlinear Schrödinger equation[END_REF], the derivatives ∂ α c ∂ β x Q c have a vanishing limit at infinity for any (α, β) ∈ N 2 . Therefore, the maps (c, a) → ∂ α c ∂ β x Q c (•a) are not only continuous for the L 2 -norm, but also for the uniform one. Applying (3.7) and (3.8) to expressions (3.4) and (3.5), and invoking the Sobolev embedding theorem of H 1 (R) into C 0 (R) when necessary, it follows that

Φ n → Φ in C 0 ([0, T ], R 2N ),
as n → +∞. Coming back to (3.3), we are finally led to

(c n ) ′ (t) (a n ) ′ (t) -c n (t) → M (t) -1 Φ(t),
as n → +∞, the convergence being uniform with respect to t ∈ [0, T ]. In view of (3.7), this shows that the maps c and a are actually of class C 1 on [0, T ]. Moreover, they are given by

c ′ (t) a ′ (t) -c(t) = M (t) -1 Φ(t),
for any t ∈ [0, T ], so that (41) follows as in Step 1.

We are now in position to provide the Proof of Corollary 4. When (η(•, t), v(•, t)) ∈ U c * (α, L) for any t ∈ [0, T ], we can combine estimates (25) and (41) to obtain

N k=1 a ′ k (t) -c * k ≤ N k=1 a ′ k (t) -c k (t) + N k=1 c k (t) -c * k = O α + O L exp - ν c * L 2 . (3.9)
As a consequence, we can fix α 3 small enough and L 3 sufficiently large, so that

a ′ k+1 (t) -a ′ k (t) > 1 2 c * k+1 -c * k ≥ σ * ,
for any 1 ≤ k ≤ N -1, when α ≤ α 3 and L ≥ L 3 . The first inequality in follows by writing

a k+1 (t) -a k (t) -a k+1 (0) + a k (0) = t 0 a ′ k+1 (s) -a k (s) ds > σ * t.
Applying (27) to the pair (η(•, 0), v(•, 0)), we deduce the second inequality in (43).

Concerning (44), it follows from (3.9) that

2 -(a ′ k (t)) 2 -2 -(c * k ) 2 = O α + O L exp - ν c * L 2 .
Therefore, one can decrease α 3 and increase L 3 , if necessary, so that inequality (44) holds for any 1 ≤ k ≤ N , when α ≤ α 3 and L ≥ L 3 . This completes the proof of Corollary 4.

Monotonicity of localized scalar momentum

This subsection is devoted to the almost monotonicity properties of suitably localized versions of the scalar momentum P (η, v) := 1 2 R ηv.

We derive them using the conservative form of the equation governing the integrand ηv of P .

Lemma 3.1. Let (η, v) ∈ C 0 ([0, T ], N V 3 (R)) be a solution to (HGP). Then,

∂ t ηv = ∂ x (1 -2η)v 2 + η 2 2 + (3 -2η)(∂ x η) 2 4(1 -η) 2 + 1 2 ∂ 3 x η + ln(1 -η) on [0, T ] × R. (3.10)
Proof. Under such regularity, it follows from (HGP) that ∂ t η and ∂ t v are continuous functions on [0, T ] × R and that

∂ t ηv = ∂ x (1 -2η)v 2 + η 2 2 -η∂ x ∂ 2 x η 2(1 -η) + (∂ x η) 2 4(1 -η) 2 .
The conservation law given by (3.10) then follows from the identity

η∂ x ∂ 2 x η 2(1 -η) + (∂ x η) 2 4(1 -η) 2 = - 1 2 ∂ 3 x η + ln(1 -η) -∂ x (3 -2η)(∂ x η) 2 4(1 -η) 2 .
One can drop the smoothness assumptions in Lemma 3.1 by deriving an integral version of (3.10). 

∂ t R ψηv = R ∂ t ψηv - R ∂ x ψ (1 -2η)v 2 + η 2 2 + (3 -2η)(∂ x η) 2 4(1 -η) 2 - 1 2 R ∂ 3
x ψ η + ln(1η) .

(3.11)

Proof. It follows by approximation of the initial datum using Theorem 1.

In particular, taking ψ = 1 in Corollary 3.1 yields the conservation of P .

We turn now to localized versions of P . We deduce from Corollary 3.1 Proposition 3.1. Let (η, v) ∈ C 0 ([0, T ], N V(R)) be a solution to (HGP). Let Ψ ∈ C 3 b (R) be a non-decreasing function such that |∂ 3

x Ψ| ≤ C 0 ∂ x Ψ on R for some positive number C 0 . Let X ∈ C 1 ([0, T ], R), t 0 ∈ [0, T ] and τ 0 > 0 be such that 2C 0 τ 2 0 < 1, and

η(t 0 , x) ≤ 1 2 - X ′ (t 0 ) 2 4(1 -2C 0 τ 2 0 ) , (3.12) 
for any x ∈ [X(t 0 ) -R 0 , X(t 0 ) + R 0 ] and some positive number R 0 . Then,

∂ t R Ψ τ 0 (x -X(t)) η(x, t)v(x, t)dx |t=t 0 ≤ τ 0 6 + 6 1 -η sup E(η, v) sup |x|≥τ 0 R 0 ∂ x Ψ(x), (3.13) 
where η sup := sup η(t, x), (t, x) ∈ [0, T ] × R < 1.

Proof. Set I 0 := [X(t 0 ) -R 0 , X(t 0 ) + R 0 ]. It follows from (3.12) and the condition 2C 0 τ 2 0 < 1 that η ≤ 1/2 on I 0 , and real analysis then implies that |η + ln(1η)| ≤ η 2 on I 0 .

(3.14)

Applying (3.11), we may rewrite the left-hand side of (3.13) as

- R τ 0 ∂ x Ψ (1 -2η)v 2 + η 2 2 + X ′ (t 0 )ηv + (3 -2η)(∂ x η) 2 4(1 -η) 2 - 1 2 R τ 3 0 ∂ 3 x Ψ η + ln(1 -η) ,
where ∂ x Ψ and ∂ 3 x Ψ are evaluated at the point τ 0 (x -X(t 0 )). For x ∈ I 0 , we deduce from (3.14) and the bound |∂ 3

x Ψ| ≤ C 0 ∂ x Ψ that

τ 0 ∂ x Ψ (1 -2η)v 2 + η 2 2 + X ′ (t 0 )ηv + 1 2 τ 3 0 ∂ 3 x Ψ η + ln(1 -η) ≥ τ 0 ∂ x Ψ (1 -2η)v 2 + 1 2 -C 0 τ 2 0 η 2 -|X ′ (t 0 )|ηv ≥ 0,
where the non-negativity of the quadratic form, which yields the last inequality, follows from assumption (3.12). Since η ≤ 1/2 on I 0 , we also have

τ 0 ∂ x Ψ (3 -2η)(∂ x η) 2 4(1 -η) 2 ≥ 0,
for x ∈ I 0 , and therefore, Then, there exist two positive numbers δ and Λ := 4K + 4, such that, given any y ∈ U , there exists a map π y ∈ C 1 (B(x(y), δ), V ) such that, given any t ∈ B(x(y), δ), z = π y (t) is the unique solution in B(y, Λδ) of the equation φ(t, z) = 0.

τ 0 ∂ x Ψ (1 -2η)v
Moreover, the map π y is Lipschitz on B(x(y), δ), with Lipschitz constant at most Λ.

Remark A.1. When y is fixed in U , assumptions (i) and (ii) are enough to apply the implicit function theorem in order to construct a map π y ∈ C 1 (B(x(y), δ), V ) as in Proposition A.1. The difficulty comes from the fact that, in this case, the constants δ and K depend a priori on y.

Proof. The proof is similar to the usual proof of the implicit function theorem. We fix y ∈ U and we set Φ(x, z) := Φ 1 (x, z), Φ 2 (x, z) := x, A -1 y φ(x, z) -T y (x) . The function Φ is well-defined and of class C 2 from E × V to E × F . Moreover, its differential at the point (x(y), y) may be written as dΦ (x(y),y) = Id 0 0 Id + H(y) .

In view of assumption (ii), the operator norm of the maps dΦ (x(y),y) -Id is less than 1/2 for any y ∈ U . Combining with assumption (iii), we infer the existence of a positive number ρ < r such that the operator norm dΦ (x,z) -Id is less than 3/4 for any (x, z) ∈ B(x(y), ρ) × B(y, ρ).

Given a point t ∈ E, we next set Ψ(x, z) := (t, -T y (t)) + (x, z) -Φ(x, z).

The map Ψ is well-defined on E × V , and Lipschitz on B(x(y), ρ) × B(y, ρ), with Lipschitz constant at most 3/4. Moreover, one can check that Ψ(x(y), y) = t, y -T y (tx(y)) , so that, letting Λ := 4 + 4K, Ψ(x(y), y) -(x(y), y) E×F ≤ ρ 4 , when t ∈ B(x(y), ρ/Λ). In this case, the map Ψ is a contraction from B(x(y), ρ) × B(y, ρ) to B(x(y), ρ) × B(y, ρ). By the fixed point theorem, there exists a unique point (x t , z t ) in B(x(y), ρ) × B(y, ρ) such that Ψ(x t , z t ) = (x t , z t ), i.e.

x t = t and φ(t, z t ) = 0.

At this stage, we set δ := ρ/Λ < ρ < r, and π y (t) := z t ∈ V.

In view of the definition of z t , given two points t 1 and t 2 in B(x(y), δ), we have π y (t 1 )π y (t 2 ) = -T y (t As a consequence, the map π y is Lipschitz on B(x(y), δ), with Lipschitz constant at most 4K+3 ≤ Λ. The fact that π y is of class C 1 on B(x(y), δ) follows from the implicit function theorem. This completes the proof of Proposition A.1.
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 21 Let c = (c 1 , . . . , c N ) ∈ Adm N . Given a positive number δ, there exist two positive numbers β and M such that, if R c,a -R c,b X < β, for some positions a ∈ Pos N (M ) and b ∈ Pos N (M ), then, N k=1 |a kb k | < δ.

  we deduce from Step 1 that the numbers c and a given by (c, a) = γ c * ,b (η, v), are well-defined, so that we can set C(η, v) = c and A(η, v) = a. We claim that c and a do not depend on the choice of b ∈ Pos N (L 1 ) such that (η, v) ∈ B(R c * ,b , 2α 1 ). a consequence, the maps C and A are well-defined on U c * (α 1 , L 1 ) with values in Adm N (τ /2) ⊂ Adm N , respectively, N . Indeed, given another choice of b 2 ∈ Pos

  ), we obtain(c, a) -(c * , b 2 ) < Λ 1 δ 1 .Since Ξ(η, v, c, a) = 0, we deduce from Step 1 that (c, a) = γ c * ,b 2 (η, v), so that c and a do not depend on the choice of b ∈ Pos N (L 1 ) such that (η, v) ∈ B(R c * ,b , 2α 1 ).
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 31 Let (η, v) ∈ C 0 ([0, T ], N V(R)) be a solution to (HGP), and let ψ ∈ C 0 ([0, T ],C 3 b (R)) ∩ C 1 ([0, T ], C 0 b (R)). Then, on [0, T ]

  It remains to consider the case x / ∈ I 0 . In view of the definition of η sup , we have I 0 , and the conclusion follows from (3.15) and (3.16) by integration.We are finally in position to provide the Proof of Proposition 5. Let t 0 ∈ [0, T ]. We apply Proposition 3.1 with the choices t 0 := t 0 , Ψ(x) := (1 + th(x))/2, τ 0 := ν c * /16 and X(t) := (a k (t) + a k+1 (t))/2. A quick computation first shows that for this choice of Ψ, the inequality |∂ 3x Ψ| ≤ C 0 ∂ x Ψ holds for C 0 := 4. The condition 2C 0 τ 2 0 < 1 is satisfied since ν c * /16 < √ 2/16. We turn now to condition (3.12).Using the inequality 1/(1s) ≤ 1 + 2s for s ∈ [0, 1/2], we infer from (3.17) and the inequality ν c * /16 < 1/4 that At this stage, we come back to the decompositionη(•, t), v(•, t) = R c(t),a(t) (•) + ε(•, t).In view of (25), we have ε(•, t) X ≤ K 1 α. Hence, by the Sobolev embedding theorem, we may choose α 4 ≤ α 3 so that, if α ≤ α 4 , then

			-	2 1 -η sup	(1 -η)v 2 2 0 ≤ ≤ (1 -2η)v 2 ≤ 4 (3 -2η)(∂ x η) 2 4(1 -η) 2 ≤ max 6, (1 -η)v 2 2 1 -η sup , 6	(∂ x η) 2 8(1 -η)	,
	as well as															
	η + ln(1 -η) ≤ where we have used the inequality |X ′ (t 0 )| ≤ 2 1 -η sup η 2 4 , and |X ′ (t 0 )ηv| ≤ 2 √ √ 2. Therefore,	2	η 2 4	+	√ 1 -η sup 2	(1 -η)v 2 2	,
	τ 0 ∂ x Ψ (1 -2η)v 2 +	η 2 2	+ X ′ (t 0 )ηv + ≤ τ 0 6 + 1 2 τ 3 0 ∂ 3 x Ψ η + ln(1 -η) 1 -η sup e(η, v) sup |x|≥τ 0 R 0 6	∂ x Ψ(x)	(3.16)
	on R \ It follows from
	(44), namely		2 -(a ′ k (t 0 )) 2 ≥	ν c * 2	and			2 -(a ′ k+1 (t 0 )) 2 ≥	ν c * 2	,
	that									X ′ (t 0 ) 2 ≤ 2 -	ν 2 c * 4	.	(3.17)
	1 2	-	X ′ (t 0 ) 2 4(1 -8(ν * ) 2 )	≥	1 2	-	2 -4(1 -8(ν * ) 2 ) ν 2 c * 4	≥	1 2	-	1 2	-	ν 2 c * 16	1 + 16(ν * ) 2 ≥	ν 2 c * 32	.
										ε(•, t) L ∞ ≤	ν 2 c * 64	.	(3.18)
				2 +	η 2 2	+ X ′ (t 0 )ηv +	(3 -2η)(∂ x η) 2 4(1 -η) 2	+	τ 3 0 2	∂ 3

x Ψ η + ln(1η) ≤ 0 (3.15) on I 0 .

It follows from (3.18) that (3.12) holds everywhere on the set

S := x ∈ R, s.t. η c(t 0 ),a(t 0 ) (x) ≤ ν 2 c *
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  1t 2 ) + π y (t 1 ) -Φ 2 (t 1 , π y (t 1 )π y (t 2 ) -Φ 2 (t 2 , π y (t 2 ) , so that π y (t 1 )π y (t 2 ) F ≤ K t 1t 2 E + 3 4 t 1t 2 E + π y (t 1 )π y (t 2 ) F .

A close inspection of the proof actually shows that α * , L * and A * only depend on a lower bound on νc * , on min{|c* jc * k |, 1 ≤ j < k ≤ N } and on min{|c * k |, 1 ≤ k ≤ N }.

In the definition of Ψ k , one could a priori replace the constant νc * /16 by an arbitrary positive constant ν * . In order that the monotonicity formula later stated in Proposition 5 holds, the choice of ν * is actually restricted. Up to a constant multiplicity factor, νc * /16 is presumably optimal.

By the left-hand side of (38), we actually mean all the terms which we have previously estimated in Corollary 2 and Lemma 1 as the corresponding O.
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Combining the definition of η c,a , the explicit form [START_REF] Chiron | The KdV/KP-I limit of the nonlinear Schrödinger equation[END_REF] of the solitons, condition (43) on a(t 0 ) and the inequality ν c ≥ ν c * /2 stated in (28), it follows that the set S contains the interval [X(t 0 ) -R 0 , X(t 0 ) + R 0 ] where

Finally, since 0 < ∂ x Ψ(x) ≤ 2 exp(-2|x|) for any x ∈ R, we obtain from (3.13) that

and the proof is completed.

We finally give the Proof of Corollary 5. Since the energy E and the momentum P are conserved quantities for equation (HGP), we infer from definition (45) that

Corollary 5 follows by combining Proposition 5 and the ordering condition (42).

A A quantitative version of the implicit function theorem

In this appendix, we give the proof of the following version of the implicit function theorem which we have invoked in order to establish Proposition 4. for any y ∈ U . In (A.1), the operator norm of the continuous linear mapping H y is less than 1/2, whereas in (A.2), the operator norm of T y is less than K.

(iii) the operator norm of d 2 φ (x,y) is uniformly bounded with respect to x ∈ E and y ∈ V .

(iv) there exists a positive constant r such that B(y, r) ⊂ V, for any y ∈ U .