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1. INTRODUCTION

The classification of hyperspectral remote sensing images had
been a subject of interest in the past few years, due to the
recent advances in remote-sensors technology: hyperspectral
data are composed of hundreds of images corresponding to
different spectral bands. Classification of such images is a
challenging task as it entails processing a huge amount of
data that are high dimensional, leading to significant time and
memory requirements. From a methodological viewpoint,
many classifiers are not appropriate in this context as they
suffer the dimensionality curse: the classification accuracy
decreases with the dimension of the data when the number
of available pixels is fixed. As an example, we can cite the
underachievements of gaussian classifiers or neural networks
techniques [1, 2]. More recently, Support Vector Machines
[3] have received particular attention in this context [4] as
they alleviate the dimensionality curse, and it had been shown
that they generally outperform traditional classification tech-
niques. Since then, some adaptations to the context have been
developed, e.g. kernel function that take into account the spa-
tial neighborhood information [5, 6].

Even though SVM are the state of the art classification tech-
nique for remote-sensing images, we would like to consider
the use of a new non-parametric classification technique: Per-
Turbo [7]. It provides a class-wise classification: each class
is defined by an intrinsic representation based on the Laplace-
Beltrami operator approximation [8]. This geometric charac-
terisation allows one to associate to each class a topologic in-
formation that describes its spatial distribution in the ambiant
space. This information is then used to derive a perturbation

measure for each new example. This example is then classi-

fied into the class whose perturbation is the smallest. In the
paper where PerTurbo was first introduced [7], comparison
with SVM is assessed on several examples and it shows sim-
ilar, sometimes slightly better, performances.

In this work, we aim at investigating the performances of Per-
Turbo in the remote-sensing context. Indeed, the method pos-

sesses appealing characteristics:

o the classification per class avoids the use of settings
like one vs all or one vs one in the multiclass formula-

tion; hence there is no need to train several classifiers;

e it is a non-parametric method: there is no explicit for-
mulation of the decision function like in SVM for in-
stance. The method is very simple, easy to implement

and involves few parameters to tune.

To assess the effectiveness of the classification method Per-
Turbo in the remote-sensing context, we run some tests on
two classical datasets: an image taken from Airbone ROSIS
of the Pavia University and of the Centre of Pavia, and com-
pare the results with the ones obtained with SVM.

2. PERTURBO CLASSIFICATION APPROACH

We consider a classical machine learning problem, where one
seeks for a function that best labels a set of unlabeled exam-
ples. We denote S = {(z',11), (x%,92), ..., (", yn)} €
R? x {uy,...,ur} the training set, and S, the set of all the
training examples with label u, belonging to S. The idea
to build the predictive function is the following: each Sy is
embedded in a dedicated Riemannian manifold M,, whose
geometric structure can be expressed in term of the Laplace-

Beltrami operator. Despite the fact that it is generally not



possible to find an analytic expression of this operator, it can
be approximated by the spectrum of K (S), whose (ith, jth)

term is the Gaussian kernel:

Kij(S) = k(z',@?) = ¢p(z")" - p()

o — o] 0
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where ' and &/ € S, ¢ is the mapping from the original
space into the feature space (also called the Reproducing Ker-
nel Hilbert Space RKHS),

R tunes the variance of the Gaussian kernel.

|| is the Euclidean norm and 0% €

When an example @ from the test set arrives, we compute
(&, M) =1 — kLK(S) " kz, 2)

with kz = k(S,, Z) whose ith term is k(z’,z), ' € S,
which quantifies the perturbation of the manifold M, when
x is added to class uy. Each test sample x is then classified
into the class that provides the smallest perturbation, i.e.

argm{inT(i,Mg). 3)

Thus, in some sense, PerTurbo can be seen as a subspace clas-
sifier i.e. a setting generalizing the principal component anal-
ysis, in which each class is modeled by a dedicated subspace
of the input space, and in which a new item is classified into
the class corresponding to the subspace the distance to which
is the closest [9], but instead of working in the input space, the
classifier operates in a kernelized space. PerTurbo works as
long as the perturbation measure 7 is defined, hence as long
as K (Sp) is invertible V¢ < L. If K(S;) is not invertible, it is
always possible to compute its pseudo-inverse or to consider
regularization techniques that find a close invertible matrix:
for instance, in the case of Tikhonov regularization, one con-
siders

K(8)=K(S))+ag-I )

where I is the identity matrix, and oy € R’ . The main in-
terest of such regularizations is that they make the Gram ma-
trix (the spectrum of which is equivalent to that of the co-
variance matrix) less sensitive to outliers. Hence, even in the
case where K (S) is invertible, it is possible to boost the per-
formances by tuning o, to a value which is adapted to the

covariance of the dataset.

3. PRELIMINARY EXPERIMENTAL RESULTS

In order to assess the performances of PerTurbo on remote
sensing images, we use two hyperspectral scenes: Pavia
University and Pavia Centre, both acquired by the ROSIS
sensor. The first data set contains 102 spectral bands and is
a 1096 x 715 pixels image; the second one is a 610 x 340
pixels image and contains 103 spectral bands. Both datasets
have nine classes of interest, that are detailed in table 1. We
select at random the training pixels and the remaining ones
compose the test set.

Two parameters need to be tuned for the SVM with Gaus-
sian kernel: the Gaussian kernel width o and the penalty
term C. They were set using five-fold cross validation
o € {0.5,1,1.5,2,3,4,5,6,10} and C € {1,5,10,200}.
We use the kernlab implementation for R [10] to run the ex-
periments. For the PerTurbo algorithm, only the o parameter
needs to be tuned. We use a rule of thumb for its choice,
coming from the nearest neighbor and spectral clustering
community [11]: the minimum over all the classes of the
mean distance of the training set points to their k-nearest
neighbor, with & = log(N) 4+ 1 and N being the number of
points in S. Note that this rule of thumb is very ad hoc and
data-dependent: accuracies are probably under-estimated as
there is no guarantee that the chosen o gives the best per-
formances. Each experiment is repeated 20 times. Table 1
compares the average (and standard deviation in parenthesis)
classification accuracies per class, the overall accuracy (OA)
and the average accuracy (AA) obtained with SVM and Per-
Turbo. Figure 1 shows an example of results of PerTurbo
classification with regularization on Pavia University.

We note that, for Pavia Centre dataset, SVM slightly out-
performs PerTurbo but the accuracies are not significantly dif-
ferent. For Pavia University dataset, SVM clearly exhibits
better performances, for every classes but three, especially
for classes bare soil and gravel that are particularly badly
predicted by PerTurbo. Thus, we tried the regularized ver-
sion of the algorithm, tuning the ay = o, V¢ € L parameter
thanks to a logarithmic search (similarly to the C' parameter
of the SVM, which has roughly the same influence): it clearly
improves the results, even if the OA and AA remain lower
than SVM. In the near future, it is worth checking if this dif-
ference comes from an inappropriate rule of thumb for the

sigma tuning (which is not optimized whatever the version



Noclass [ 1 2 3 4 5 6 7 8 9
PAVIA CENTRE

Name Water Tree Meadow  Brick Bare soil Asphalt  Bitumen  Tile Shadow

# train 824 820 824 808 820 816 808 1260 476

# test 65148 6780 2269 1881 5769 8438 6486 41574 2396 OA AA

PerTurbo 99.89 90.27 96.76 94.46 94.65 96.24 89.93 98.65 99.94 | 98.05 95.65
(0.06) (0.40) (0.34) (0.74) (0.32) (0.45) (1.09) (0.10)  (0.03) | (0.07)

SVM 99.97 95.99 97.04 96.68 96.29 97.61 93.05 99.21 99.97 | 98.84 97.31
(0.02) (0.50) (0.36) (0.61) (0.48) (0.43) (0.56) (0.08)  (0.03) | (0.06)

PAVIA UNIVERSITY

Name Asphalt Meadow  Gravel Tree  Metal sheet Baresoil Bitumen Brick Shadow

# train 548 540 392 524 265 532 375 514 231

# test 6107 18101 1724 2672 1080 4798 816 3142 415 OA AA

PerTurbo 76.08 94.53 67.34 95.77 99.44 60.21 95.13 91.45 100 86.24 86.60

(init) 0.91) (0.84) (1.90) (0.70) (0.26) (23D (0.51) (1.19)  (0.00) | (0.45)

PerTurbo 81.17 94.24 71.73 95.97 99.43 63.59 93.74 91.66 100 87.48 87.95

(Tikhonov) | (0.01) (0.00) (0.02) (0.01) (0.00) (0.02) (0.01) (0.01)  (0.00) | (0.27)

SVM 87.47 93.86 84.23 97.80 99.86 95.19 94.82 92.58 99.93 | 92.97 93.97
(0.71) (0.50) (1.03) (0.38) (0.18) (0.52) (0.92) (0.53)  (0.10) | (0.26)

Table 1. Information classes, training and test samples and classification accuracies in percentage for datasets Pavia University
and Pavia Centre.

Fig. 1. Pavia University dataset. The color code is the following: Asphalt, Meadows, Gravel, Trees, Painted metal sheets, Bare
Soil, Bitumen, ,

=

(a) three-channel color composite (b) available reference data (c) PerTurbo classification results



of PerTurbo) that leads to degraded performances or if a grid
search driven on PerTurbo could improve the results. In a
similar way, we wonder on the interest of tuning o and o pa-
rameters independently of each class. Also, it is worth noting
that the PerTurbo classification procedure uses every samples
in the learning database, and as such may be prone to errors
in case of outliers or mislabeled samples. To balance these
side-effects, two variations of PerTurbo are reported in [7].
The first one is the regularization procedure inspired by sparse
learning that is used on Pavia University, but which could be
generalized to any dataset after a short study of the impact
of such regularization. The second one is based on a selec-
tion of the most adapted eigenvectors of K (S), in a PCA-like
manner (in the RKHS), so that only principal components are

kept, leading to reduce the influence of outliers.

4. CONCLUSION

A new classification technique, PerTurbo, has been investi-
gated in the context on hyperspectral remote sensing images
context. In this framework, each class is characterised by its
Laplace-Beltrami operator, then approximated by the spec-
trum of K(S), whose terms are derived from the Gaussian
kernel. The method is very simple, easy to implement and
involves few parameters to tune. It also allows the definition
of a simple multi-class strategy, and, as a class-wise classifi-
cation method, the addition of a new class does not requires
the re-training of the pre-existing class models. We conducted
experiments on two datasets: results for Pavia Centre dataset
are encouraging, while results obtained on Pavia University
show that SVM clearly outperforms PerTurbo. Nevertheless,
we believe that this difference comes from a bad parametriza-
tion of the algorithm (for which we used a rule of thumb,
contrarily to the SVM procedure which was fully optimized).
Hence, a systematic search for the optimal value of the param-
eter would improve the results. Moreover, there are several
other possible improvements coming from the fields of reg-
ularization methods of dimensionality reduction techniques
which let us think that this first experiment is promising. In
the near future, we also plan to investigate rules leading to a
better choice of 0. We are also interested in studying the be-
havior of PerTurbo when the classes are heterogeneous with
only few training samples available, or when the classes in the

training set are highly unbalanced.

5. REFERENCES

[1] G.H. Hughes, “On the mean accuracy of statistical pat-
tern recognizers,” IEEE Trans. on Information Theory,
vol. 14, pp. 55-63, 1968.

[2] K. Fukunaga and R.R. Hayes, “Effects of sample size in
classifier design,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 11, pp. 873-885, 1989.

[3] V.N. Vapnik, Statistical learning theory, John Wiley &
Sons, New York, 1998.

[4] F. Melgani and L. Bruzzone, “Classification of hyper-
spectral remote sensing images with support vector ma-
chines,” IEEE Trans. on Geoscience and Remote Sens-
ing, vol. 42, pp. 1778-1790, 2004.

[5] B. Guo, S. Gunn, R. Damper, and J. Nelson, “Customiz-
ing kernel functions for SVM-based hyperspectral im-

age classification,” IEEE Trans. on Image Processing,
vol. 44, pp. 2839-2846, 2008.

[6] M. Fauvel, J. Chanussot, and J.A. Benediktsson, “A
spatial-spectral kernel-based approach for the classifi-
cation of remote-sensing images,” Pattern Recognition,
vol. 45, pp. 381-392, 2012.

[7]1 N. Courty, T. Burger, and L. Johann, “PerTurbo: a new
classification algorithm based on the spectrum perturba-
tions of the laplace-beltrami operator,” in ECML/PKDD,
2011, vol. 1, pp. 359-374.

[8] L. Chavel, Eigenvalues in Riemannian geometry, Aca-
demic Press, Orlando, 1984.

[9] H. Cevikalp, D. Larlus, M. Neamtu, B. Triggs, and F. Ju-
rie, “Manifold based local classifiers: Linear and non-

linear approaches,” Journal of Signal Processing Sys-
tems, vol. 61, no. 1, pp. 61-73, 2010.

[10] A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis,
“kernlab — An S4 package for kernel methods in R,”
Journal of Statistical Software, vol. 11, no. 9, pp. 1-20,
2004.

[11] U. von Luxburg,
Statistics and Computing, vol. 17, no. 4, pp. 395-416,
2007.

“A tutorial on spectral clustering,”



