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Abstract

This paper deals with the design of an H∞-observer to estimate the state variables of

the vertical car dynamics to be used for suspension control applications. The proposed

methodology allows to cope with both the disturbance decoupling problem (for the road

profile effects) and the implementation issue (through observer pole placement). The con-

sidered model is a 7 DOF full-car vertical model subject to unknown ground disturbances

whose effects on the estimated state variables are minimized using the H∞ framework.

Some experiments on a real test car highlight the performances of this observer which

could be used in many advanced control strategies to improve the comfort and road hold-

ing of a vehicle using a reduced number of sensors.

Keywords: H∞-observer, unknown input, Linear Matrix Inequality (LMI), suspension

control, pole placement
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1. Introduction

This paper deals with the estimation of some non-measured variables of the vehicle

model, for suspension control objectives. In this section, the main objectives are first pre-

sented. Then, a brief state of the art, dealing both with existing observers for suspension
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control applications and unknown input observers in general, is provided. Finally, the

contribution of the paper is presented.

1.1. Problem statement

The aim is to estimate the state variables of the full-car model in order to get a com-

plete knowledge of the vehicle dynamics for on-board suspension control applications. The

developed observer has to provide the estimated state variables using a reduced number

of sensors. This is one of the main challenges since many car or equipment manufacturers

like SOBEN currently aim at equipping mass-produced cars with controlled suspensions

to improve comfort and road holding performances. However, due to the number and

the cost of the required sensors, this is not yet possible, except for upmarket car models.

Moreover even if such cars have been already equipped with controlled suspensions, the

control strategies are often open-loop since closed-loop applications require many sensors.

Furthermore, car manufacturers need to choose the number, the kind and the location

of sensors in the vehicle. Therefore, a complete observer design methodology is of great

interest to take up this challenge and meet the industrial needs.

1.2. State of the art

Observers for suspension control applications have been already studied (?????). In

these previous works, bi-linear observers, also based on acceleration measurements, are

proposed and provide interesting results, but for quarter car model estimation only. In

?, the necessary and sufficient conditions for bi-linear observer design are established.

However, if these restrictive conditions for exact disturbance decoupling are not fulfilled,

no result is proposed to design an approximated observer. Furthermore the location of

the observer poles cannot be explicitly specified, which renders the proposed observers

quite difficult to adjust in practice. In these past studies, the estimation problem is

often addressed using specific sensors, and the developed methodology sometimes cannot

be adapted if some other variables are measured. Furthermore, the proposed methods

often do not include tuning parameters allowing the designer to easily adapt the observer

behavior to the observed system. Therefore, no global and practical methodology exists

to solve this problem.
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The system under study is represented by a full-car model, subject to unknown ground

disturbances. Thereafter, unknown input observers (UIO) have to be considered. Such

observers have been already studied by many authors ??????. Various methods have

been proposed to obtain an exact disturbance decoupling under specific conditions, or to

minimize the disturbance effect on the estimated states (?). In ?, a method is proposed

to design an UIO where the measured variables are also corrupted by the unknown distur-

bance, through some linear transformations that allow the cancellation of the disturbance

effect on the measured outputs. Depending on the system and on the available measure-

ments, the conditions for exact disturbance decoupling, given for example in ?? may not

be fulfilled. These mathematical conditions are necessary to get an exact disturbance

decoupled observer, but in practice, they are not necessary to get an efficient observer

since they involve an exact decoupling on the whole frequency range. Indeed, from a

practical point of view, these conditions should be achieved on the frequency range of

interest only. Furthermore, the exact disturbance decoupling may be tractable and might

achieve unsuitable pole placement, leading to unusable observer. However, the trade-

off between disturbance decoupling and observer pole placement has not been studied

sufficiently thoroughly.

1.3. Contribution

The main contribution is a complete observer design methodology, based on existing

results on UIO design, and moreover taking some practical implementation constraints

into account, such as pole placement or H∞ disturbance decoupling. The unknown dis-

turbance effect minimization problem is formulated such that the observer matrices are

determined to fulfill a global condition including all the essential objectives: stability,

disturbance decoupling and pole placement, without any starting choice in the observer

matrices, like in many existing studies. Therefore this method is less conservative and

allows the designer to handle the compromise between disturbance decoupling and pole

placement, thanks to appropriate tuning parameters and LMI ( Linear Matrix Inequality)

regions for pole placement.

The proposed methodology leads to the design of an H∞-observer to estimate the

state variables of the vertical car dynamics. This kind of observer can be used for any
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passive suspension system (for instance for diagnosis purposes), but is very interesting for

semi-active suspension systems, since it could be used in different observer-based control

strategies. It is worth noting that, even if the observer is a LTI system, it is proven to be

efficient with respect to the variation of the damping coefficient of the suspension, which,

in practice, corresponds to different control actions (for the semi-active damper).

This paper is organized as follows: the material used for the experiments and the

vehicle model are described in Section 2, the estimation problem is formulated and solved

in Section 3, some synthesis results are given and the robustness of the observer is analyzed

in Section 4, the experimental tests and results are presented in Section 5. Finally, the

paper is concluded in Section 6, and some future works are proposed.

pdf

2. Vehicle modeling and system description

pdf In this section, the various material resources used for the experiments shown in

this paper to analyze the behavior of the synthesized observer are presented.

2.1. Material resources

2.1.1. Semi-active shock absorber prototypes

Four semi active shock absorber prototypes, under study in this paper, have been

built by SOBEN and mounted on a test car. These shock absorbers can be controlled

by means of a servomechanism installed on each shock absorber to control the internal

oil flow, and therefore, the damping properties. The Figure 1 represents a front shock

absorber prototype mounted on the SOBEN test car.

Figure 1: New semi-active SOBEN shock absorber

2.1.2. Test car and acquisition/control board

The test car from SOBEN is a mid-range car used for the experiments. Several sensors

have been mounted on the test car, as represented in Figure 1. Some of them, like the
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accelerometers are used by the observer, whereas the others have been installed only to

study the behavior of the suspensions and to validate the estimated variables, as detailed

in Section 4. Seven accelerometers have been mounted. The four vertical unsprung masses

accelerations z̈usi=1,2,3,4
, at each corner of the vehicle, the vertical sprung mass accelerations

z̈s1,2,3
at three corners, and the four suspension deflections are measured.

Notice that the last sprung mass acceleration measurement is not required since the vehicle

body is supposed to be a solid having three degrees of freedom. Indeed, each acceleration

of the sprung mass at one corner can be simply derived from the accelerations of the

sprung mass at the other three corners.

The accelerometers are strain-gage based, whereas the deflection sensors are poten-

tiometer based. They have been chosen because of their reduced cost, high reliability and

small packaging. The measured variables and used sensors are given in Table 1.

Notation Description Full scale

z̈us1
Front left wheel vertical acceleration +/- 500m/s2

z̈us2
Front right wheel vertical acceleration +/- 500m/s2

z̈us3
Rear left wheel vertical acceleration +/- 500m/s2

z̈us4
Rear left wheel vertical acceleration +/- 500m/s2

z̈s1
Front left body vertical acceleration +/- 50m/s2

z̈s2
Front right body vertical acceleration +/- 50m/s2

z̈s3
Rear left body vertical acceleration +/- 50m/s2

zdef1
= zs1

− zus1
Front left suspension deflection 0-0.2m

zdef2
= zs2

− zus2
Front right suspension deflection 0-0.2m

zdef3
= zs3

− zus3
Rear left suspension deflection 0-0.2m

zdef4
= zs4

− zus4
Rear right suspension deflection 0-0.2m

Fi, i = 1, .., 4 Shock absorber forces Confidential

Table 1: Test car: measured variables and sensors

The complete acquisition and control board/arcitecture is detailed in the appendix.
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2.2. Vertical full-car model

This section aims at presenting the well-known vertical full-car model. This simpli-

fied models describes the main dynamics of the vehicle and can be used for control or

estimation purposes. The full vertical car model, firstly described in ??, and represented

in Figure 2, is made up with a sprung mass in vertical translation, and rotating on two

horizontal axes, and the four unsprung masses, each one in vertical translation. Each un-

sprung mass is linked to the ground with a tire modeled by a stiffness, and to the sprung

mass with a suspension made up with a linear shock absorber and a linear spring. The

various forces acting on sprung (ms) and unsprung (musi
; i = 1, 4) masses are the usual

ones (given by equation 2). This model is classical and has already been used in ???.

The variables and parameters of this model are given in Table 2.

mus2

mus4
mus3

mus1

✒
c2

✒
c4

✒c3

✒c1

✻
✛

✒
x, θ

z, ψ

y, φ

☛

❥

✲

✲✛ tf

✲✛
tr

❃

❂

lr

❃

❂

lf

{ms, Ix, Iy, Iz}

✻

❄

h

zr4
zr3

zr1
zr2

k2k1

kt2k4

kt4kt3

k3 kt1

Front left Front right

Rear rightRear left

Figure 2: Vertical full-car model with 14 DOF

The vertical full-car model presented in Figure 2 is governed by the equations of motion
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Parameter/variable Description Value

ms Sprung mass 1450kg

mus1,2
Front unsprung masses 39kg

mus3,4
Rear unsprung masses 32kg

k1,2 Front suspension stiffness 30000N/m

k3,4 Rear suspension stiffness 18000N/m

c1,2 Front linear damping rate 4000Ns/m

c3,4 Rear linear damping rate 3000Ns/m

kt1,2,3,4 Tire stiffness 200000N/m

Ix, Iy Roll and pitch inertia 610, 2750kg.m2

tf Distance COG1 - front left tire 0.75m

tr Distance COG - rear left tire 0.75m

lf Distance COG - front 1.06m

lr Distance COG - rear 1.7m

zri
Ground vertical positions i = 1..4

zs COG sprung mass position

zsi
Sprung mass positions i = 1..4

zusi
Unsprung mass positions i = 1..4

Fsi
Suspension forces i = 1..4

θ Sprung mass roll angle

φ Sprung mass pitch angle

Fz Vertical disturbance force

Mx, My Disturbance moments

1 Center Of Gravity

Table 2: Vertical full-car parameters and variables
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
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


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





















msz̈s = −(Fs1
+ Fs2

+ Fs3
+ Fs4

+ Fz)

mus1
z̈us1

= (Fs1
− Ft1)

mus2
z̈us2

= (Fs2
− Ft2)

mus3
z̈us3

= (Fs3
− Ft3)

mus4
z̈us4

= (Fs4
− Ft4)

Ixθ̈ = (Fs1
− Fs2

)tf + (Fs3
− Fs4

)tr +Mx

Iyφ̈ = (Fs4
+ Fs3

)lr − (Fs2
+ Fs1

)lf +My

(1)

where the forces Fsi and Fti, respectively provided by the suspension i and the tire i,

are given by







Fsi = ki · (zsi
− zusi

) + ci · (żsi
− żusi

)

Fti = kti · (zusi
− zri

).
(2)

Note that the sprung mass positions at each corner of the vehicle can be easily derived

from the vehicle equations of motions, according to































zs1
= zs + lf sin(φ) − tf sin(θ)

zs2
= zs + lf sin(φ) + tf sin(θ)

zs3
= zs − lr sin(φ) − tr sin(θ)

zs4
= zs − lr sin(φ) + tr sin(θ).

(3)

These nonlinear equalities can be linearized as































zs1
≈ zs + lfφ− tfθ

zs2
≈ zs + lfφ+ tfθ

zs3
≈ zs − lrφ− trθ

zs4
≈ zs − lrφ+ trθ

(4)

when θ and φ are small. In Section 3, the linear vertical full-car model (1) is used to

design an observer.

pdf
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3. Observer design

pdf The main objective of this section is to propose a methodology to design observers

for systems undergoing unknown disturbances. It is worth mentioning that the considered

approach, inspired by the formulation proposed in ?, is very general and can be applied

to a wide class of systems. In this section, this method is applied to estimate the un-

measured state variables of a vehicle model. This section is organized as follows : the

estimation problem is formulated in Section 3.1. Then the disturbance decoupling condi-

tions are studied in Section 3.2, the proposed observer is designed in Section 3.3, a pole

placement method is given in Section 3.4, and finally, the complete design methodology

is summarized in Section 3.5.

3.1. General problem statement

The full-car model (1), representing the system under study, is linear with 14 state

variables and 7 inputs. This model can be written as a state-space model according to

V (s)







ẋ = A · x+Dx · v

y = C · x+Dy · v
(5)

where x is the state vector, v the input, y the measured variables and A ∈ R
n×n,

Dx ∈ R
n×d, C ∈ R

m×n and Dy ∈ R
m×d. For the considered system, the state variables,

the inputs and the 7 measurements used to estimate the full-car model are given by



















x =
(

żs, zs, żus1
, zus1

, żus2
, zus2

, żus3
, zus3

, żus4
, zus4

, θ̇, θ, φ̇, φ
)

v = (zr1
, zr2

, zr3
, zr4

, Fz,Mx,My)

y = (z̈s1
, z̈s2

, z̈s3
, z̈us1

, z̈us2
, z̈us3

, z̈us4
) .

In the synthesis of the observer, the inputs Fz, Mx and My will be neglected. Indeed, Fz,

Mx and My correspond to aerodynamic forces and load transfers. These disturbances are

slow, and furthermore they are indirectly measured through the accelerometers mounted

on the sprung mass. Therefore, it is not useful to consider them as unknown disturbances

in the observer synthesis. Then v becomes v = (zr1
, zr2

, zr3
, zr4

) and only the ground

disturbance effects are considered, which is clearly the actual unknown input in suspension

systems. Furthermore, in the Equation (5), no control input is considered. This choice
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is explained in the next sections. However, all the results given in this section can be

adapted if such an input is to be taken into account, as usual, in observer design.

The structure of the full-order observer chosen to estimate this model is given by






ż = N · z + L · y

x̂ = z − E · y
(6)

where z ∈ R
n×n is the state variable of the observer and x̂ ∈ R

n×n the estimated state

variables. N ∈ R
n×n, L ∈ R

n×m, E ∈ R
n×m are the observer matrices to be designed.

Let us define the matrices P = In +EC and K = L+NE. Then from the considered

system (5) and the chosen observer structure (6), the estimation error dynamical equation

is derived according to

ė = ẋ− ˙̂x

= Ax+Dxv − ż + Eẏ

= (A− LC + ECA)x+ (Dx − LDy −NEDy + ECDx)v + EDy −N(Px− e)

= Ne+ (A− LC + ECA−NP )x+ (PDx − (L+NE)Dy)v + EDyv̇

= Ne+ (PA−KC −N)x+ (PDx −KDy)v + EDyv̇.

(7)

The estimated state variable x̂, described by (7), converges asymptotically to the state

x for any bounded initial conditions x̂(0) and x(0) if and only if (??)

Stability:






N is Hurwitz

N = PA−KC
(8)

Disturbance decoupling:






KDy − PDx = (L+NE)Dy − PDx = LDy − PDx +NEDy = LDy − PDx = 0

EDy = 0.

(9)

The observer design involves the calculation of the matrices N , L and E satisfying

both the stability and disturbance decoupling conditions (8-9). However these conditions

are not sufficient from a practical point of view. Indeed, the real-time implementation

of the observer may not be possible if the poles are either too fast or too close to the
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imaginary axis. Therefore the eigenvalues of N have to be placed in a well-chosen region

fitting both the system bandwidth and the measurement noise level. These are the two

main challenges in designing an efficient and implementable unknown input observer. A

methodology to solve this problem is proposed in the next sections.

Definition 3.1 (Exact and H∞-observers). A full state observer in the form of (6) is

said to be,

• an exact observer if N , L, E are exact solutions of (8) and (9). In this case, an

exact disturbance decoupling is achieved since the estimated variables are not affected

by the disturbance.

• an H∞-observer if N , L, E are obtained by minimizing the disturbance effect on the

estimated state variables, i.e. the problem (10) has been solved,

min γ∞ s. t. ||e||2 < γ∞ · ||v||2 (10)

where ||.||2 denotes the L2-norm. This norm represents the energy-to-energy gain of the

considered system.

3.2. Exact observer existence conditions

Necessary and sufficient conditions for exact observer design are recalled (??), and a

methodology to compute the observer matrices is given in this case.

Stability conditions:

The stability conditions (8) are fulfilled if and only if (PA,C) is detectable. However,

this condition depends on the matrix P . Therefore the stability conditions depend on the

disturbance decoupling (9), as detailed below.

Disturbance decoupling:

Depending on the measurements, two cases have to be considered:

11



• Case Dy = O:

In this case, the system (7) reduces to

ė = Ne− (N − PA+KC)x+ PDxv (11)

and the disturbance decoupling condition for the exact observer design becomes

PDx = 0 ⇔ ECDx = −Dx (12)

since P = In+EC by definition. This equation, where E is the unknown, is solvable

(?) if and only if

rank(CDx) = rank





CDx

Dx



 , (13)

and there exists (?) an exact solution set fulfilling (12), in the form of

E = −Dx(CDx)
+ + YE

[

Im − (CDx)(CDx)
+
]

(14)

where YE is a free matrix of appropriate dimension.

– If E can be chosen according to (14) in such a way that (PA,C) is observable,

the poles of N can be arbitrarily assigned by choosing K in the equation

N = PA −KC. Then the last unknown matrix L can be easily derived from

K = L+NE, leading to an exact observer according to the Definition 3.1.

– If E can be chosen according to (14) in such a way that (PA,C) is detectable

but not observable, some of the poles cannot be placed arbitrarily. Then K

can be computed to place the observable poles, and L can be derived from

K = L + NE, leading to an exact observer according to the Definition 3.1,

However, if some of the non observable poles are too close to the imaginary axis,

or too high, the disturbance decoupling will be exact, but the observer will not

be implementable. In this case, an approximated observer, according to the

Definition 3.1, has to be found with the best possible disturbance decoupling

and implementable poles. A method to solve this problem is proposed in

Section 3.3.
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• Case Dy 6= O:

In this case the disturbance decoupling conditions are given by






LDy − PDx = 0

EDy = 0.
(15)

In order to achieve an exact disturbance decoupling, E has to fulfill EDy = 0. Since

Dy has full column rank, this equation, where E is the unknown, can be solved and

the solution set (?) is given by

E = YE[Im −DyD
+
y ] (16)

where YE ∈ R
n×m is a free matrix.

The other condition for exact disturbance decoupling is

LDy − PDx = 0

⇔ LDy = (In + EC)Dx

⇔ LDy = (In + YE[Im −DyD
+
y ]C)Dx

⇔ LDy − YE[Im −DyD
+
y ]CDx = Dx

(17)

which can also be parameterized as

ULYE
· ΨLYE

= Dx (18)

where ULYE
=

[

L YE

]

and ΨLYE
=





Dy

−[Im −DyD
+
y ]CDx



.

The Equation (18), where ULYE
is the unknown, can be solved if and only if

rank(ΨLYE
) = rank





ΨLYE

Dx



 (19)

and the solutions of (18) can be chosen among the family

ULYE
= DxΨ

+
LYE

+ YLYE
[In − ΨLYE

Ψ+
LYE

] (20)

where YLYE
∈ R

n×2∗m is a free matrix.

This parametrization enables us to determine both E and L such that the distur-

bance decoupling is perfect. However, the obtained solution set influences:

13



– the detectability of (PA,C), since P = In + EC,

– the choice of K, allowing to place the poles of PA−KC, since K depends on

E and L.

Therefore the disturbance decoupling conditions (15) reduce the solution set through

a more restrictive detectability condition.

Furthermore, the stability condition N = PA−KC, with K = L+NE, has to be

fulfilled. This condition can also be formulated as

N = PA−KC ⇔ N = PA− LC −NEC

⇔ NP = PA− LC.
(21)

This equation, where N is the unknown, can be solved (?) if and only if

rank(P ) = rank





PA− LC

P



 (22)

and the solutions of (21) are in the form of

N = (PA− LC)P+ + YN(In − PP+) (23)

where P = In + EC, and YN ∈ R
n×n is a free matrix.

In (23), the matrices L and E are given by (20) and depend on YLYE
. Therefore the

choice of YLYE
influences the detectability of the pair ((PA−LC)P+, (In −PP+)).

If the rank conditions (19) and (22) are fulfilled and if ((PA−LC)P+, (In −PP+))

is detectable, an exact observer can be determined and the observable poles cannot

be chosen arbitrarily using YN .

If the rank conditions (19) and (22) are fulfilled and if ((PA−LC)P+, (In −PP+))

is observable, an exact observer can be determined and the poles can be arbitrarily

chosen using YN .

If the rank conditions (19) and (22) are not fulfilled, the exact observer cannot be

computed.
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Remark 3.1. Choosing YLYE
such that ((PA − LC)P+, (In − PP+)) is observable, is

not an easy problem, and may not be solved. Furthermore both (19) and (22) may not

be fulfilled, and then no exact observer design is possible. However, an efficient approx-

imated observer may exist and a global design methodology has to be established to help

the designer find an optimal observer fulfilling all the theoretical conditions. Thereafter

the solution consists in solving the whole problem including all the constraints. Such a

method is proposed in Section 3.3.

3.3. H∞-observer design

The system (7) will be parameterized such that the unknown observer matrices can

be computed to minimize the disturbance effect on the estimated state variables. This

parametrization is inspired by the formulation proposed in ?. The disturbance effect

minimization is achieved by minimizing the H∞-norm of the transfer from the unknown

disturbance to the estimated state variables, which corresponds to the problem (10) given

in the Definition 3.1.

The estimation error is governed by

ė = Ne+ (PA−KC −N)x+ (PDx −KDy)v + EDyv̇. (24)

This system is corrupted by the disturbance v and its derivative v̇, and can be rewritten

as

ė = Ne+ (PA−KC −N)x+ Fd (25)

where F =
(

PDx −KDy EDy

)

and d =





v

v̇



.

Then the disturbance F can be minimized according to the procedure described in the

next sections. However, since v̇ may be very high, v may be less minimized. This method

is possible but leads to a less efficient disturbance decoupling.

In order to avoid this problem, the observer matrix E can be chosen according to (16).

Therefore E = YE[Im −DyD
+
y ], where the matrix YE will be determined later, during the
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synthesis of the observer. Thereafter, EDy = O, and the system (24) can be rewritten as

ė = Ne+ (P (YE)A−KC −N)x+ (P (YE)Dx − LDy)v (26)

where P (YE) = In + YE[Im −DyD
+
y ]C.

The matrix Ω = [N,P,K, YE] is defined in order to parameterize the previous system.

The equivalence






PA−KC −N = On

P − YE(Im −DyD
+
y )C = In

⇔ Ω · Θ = Ψ (27)

is first established, where Θ =

















−In On

A In

−C Om,n

Om,n −(Im −DyD
+
y )C

















, Ψ = [On, In], and On de-

notes the null matrix of size n× n.

The equation Ω · Θ = Ψ, where Ω is the unknown, can be solved if and only if

rank(Θ) = rank





Θ

Ψ



 (28)

holds. If this condition is not fulfilled, the H∞ observer design is impossible. If it is,

the solutions for Ω are given in the following form :

Ω(YΩ) = ΨΘ+ + YΩ(I2n+m − ΘΘ+) (29)

where YΩ is a free matrix of appropriate dimension that will be determined later, during

the synthesis.

Then, the equality N = PA−KC holds, and the system (26) can be rewritten as

ė = Ω(YΩ)Ψ1 e + Ω(YΩ)Ψ2 v (30)

where Ψ1 =

















In

On

Om,n

Om,n

















, Ψ2 =

















On,d

Dx

−Dy

Om,d

















and Ω(YΩ) = ΨΘ+ + YΩ(I2n+m − ΘΘ+).
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The estimation error, governed by the equation (30), is driven by the unknown dis-

turbance v. If the exact observer design is not possible and if the rank condition (28) is

fulfilled, the disturbance effect can be minimized and an efficient observer computed. The

matrices of the observer can be determined by studying the stability and the H∞-norm

bound of the transfer e→ v. This problem is solved below, by minimizing γ∞ such that

||e||2 < γ∞ · ||v||2 (31)

is satisfied.

Proposition 3.1. Consider the system model (5) and the observer (6). Given a positive

scalar γ∞, if there exist X = XT ≻ 0 and Ỹ = XY satisfying











QΨ1 + ΨT
1Q

T QΨ2 In

∗ −γ∞Id Od,n

∗ ∗ −γ∞In











≺ 0 (32)

Q = XΨΘ+ + Ỹ(I2n+m − ΘΘ+) (33)

then, the observer (6) is an H∞-observer according to the Definition 3.1, where the

disturbance attenuation level γ∞ and the observer matrices are given by

[N,P,K, YE] = ΨΘ+ + YΩ(I2n+2m − ΘΘ+) (34)

where YΩ = X−1Ỹ , Θ =

















−In On

A In

−C Om,n

Om,n −(Im −DyD
+
y )C

















and Ψ = [On, In].

Proof 3.1. The Bounded Real Lemma (?) (BRL) applied to the system (26) gives the

solution to (31) and leads to the bi-linear matrix inequality (BMI) (35) where X = XT ≻ 0

and Y are the unknown matrices to be determined. Therefore the full-order stable and

disturbance decoupled observer design problem consists in solving

17













QΨ1 + ΨT
1Q

T QΨ2 In

∗ −γ∞Id Od,n

∗ ∗ −γ∞In











≺ 0 (35)

where the matrix Q is given by

Q = XΩ = XΨΘ+ + XY(I2n+2m − ΘΘ+) (36)

The matrix inequality (35) is a BMI since Q is bi-linear in X and Y. Therefore the

change of variable Ỹ = XY is introduced to transform the BMI into a solvable LMI

where Q = XΨΘ+ + Ỹ(I2n+2m − ΘΘ+). Solving (35) with (36) leads to find X, Ỹ and

thereafter Y = X−1Ỹ.

Then Ω can be deduced by using (29), which gives the observer matrices. Finally, the

proposed observer is designed so that the stability conditions (8) are satisfied, and the

disturbance decoupling conditions (9) are approached by minimizing γ∞ subject to (31).

3.4. Pole placement

The previous method ensures the stability of the observer and the minimization of the

disturbance effect, but the poles of the observer are obtained through the solution of (32)

and may be either very high, have high imaginary parts, or be almost unstable. Such

poles may render the observer oscillating and sensitive to measurement noises or unstable

in practice. In order to avoid such a behavior that may lead to implementation problems

and bad estimation performances, a pole placement method using LMI regions has been

introduced into the design procedure, according to the method proposed in ?.

The poles of the observer can be placed in the intersection of the regions D1, D2 and

D3 in the complex plane, corresponding respectively to a conical sector center with inner

angle 2θ, a left half plane, and a right half plane, as represented in Figure 3. These

regions are defined by the LMI (37), (38) and (39). The conical sector ensures that the

poles lying in this region have a damping ratio at least equal to cos(θ), which implies

moderate imaginary parts. The half planes D2, D3 ensure that the poles have real parts

in [−pmax,−pmin].
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✛
θ

θ

pmax

pmin

✻
Im(jω)

Re(jω)

Figure 3: LMI regions in complex plane

D1 =







z ∈ C :





sin(θ) · (z + z∗) cos(θ) · (z − z∗)

cos(θ) · (z∗ − z) sin(θ) · (z + z∗)



 ≺ 0







(37)

D2 = {z ∈ C : z + z∗ + 2pmin ≺ 0} (38)

D3 = {z ∈ C : −z − z∗ − 2pmax ≺ 0} (39)

Proposition 3.2. Consider the system model (5) and the observer (6). Given a positive

scalar γ∞, if there exist X = XT ≻ 0 and Ỹ = XY satisfying the inequalities











M11 M12 M13

∗ M22 M23

∗ ∗ M33











≺ 0 (40)











QΨ1 + ΨT
1Q

T + 2pminX QΨ2 In

∗ −γ∞Id Od,n

∗ ∗ −γ∞In











≺ 0 (41)











−QΨ1 − ΨT
1Q

T − 2pmaxX QΨ2 −In

∗ −γ∞Id Od,n

∗ ∗ −γ∞In











≺ 0 (42)
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where

M11 =





sin(θ)(QΨ1 + ΨT
1Q

T ) cos(θ)(QΨ1 − ΨT
1Q

T )

− cos(θ)(QΨ1 − ΨT
1Q

T ) sin(θ)(QΨ1 + ΨT
1Q

T )





M12 =





QΨ2 On,d

On,d QΨ2





M13 =





sin(θ)In − cos(θ)In

cos(θ)In sin(θ)In





M22 = −γ∞I2d

M23 = O2d,2n

M33 = −γ∞I2n

(43)

and Q = XΨΘ+ + Ỹ(I2n+2m − ΘΘ+) and ∗ denotes the symmetric element, then the

observer (6) is an H∞-observer according to the Definition 3.1, with the disturbance at-

tenuation level γ∞ and whose poles are located in the intersection of LMI regions D1, D2

and D3. The observer matrices are then given by

[N,P,K, YE] = ΨΘ+ + YΩ(I2n+2m − ΘΘ+)

where

YΩ = X−1Ỹ , Θ =

















−In On

A In

−C Om,n

Om,n −(Im −DyD
+
y )C

















and Ψ = [On, In].

Proof 3.2. In ?, the LMI constraint allowing the pole placement in region D defined by

D =
{

z ∈ C : L+ zM + z∗MT ≺ 0
}

, (44)

is given by
















L⊗X +M ⊗ (XA) MT
1 ⊗ (XB) MT

2 ⊗ CT

+MT ⊗ (ATX)

∗ −γI DT

∗ ∗ −γI

















≺ 0, (45)
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where ⊗ denotes the Kronecker product and the decomposition of M is M = MT
1 M2.

For the LMI region D1, L
D1, MD1

1 , MD1

2 can be expressed as






























LD1 = O2

MD1

1 = I2

MD1

2 =





sin(θ) − cos(θ)

cos(θ) sin(θ)



 .

(46)

For the LMI region D2, L
D2, MD2

1 , MD2

2 can be expressed as


















LD2 = 2pmin

MD2

1 = 1

MD2

2 = 1.

(47)

For the LMI region D3, L
D3, MD3

1 , MD3

2 can be expressed as


















LD3 = −2pmax

MD3

1 = −1

MD3

2 = −1.

(48)

Then for each region, the constraints can be expressed using (45) with (46), (47) and

(48). Therefore three BMIs are obtained, that can be easily transformed into LMIs (40),

(41) and (42) using the change of variable Ỹ = XY. Then the solvable LMIs (40), (41)

and (42) are obtained, where the unknown matrices are Ỹ and X = XT ≻ 0.

3.5. Design methodology

The procedure to design the H∞-observer is represented in Figure 4 and can be sum-

marized as follows:

Step 1: Determine the region where the poles of the observer have to be located, and

choose the pole bounds pmin, pmax and the cone angle θ.

If Dy = 0:

Step 2a: Check the exact disturbance decoupling condition (13).
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• If (13) is fulfilled, find E according to (14), such that (PA,C) is detectable, if

possible.

• If (13) is not fulfilled, the exact disturbance decoupling is impossible, but an ap-

proximated observer may be found. Go to Step 4.

Step 3a:

• If (PA,C) is detectable, place the poles using K, if possible. Then deduce the

observer matrices N = PA − KC, L = K − NE and E. Check the poles of the

computed exact observer.

• If (PA,C) is not detectable, the observer design is impossible.

If Dy 6= 0:

Step 2b: Check the exact observer existence conditions (19).

• If (19) is fulfilled, find YLY E such that (22) is fulfilled and ((PA − LC)P+, (In −

PP+)) is detectable, if possible. Then deduce the observer matrices L and E.

• If (19) is not fulfilled, the exact disturbance decoupling is impossible. Go to Step 4.

Step 3b:

• If (22) is fulfilled and ((PA−LC)P+, (In − PP+)) is detectable, place the poles of

N using YN , if possible. Check the poles of the computed exact observer.

• If (22) is not fulfilled, or ((PA−LC)P+, (In −PP+)) is not detectable, an approx-

imated observer may exist. Go to Step 4.

If exact decoupling is not possible or if the poles cannot be placed in the desired re-

gion, then a trade-off can be found between pole placement and disturbance decoupling

according to the following procedure:
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1:(PA,C) not detectable
2:(13) not fulfilled
3:(19) not fulfilled

5:(22) fulfilled and ((PA− LC)P+, (In − PP+)) detectable
4:(22) not fulfilled or ((PA− LC)P+, (In − PP+)) not detectable

6: no suitable pole placement
7: (28) fulfilled

8: (28) not fulfilled

Step 1

Step 2a

Step 3a

Exact

Step 4, 5

✾ ③

❄

❄

❄ ⑦

✴

❂
Check pole

Dy = 0 Dy 6= 0

(13) fulfilled 2

(PA,C) detectable

Suitable

✲

s

✮✛

(19) fulfilled

5

3
4

pole placement

1

observer

No solution

placement

Step 2b

Step 3b
❄

❄

❄

Check pole
placement

Step 6, 7, 8

❄

✇
No solution

H∞

observer

6 6
7 8 Suitable

pole placement

Exact
observer

Figure 4: Observer design procedure

Step 4: If the rank condition (28), is fulfilled, go to Step 5. If not, the H∞-observer

design is impossible.

Step 5: Minimize γ∞ under LMI (40), (41) and (42).

Step 6: Calculate YΩ = X−1Ỹ , and Ω using (29).

Step 7: Deduce the observer matrices N from Ω, E from P = I + EC and L from

K = L+NE.

pdf

4. Synthesis results and robustness analysis

pdf Some numerical synthesis results are given in Section 4.1, and a robust analysis is

performed in Section 4.2.

4.1. Numerical synthesis results

In this paragraph, the procedure described in Section 3.5 is applied to design the

observer.
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Figure 5: Poles of the observer and specified regions

Step 1: The LMI regions (37), (38) and (39) have been chosen and are determined by



















θ = π
4

pmin = 1

pmax = 200

. (49)

This region is represented in Figure 5.

Steps 2b: Here, the measured unsprung mass accelerations depend on the ground dis-

turbance, thereafter Dy 6= 0. Unfortunately, (19) is not fulfilled. The exact disturbance

decoupling is not possible. Therefore, the approximated observer design approach has

been chosen to tackle both the disturbance decoupling and the pole placement problems.

Step 4: The rank condition (28) is fulfilled.

Step 5: The minimal γ∞ obtained solving the LMI problem (40-42) is γ∞ = 1.08.

Steps 6-7: The matrices of the observer have been deduced and the poles of the observer

are located in the specified region, represented in Figure 5.

Remark 4.1. The pole bounds pmin and pmax have to be chosen by the designer. The

lower bound of the poles must be chosen according to the noise level. If there is almost no

measurement noise, this bound can be set equal to 0 so that pure integrators are allowed.

Therefore, the results will be of course more accurate. But if the noise level is higher,

the observer may become unstable due to very small poles and the lower bound must be

increased. Therefore, a well-known compromise has to be found between performance and

robustness, using this simple adjustment parameter. In the case of the experiment de-

scribed in Section 5, the observer becomes unstable if pmin < 1, since the measurement

noise is important. The upper bound has also to be chosen by the designer. It determines

the bandwidth of the observer. The observer must be at least, ten times faster than the

system to be observed to get accurate results. However, for noise filtering, this bound has

to be less than the frequencies of the noise. For the application considered in this paper,
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Figure 6: Transfer || e/v || - Bode diagrams

the noise is located in the frequency range [800 − 1200Hz]. Therefore pmax = 200 allows

the observer to filter the noise.

In order to analyze the achieved disturbance decoupling, the Bode diagrams of the

transfer functions between the ground disturbance v and the estimation error e on each

state have been computed for the 14 state variables. Some of them, corresponding to

the analysis of the front left suspension, are given on Figure 6. These results emphasize

the attenuation of the ground disturbance effect on the estimation error, since the largest

disturbance amplification of the 14 errors, over the whole frequency range is -60dB.

4.2. Robustness analysis

In this section, the closed-loop system Σ(s), including the vehicle model V (s) given

by the Equation (5) and the observer O(s) given in (6), is considered. The state estima-

tion error e = x − x̂ is used as the ”closed-loop” system output for robustness analysis.

The robustness of the designed H∞-observer is studied using the µ-analysis tool. The

considered parametric uncertainties, defining the uncertain system, are given in Table 3.

Uncertain parameter Variation

ms 1450 ±50% [kg]

musi
, i = 1..4 39 ±10% [kg]

ki , i = 1..4 30000 ±20% [N/m]

ci , i = 1..4 500 to 6000 [Ns/m]

kti , i = 1..4 18000 ±30% [N/m]

Ix 610 ±30% [N*m/rad]

Iy 2750 ±30% [N*m/rad]

Table 3: Parameter uncertainties
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The main uncertainties concern the sprung mass and the damping rates. The sprung

mass depends on the number and weight of passengers, quantity of fuel etc... and the

damping rate depends on the control signal if the shock absorber is controlled. It also

depends on the nonlinearities of the shock absorber, and therefore on the shock absorber

technology. SOBEN shock absorber is nonlinear and has a controlled damping rate vary-

ing from 500 to 6000 Ns/m. In the synthesis of the observer, a mean damping rate value

has been used, but the robustness with respect to this parameter variation is very impor-

tant when the observer is used in a suspension control application.

These parametric uncertainties have been considered and used to perform a classical

µ-analysis in order to study both robust stability and performances (?), where µ denotes

the structured singular value.

Robust stability:

The considered uncertain system for robust stability analysis is presented in Figure 7

using the classical LFT form, where ∆r(s) represents the structured uncertainties corre-

sponding to the parametric uncertainties given in Table 3. Σ(s) is the closed-loop system

(7) including both the system to be observed and the observer. The robust stability is

ensured if and only if the closed-loop system is stable and if the inequality

µ∆r(L(s)) < 1, ∀s = jω (50)

is fulfilled. The structured singular value µ cannot be exactly computed. However, a

numerical algorithm has been used to compute the upper and lower bounds of µ. These

results given in Figure 8 show that µ is less than 1 and does not depend on the frequency.

Therefore the system remains stable, whatever the parameters.

Robust performance:

The considered uncertain system for robust performance analysis is presented in Figure

9. This system is similar to the one used for robust stability analysis, but some fictitious

uncertainties ∆f (s) representing the performance objectives have been added. They are
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∆r(s) ✛

Vehicle

Observer

y
v

e✲

✲

✲

O(s)

V(s)

✲

y

Σ(s)

✻

x

+
✒✑
✓✏-

x̂

❄

Figure 7: Uncertain system for robust stability analysis

Figure 8: Upper and lower bounds of µ for robust stability
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Vehicle

∆r(s)

Observer

v

e

✲

✛

✲

O(s)

V(s)

✲

y

Σ(s)

✛∆f (s)

∆(s)

y

✲

✻

x

+
✒✑
✓✏-❄

x̂

Figure 9: Uncertain system for robust performance analysis

given by the low-pass filter

W (s) = G ·
2πfc

s+ 2πfc

(51)

where fc = 20Hz denotes its cut-off frequency and G = 1 its static gain. This weighting

filter focuses the performances objectives on the bandwidth of the system to be observed.

Then, using this new uncertain system including the performance objectives, the robust

performance is ensured if and only if the closed-loop system is stable and if

µ∆(Σ(s)) < 1, ∀s = jω (52)

is fulfilled, where ∆(s) is given by

∆(s) =





∆r(s) O

O ∆f (s)



 (53)

and includes both the real structured uncertainties and the performance objectives.

The upper and lower bounds of µ have also been computed for the system given in
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Figure 10: Upper and lower bounds of µ for robust performance

Figure 9. These results presented in Figure 10 show that µ is always less than 1. The

performances are ensured, whatever the parameter uncertainties.

These results emphasize the H∞-observer robustness. The designed observer is not

sensitive to the studied parametric uncertainties including all the possible parameter

variations of a real vehicle equipped with controlled shock absorbers. pdf

5. Experimental results

pdf

5.1. Description and set-up of the experiment

Four semi active shock absorber prototypes have been built by SOBEN and mounted

on a test car, as represented in Figure 1. Each shock absorber can be controlled by a

servomechanism. This actuator allows to control the damping rate of each suspension

in real-time. The observer proposed in this paper is to be used in a suspension control

strategy, but the experiment presented here has been run to test the observer performances

only. Therefore, no control strategy was implemented. The influence of the damping rate

on the observer performance has already been discussed in the robust analysis presented in

Section 4.2 and the observer is robust to damping rate variations from 500 to 6000 Ns/m.

In order to confirm this result, several experiments have been run with the observer

proposed here, for different varying control signals (sinusoidal signal varying between a

minimal value and a maximal value), which corresponds to varying damping rates. The

damping rate does not influence the accuracy of the estimations. This shows that taking

these variations into account in the observer design is not useful.

The data acquisition is done by a set of five electronic boards developed by SOBEN.

Each shock absorber has a small acquisition board, represented in Figure 18, that converts

the analog measurements into CAN (Controller Area Network) frames. A central board

where the observer is implemented receives the frames through the CAN network and

computes the estimated states for each shock absorber, using the four unsprung masses
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accelerations and the three sprung mass accelerations. This architecture is described in

Figure 18. The four shock absorber boards are operational, but the central board has

not been programmed yet. Therefore a Dspace board has been used for the experiments

presented in this paper. The implementation of the observer is done automatically by the

software provided by Dspace. However, the implementation cannot be done if the observer

is ill-conditioned. Therefore, the poles of the observer have to be properly chosen.

5.2. Estimation results

The experimental results obtained here with the observer designed in Section 3 are

given. The observer has been tested while the car was traveling at 70km/h on a bad

mountain road. The shock absorber control signals were constant and nominal. During

the experiment, the following variables have been estimated and measured:

• The four unsprung masses vertical accelerations (z̈usi
, see Figure 11)

• The three sprung mass vertical accelerations (z̈si
, see Figure 12)

• Deflection velocities (żdefi
, see Figure 13)

• Deflections (zdefi
, see Figure 14)

• Vertical acceleration of the center of gravity (z̈s, see Figure 17)

• Roll and pitch angular velocity (θ̇, φ̇, see Figure 15)

• The four unsprung masses vertical velocities (żusi
, see Figure 16)

The measured deflection velocities have been derived from the measured deflections

whereas the measured unsprung masses velocities have been integrated from the measured

accelerations.

Figures 11 and 12 show the measured and estimated sprung and unsprung masses

accelerations for suspensions 1 and 4. The other ones have not been represented but

the results are similar. These variables correspond to the measurements used by the
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H∞-observer. The relative errors given by Table 4 and computed using the present ex-

perimental results are less than 1%. Therefore, the estimated variables are very similar

to the measurements, which is quite normal since these measurements are used by the

observer.

Figures 13 and 14 represent the measured and estimated deflection velocities as well as

the measured and estimated deflections for suspensions 1 and 4. These results emphasize

the observer performance and accuracy for the H∞-observer since the variables have been

estimated and filtered in real-time without any delay. The relative errors of the estimated

deflection velocities, given in Table 4 are less than 1%, which is very accurate, whereas

the deflections have relative errors in the region of 15%. The estimated deflections are

not as accurate as for the deflection velocities since the observer does not contain pure

integrators. The absolute value of the minimal real part of the poles has been indeed

constrained to be greater than 1 for stability reasons. However, if the measurement noise

could be reduced, smaller minimal poles magnitudes could be allowed, and the estimated

positions would be more accurate.

The deflection velocities are very important since many control strategies developed in

the past few years are based on these measurements (????). Furthermore, the deflection

sensor is very expensive and has a short life-time. The results obtained on this test car

show that the estimated deflection velocities are satisfactory and can be used to control

the shock absorber.

The results given in Figures 15 and 16 concern the estimation of the unsprung masses

velocities and of the angular pitch and roll velocities. These figures show that the esti-

mated variables are very similar to the measured ones. The relative errors and variances

given in Table 4 are less than 0.2% for the unsprung masses velocities, and less than 2%

for the angular velocities, therefore these estimated variables can be used in a control

strategy to improve the vehicle behavior.

It should also be noticed that the measurements of the angular velocities, provided

by the gyrometers are very noisy. The results show that the estimated variables are not
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Figure Variable MRE1 [%] RV2 [%]

11 z̈us1
0.14 0.022

11 z̈us4
0.11 0.028

12 z̈s1
0.42 0.004

12 z̈s4
0.84 0.007

13 żdef1
0.44 1.054

13 żdef4
0.73 2.065

14 zdef1
14.8 10.29

14 zdef4
17.4 9.045

17 z̈s 3.80 0.769

15 φ̇ 1.76 19.75

15 θ̇ 2.01 14.87

16 żus1
0.11 0.185

16 żus4
0.19 0.236

1Mean Relative Error, 2Relative Variance

Table 4: Experimental results: relative mean errors and variances
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corrupted by this noise. Therefore the bandwidth of the observer is appropriate, thanks

to the pole placement method proposed in Section 3.4.

The variances given in Table 4 are always less than 5%, except for the deflections and

angular velocities. This is due to the important measurement noise that corrupts these

measured variables, but the estimated variables are not corrupted by this noise.

Figure 11: Unsprung mass 1 (top) and 4 (bottom) vertical acceleration

Figure 12: Sprung mass 1 (top) and 4 (bottom) vertical acceleration

Figure 13: Deflection velocity 1 (top) and 4 (bottom)

pdf

6. Conclusion

pdf In this paper, a methodology to design an unknown input observer for a suspen-

sion control application has been developed. This observer, based on reliable and cheap

accelerometers, provides a good estimation of the sprung and unsprung mass vertical ac-

celerations. The estimation is decoupled from the unknown road disturbance through an

H∞ minimization. The proposed synthesis method also includes a pole placement in LMI

regions to avoid ill-adapted dynamics that may preclude the implementation and damage

the estimation accuracy in the real embedded application. Therefore, the procedure pre-

sented in this paper is a complete and practical observer design procedure for automotive
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Figure 14: Deflection 1 (top) and 4 (bottom)

Figure 15: Roll (top) and pitch (bottom) angular velocity

suspension control applications. This observer has been implemented and embedded on a

test car. The experimental results emphasize the observer performances and robustness.

Furthermore, the tuning of the observer is simple since only the model and the desired

bandwidth of the observer have to be known. It is worth noting that, even if the observer

is a LTI system, it has been proven to be efficient with respect to the variation of the

damping coefficient of the suspension, which, in practice, corresponds to different control

actions (for the semi-active damper).

Future works will consist in designing a reduced-order observer. The observer could

also be scheduled according to the damping rate c, even if this does not seem to be

necessary for the considered application. pdf

7. Appendix

pdf In the appendix, the complete acquisition and control board/arcitecture is detailed.

The vehicle is equipped with various sensors for each suspension. The acquisition of

these data is done by a set of five electronic boards developed by SOBEN. Each shock

absorber is equipped with a small acquisition board, represented in Figure 18, that con-

verts the analog measurements into CAN (Controller Area Network) frames. A central

board where an observer is implemented, receives the frames through the CAN network,

computes on-line the control signal of each shock absorber and sends it to the four shock

Figure 16: Unsprung mass 1 (top) and 4 (bottom) vertical velocity
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Figure 17: Sprung mass center of gravity vertical acceleration

absorber control boards through the CAN network. This architecture is described in

Figure 18.

Figure 18: Shock absorber control board (left) and complete control architecture (right)

The four shock absorber boards are operational but the central board has not been

programmed yet. Therefore a Dspace card has been used for the experiments presented in

this paper. The implementation of the controllers is done automatically by the software

provided by Dspace, from a Matlab-Simulink program. A PC can be connected to analyze

and record on-line the different signals.

pdf
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