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There is strong experimental evidence of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state formation

in layered organic superconductors in a parallel magnetic field. We study theoretically the interplay

between the orbital effect and the FFLO modulation in this case and demonstrate that the in-plane critical

field anisotropy drastically changes at the transition to the FFLO state. The very peculiar angular

dependence of the superconducting onset temperature which is predicted may serve for unambiguous

identification of the FFLO modulation. The obtained results permit us to suggest the modulated phase

stabilization as the origin of the magnetic-field angle dependence of the onset of superconductivity

experimentally observed in ðTMTSFÞ2ClO4 organic conductors.

DOI: 10.1103/PhysRevLett.108.207005 PACS numbers: 74.70.Kn, 74.78.Fk

Layered superconductors exposed to an external mag-
netic field aligned parallel to their conducting layers
have been the focus of theoretical and experimental
investigations due to their remarkable anisotropic prop-
erties [1,2] favorable to the formation of the spatially
modulated phase, known as the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state [3,4]. In particular, in the
family of organic layered superconductors ðTMTSFÞ2X,
where anion X is PF6, ClO4, etc., very large upper
critical fields, which exceed the Pauli paramagnetic limit,
were reported [5–10]. In layered conductors the orbital
motion of electrons is mostly restricted to the conducting
crystal planes when hopping between adjacent layers is
small. Thus the magnetic field applied parallel to the
conducting planes causes only small diamagnetic cur-
rents and the orbital depairing is strongly weakened.
Therefore, spin-singlet superconductivity is mainly lim-
ited by the Zeeman energy (Pauli spin polarization) of
the quasiparticles. In contrast, the Pauli effect is negli-
gible for a spin-triplet pairing because in this case
Cooper pairs gain Zeeman energy without loosing the
condensation energy. The question concerning the singlet
or triplet symmetry of the superconducting order pa-
rameter in layered organic conductors is a current topic
of debate. Indeed, the nuclear magnetic relaxation
(NMR) experiments with ðTMTSFÞ2PF6 salts below Tc

and under pressure showed the absence of the Knight
shift, thus supporting the triplet scenario of pairing [11],
while the 77Se NMR Knight shift in a recent experiment
with ðTMTSFÞ2ClO4 revealed a decrease in spin suscep-
tibility consistent with singlet pairing [12]. 13C NMR
measurements with �-ðBEDT-TTFÞ2CuðNCSÞ4 also evi-
denced for a Zeeman-driven transition within the super-
conducting state and stabilization of FFLO phase [13].
For the singlet superconductivity, the FFLO phase can be
a candidate for the enhancement of the upper critical

field [3,4]. Note that in the compound ðTMTSFÞ2ClO4

the substantial anisotropy within the conducting a-b�
plane is present. When a magnetic field is aligned along
the high conductivity a axis, the orbital currents are
strongly quenched, which favors the FFLO phase appear-
ance [14,15]. Interestingly, for a magnetic field applied
along the b� axis, the 3D ! 2D crossover occurs in the
high-field regime and the coexistence of the hidden
reentrant and FFLO phases can emerge [16].
Recently the in-plane angular dependence of the upper

critical field, Hc2, of the organic superconductor
ðTMTSFÞ2ClO4 has been measured for wide temperature
intervals [9]. The observed upturn of the Hc2 curve at low
temperatures has often been discussed in connection with
the possibility of the FFLO state formation [17,18]. In
addition, as shown in Ref. [10], the superconducting phase
in a high magnetic field is more strongly suppressed by
impurities than that in a low field, as expected in the FFLO
scenario [19]. Furthermore, an unusual in-plane anisotropy
of Hc2 in the high-field regime was observed, which was
again interpreted as evidence of FFLO state stabilization.
This argument is based on the prediction of a very peculiar
in-plane angular dependence of the FFLO critical field due
to the orbital effects in thin superconducting films [20].
Motivated by these experimental findings we investigate in
this work the influence of the spatially modulated super-
conducting phase on the in-plane anisotropy of the upper
critical field in layered superconductors with s-wave
pairing.
To describe the layered superconductors we consider a

system of layers in the xy plane, stacked along the z axis.
The single-electron spectrum is approximated by

Ep ¼ p2
x

2mx

þ p2
y

2my

þ 2 t cosðpzdÞ; (1)
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where p ¼ ðpx; py; pzÞ is the electron momentum. The

in-plane motion is described within the effective mass
approximation while the tight-binding approximation is
used to describe the motion along the z direction. The
corrugation of the Fermi surface due to the coupling be-
tween adjacent layers (interlayer distance d) is assumed to
be small, i.e., t � Tc0, but sufficiently large to make the
mean-field treatment valid, j lnðTc0=tÞjTc0=EF � 1 [21].
Here Tc0 is the critical temperature of the system at zero
magnetic field and EF is the Fermi energy. We choose a
gauge for which the vector potential A ¼ H� r [r ¼
ðx; y; 0Þ is a coordinate in the xy plane], i.e., Az ¼
�xH sin�þ yH cos�, where � is the angle between the
applied field, with amplitude H, and the x axis. As was
demonstrated in Ref. [22], the anisotropic model with
effective masses can be reduced to the isotropic one by a
scaling transformation and corresponding renormalization
of the magnetic field. Therefore, in the pure Pauli regime,
the orientation of the FFLO modulation vector, q, is arbi-
trary in the case of an elliptical Fermi surface. However,
any deviation of the Fermi surface from the ellipticity fixes
the direction of the modulation [20,23,24]. Hereinafter we
assume for the sake of simplicity that these deviations from
ellipticity are small and their role is just to pin the direction
of the vector q, which is supposed to be along the x axis.
Performing this scaling transformation, we will thus con-
sider from now on an isotropic in-plane spectrum, with

mass m ¼ mx, and a magnetic field H ¼ H½ðmx=myÞ1=2 �
cos�; sin�; 0�. Taking into account that the system is
near the second-order phase transition, the linearized
Eilenberger equation on the anomalous Green function
f!ðn; r; pzÞ describing layered superconducting systems
acquires the form (for positive Matsubara frequency ! at
temperature T) [25]
�
!þ ihþ 1

2
vF:rþ 2it sinðpzdÞ sinðQ:rÞ

�
f!ðn; r; pzÞ

¼ �ðrÞ: (2)

Here h ¼ �BH is the Zeeman energy, vF ¼ vFn is the in-

plane Fermi velocity, and Q ¼ ð�dH=�0Þ�
½� sin�; ðmx=myÞ1=2 cos�; 0� with �0 ¼ �c=e. The order

parameter is defined self-consistently as

1

�
�ðrÞ ¼ 2�T Re

X
!>0

hf!ðn; r; pzÞi; (3)

where � is the BCS pairing constant and the brackets
denote averaging over pz and n. Here we considered a
layered superconductor in the clean limit, meaning that the
in-plane mean free path is much larger than the corre-
sponding coherence length, �0 ¼ vF=ð2�Tc0Þ. The upper
critical field corresponds to the values of H for which the
system of Eqs. (2) and (3) can be solved.

The solution of the Eilenberger equation (2) can be
chosen without loss of generality as a Bloch function

f!ðn; r; pzÞ ¼ eiqr
X
m

eimQ:rfmð!;n; pzÞ: (4)

Equation (4) takes into account the possibility for the
formation of the pairing state (kþ q

2 , " ; �kþ q
2 , # )

with finite center-of-mass momentum. At the same time,
the order parameter can be expanded as

�ðrÞ ¼ eiqr
X
m

ei2mQ:r�2m: (5)

It is known [26] that in the absence of orbital effect, the
FFLO state only appears at T < T� ’ 0:56Tc0 and
H >H� ’ 1:06Tc0=�B, where (T�, H�) is the tricritical
point. Therefore, the order of the magnitude of the mag-
netic field required to observe the FFLO state can be found
from the relation �BH � Tc0. Taking this into account one
obtains vFQ� vFedTc0=�Bc� ðd=aÞTc0, where a is the
unit cell in the xy plane. Therefore vFQ * Tc0. Because of
the assumption t � Tc0 & vFQ one has

ffiffiffiffiffiffiffiffiffi
tTc0

p � vFQ.
This condition allows us to retain only the terms up to
the first harmonics in Eqs. (4) and (5) [since we will retain
only the terms up to ðt=Tc0Þ2 in the final expressions].
Substituting Eqs. (4) and (5) into Eq. (2) one gets

LðqÞf0 þ ~tf�1 � ~tf1 ¼ �0;

Lðq�QÞf�1 � ~tf0 ¼ 0; (6)

where LðqÞ ¼ !þ ihþ ivF:q=2 and ~t ¼ t sinðpzdÞ. If one
neglects the Zeeman term these equations readily describe
the reentrant phase predicted by Lebed [27], with critical
temperature Tc0 at fields H � �0=ðd�0Þ. While keeping
the terms up to the second harmonics within the same
procedure would yield the Lawrence-Doniach equation
[27]. Inserting the solution of Eqs. (6) into the self-
consistency Eq. (3), keeping only the terms up to the
second order in t=Tc0, and subtracting it with a similar
equation relating � with Tc0, we obtain

ln
Tc0

T
¼ 2�T Re

X
!>0

�
1

!
�

�
1

LðqÞ
�

þ
� ~t2

L2ðqÞ
�

1

LðqþQÞ þ
1

Lðq�QÞ
��	

: (7)

This equation defines the temperature dependence of the
upper critical magnetic field Hc2 in layered superconduc-
tors, when both the paramagnetic and orbital effects are
accounted for.
In the limit t � Tc the magnitude of the FFLO modu-

lation vector can be calculated by neglecting the orbital
part in Eq. (7). When averaging over the Fermi surface, one
gets the equation

ln
Tc0

T
¼ Fð~h; ~qÞ 	 X1

n¼0

ð½nþ 1=2��1 � ½ðnþ 1=2þ i~hÞ2

þ v2
F~q

2=4��1=2Þ; (8)

PRL 108, 207005 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
18 MAY 2012

207005-2



with reduced variables ~h ¼ h=2�T and ~q ¼ q=2�T,
which gives rise to a FFLO vector q with a magnitude
that maximizes the upper critical field, thus defining
TcPðHÞ and qPðHÞ, in the pure Pauli limit [28]. Finally,
averaging Eq. (7) over the Fermi surface one obtains the
equation for the onset of superconductivity in layered
superconductors, TcðHÞ, in the presence of both Zeeman
and orbital effects:

TcP�Tc

Tc

¼ 1

1� ~h@Fð~h; ~qÞ=@~h
�2�TRe

X
!>0;�

� ~t2

L2ðqÞLðq�QÞ
�







T¼TcP

: (9)

The summation over the Matsubara frequencies is
performed numerically. We used N ¼ 104 terms in the
summation and this number suffices for convergency at
T=Tc0 > 10�2. Figure 1 shows the variation of the normal-
ized correction of the transition temperature, �Tc ¼ Tc �
TcP, as a function of reduced strength of the magnetic field,
H=HP0 and angle � (between H and the x axis). Here
HP0 ¼ �0=�B is the critical magnetic field at T ¼ 0 in
Pauli limited two-dimensional superconductors [28]. [The
(H, T)-phase diagram in this regime is given in the inset of
the left panel.] The left panel describes the isotropic situ-
ation, typical for layered quasi-2D compounds [29], while
the right panel exhibits results obtained for the highly
anisotropic in-plane Fermi surface of layered conductors,
exhibiting quasi-1D character [30]. We consider two
opposite mass anisotropies. When mx ¼ 10my q is along

the heavy mass direction, while in the case of mx ¼ 0:1my

it is along the light mass direction. As it was intuitively
expected, the orbital effects reduce the superconducting

onset temperature, �Tc < 0. While increasing the applied
magnetic field, �Tc first decreases in most cases until the
tricritical point, H�, is reached and the curve of �Tc

exhibits a kink. At H >H� the function �TcðHÞ strongly
depends on the in-plane effective mass anisotropy and
angle �. For � close to 90
, �Tc exhibits an upturn and
Tc approaches the paramagnetic limit, TcP, when H in-
creases. In contrast, for small� an increase of the magnetic
field leads to a decrease of �Tc. For intermediate angles,
�Tc can be a nonmonotonic function of the field strength.
In the isotropic case and for H=HP0 * 0:75 the largest
correction to the onset temperature j�Tcð�Þj occurs at
� � 20
. For mx=my ¼ 10 and H=HP0 * 0:8, j�Tmax

c j is
at angles close to � � 45
, while for mx=my ¼ 0:1 and

H=HP0 * H�, j�Tmax
c j is at angles close to � � 0
. One

can infer that the strong field-direction dependence of the
superconducting onset temperature Tcð�Þ, appears at high
magnetic fields when the FFLO state develops, while it is
absent at low fields.
The change in the anisotropy of the superconducting

onset temperature that is induced by the FFLO phase is
particularly visible in Figs. 2 and 3, where the magnetic-
field angular dependence of the normalized superconduct-
ing transition temperature, Tcð�Þ=TcP, at constant modulus
of the in-plane magnetic field and t=Tc0 ¼ 0:2, is plotted.
In the polar plot the direction of each point seen from the
origin corresponds to the magnetic-field direction and the
distance from the origin corresponds to the normalized
critical temperature, when the orbital destructive effect is
taken into account. We show here such dependence be-
cause this type of representation is essentially informative
and was realized in the experiment [9]. For magnetic fields
below H� and mx ¼ my one can see an expected isotropic

FIG. 1 (color online). Reduced critical temperature (with respect to the critical temperature in the pure paramagnetic limit) as a
function of the in-plane magnetic field in a layered superconductor, for several angles � between the field and x axis (equivalently
FFLO modulation vector at H >H�). Left panel: isotropic regime with mx ¼ my. [Inset: (H, T)-phase diagram

in the pure paramagnetic limit.] Right panel: anisotropic regime. Solid lines are for mx ¼ 10my; dashed lines are for mx ¼ 0:1my.

The calculations are performed for Fermi velocity vF ¼ 2� 107 cm � s�1 [15], and interlayer distance d ¼ 1:3 nm .
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behavior of the upper critical field. When increasing H
above H�, a strong in-plane anisotropy of Hc2 develops,
which remains and becomes essentially pronounced at high
fields. In particular, relatively strong dips at� ¼ �18
 and
� ¼ �162
 with small peaks at 0
 and 180
 develop with
the external magnetic field for the case of the isotropic in-
plane Fermi surface. The maximum transition temperature
is for the magnetic-field orientation perpendicular to the
direction of the FFLO modulation vector along the x axis.

The peculiar features of the anisotropy of the super-
conducting transition onset with the orientation of the in-
plane magnetic field strongly depend on the anisotropy of
the Fermi surface. For example, comparing the curves in
Fig. 3, one can notice the totally different in-plane field-
direction dependence of Hc2 above the tricritical point
when the largest electron mass is along the x (solid line)
or y direction (dashed line). For an in-plane mass anisot-
ropy mx ¼ 10my, the positions of the dips are at angles

� ¼ �50
 and �130
, respectively. The positions of the
small peaks are the same as in the isotropic case; however,
they are strongly broadened. For opposite mass anisotropy
mx=my ¼ 0:1, the dips are strengthened and are found now

at � ¼ �5
 and �175
. The fine structure at � ¼ 0
,
180
 is relatively sharpened. Therefore the shape of the
observed Tcð�Þ dependence could permit us to determine
the orientation of the FFLO modulation vector. However,
the common feature of the field evolution of the in-plane
upper critical field anisotropy observed in all considered
cases is that the anisotropy becomes more pronounced with
the field strength. Furthermore, the maximum critical tem-
perature in the FFLO regime always corresponds to

� ¼ �90
, that is H perpendicular to q, irrespective of
the effective mass ratio. This is in contrast with the usual
behavior near Tc0, where the critical temperature is
maximal for the magnetic field oriented along the lightest
mass axis.
In conclusion, our results show that the FFLO modu-

lation strongly interferes with the orbital effect and pro-
vides the main source of the in-plane critical field
anisotropy. The superconducting onset temperature is
maximal for the field oriented perpendicular to the
FFLO modulation vector. The change of the anisotropy
of the critical field as well as of its fine structure may give
important information about the FFLO state and unam-
biguously prove its existence. Our calculations support
the interpretation of the experimentally observed in-
plane anisotropy of the onset of superconductivity in
ðTMTSFÞ2ClO4 samples as a realization of the FFLO
state with the modulation vector close to the b� axis [9].
However, the compound ðTMTSFÞ2ClO4 is in fact in the
regime t * Tc0 (t� 2–7 K and Tc0 ¼ 1:45 K) [9,15]. In
this case the FFLO vector can be changed by the orbital
effect. Its orientation will result from the interplay of
the Fermi surface nonellipticity, which favors pinning of
q in a certain direction, and the orbital effect, which
prefers to orient q perpendicular to H. Nevertheless we
expect that the obtained results will be qualitatively appli-
cable in this case as well. We suggest that the predicted
in-plane anisotropy of Hc2 can be observed in experiments
with �-ðBEDT-TTFÞ2CuðNCSÞ2 organic superconductors
[31,32]. For this salt the angle-dependent magnetoresis-
tance measurements [33] provide the estimate of the inter-
layer transfer integral t � 1–2 K, which is much smaller
than Tc0 ¼ 9:1 K, and the orbital effect should only

FIG. 3 (color online). The same as in Fig. 2 but formx ¼ 10my

(solid line) mx ¼ 0:1my (dashed line).
FIG. 2 (color online). Normalized superconducting transition
temperature, Tcð�Þ=TcP as a function of the angle between the
directions of the applied magnetic field and the vector q for
several values of H=HP0 and for mx ¼ my. Here t=Tc0 ¼ 0:2.
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slightly change the modulation vector [34]. In this work we
have assumed s-wave superconductivity; however, it is not
an important ingredient in the present theory and we expect
similar results in the case of d-wave pairing, which pro-
vides an additional source of pinning for the modulation
vector [35].
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