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Relaxation of the thermal Casimir or van der Waals force (the high temperature limit of the Casimir force)
for a model dielectric medium is investigated. We start with a model of interacting polarization fields with a
dynamics that leads to a frequency dependent dielectric constant of the Debye form. In the static limit, the
usual zero frequency Matsubara mode component of the Casimir force is recovered. We then consider the
out-of-equilibrium relaxation of the van der Waals force to its equilibrium value when two initially uncorrelated
dielectric bodies are brought into sudden proximity. For the interaction between dielectric slabs, it is found that the
spatial dependence of the out-of-equilibrium force is the same as the equilibrium one, but it has a time dependent
amplitude, or Hamaker coefficient, which increases in time to its equilibrium value. The final relaxation of
the force to its equilibrium value is exponential in systems with a single or finite number of polarization field
relaxation times. However, in systems, such as those described by the Havriliak-Negami dielectric constant with
a broad distribution of relaxation times, we observe a much slower power law decay to the equilibrium value.

DOI: 10.1103/PhysRevE.85.031108 PACS number(s): 05.10.Gg, 77.22.Ej

I. INTRODUCTION

Despite the success of theoretical calculations on the equi-
librium Casimir force [1–3], aspects of the out-of-equilibrium
behavior still are poorly understood and are the subject of
controversy and debate. A number of approaches have been
adopted to compute thermal fluctuation induced forces out
of equilibrium in simple models of soft matter systems and
binary liquids. For example, the stress tensor has been used
to compute the force [4–8] in a variety of nonequilibrium
contexts. While it is clear that, in such systems, computations
using the stress tensor yield the average value of the force
at thermal equilibrium, it seems, nevertheless, that more
information is needed regarding the dynamics of the field
theory representing the critical or fluctuating field [9], in
particular, how the value of the field at a surface changes when
the surface is moved. An alternative approach is to define an
energetic interaction of the field with a surface and then to
define forces via the principle of virtual work [10,11]. Yet
another is to define the force at a surface by a local kinetic
argument, for instance, by using the ideal gas form for the
pressure as a function of the local density field [12,13]. There
are notable differences in out-of-equilibrium forces computed
using the approaches above, and relatively few systems have
been studied explicitly. However, studies of free Gaussian field
theories undergoing model A (nonconserved) dynamics have
been carried out. Model A dynamics for the field is basically
a diffusion equation driven by white noise, and the thermal
Casimir forces are found to tend toward the equilibrium
value with diffusive scaling [6,7,10,11]. As well as studying
the approach to equilibrium for dynamics obeying detailed
balance, one can examine what happens when the noise is
nonthermal, for instance, colored. In this case, the steady state
Casimir interaction, under model A-type dynamics, tends to
acquire an additional screening due to temporal correlations in
the noise [4,10,11]. We also note that the Parisi-Wu stochastic

quantization scheme can be used to extract equilibrium results
for the quantum Casimir force via a Langevin dynamics
approach [14].

In the case of quantum electrodynamics, the definition of the
instantaneous force can be derived from the stress tensor as it is
defined physically within the theory of electromagnetism via
the force acting on charges and currents just as was done in the
first Lifshitz paper on the equilibrium van der Waals force [15].
The study of the out-of-equilibrium quantum electromagnetic
Casimir effect is, however, much more complicated than the
equilibrium thermal Casimir effect, and a number of physical
assumptions need to be made if one wants to study dynamics
or nonequilibrium situations. One approach is to use generic
models of fluctuating electrodynamics (or stochastic Maxwell
equations) à la Rytov et al. [16] where the field is driven by
randomly fluctuating current densities or dipole fields [17–25].
The out-of-equilibrium context analyzed in the above papers
is where the interacting media have different temperatures. In
some cases, there can be a long range bulk induced interaction
between the media, essentially due to the difference in their
blackbody radiations. A similar bulk effect was found in
Ref. [5] for the thermal Casimir effect in fluctuating scalar
fields in the presence of temperature gradients. Another
interesting aspect of these nonequilibrium papers is that the
radiative heat transfer between bodies at different temperatures
also can be studied. Whereas, the theory of fluctuating
electrodynamics is very general and applies to materials of
generic dielectric properties, there, nevertheless, are certain
local equilibrium or fluctuation dissipation properties that need
to be assumed in these theories. The goal of this paper is not
to study nonequilibrium steady states but rather to address
the question of how the Casimir force evolves in time to its
equilibrium value, for instance, when two dielectric 89 slabs
are brought suddenly into proximity.

Specifically, we will examine the out-of-equilibrium be-
havior of the thermal part of the electrodynamic Casimir force
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(corresponding to thermal van der Waals interactions). Our
approach will be based on a specialized form of fluctuating
electrodynamics based on the full n-body dipolar interaction
between two model dielectric media. The question we will
address in this paper is how the thermal van der Waals
interaction between two media relaxes to its equilibrium value.
Some physical properties of the thermal Casimir interaction
look less mysterious when studied in this setting, and we
show that the thermal Casimir interaction is induced by
the correlations between the polarization fields of the two
media. For a single type of polarization field, our model
corresponds to a Debye-type dielectric material. However, if
we assume that there is a distribution of polarization fields
with different relaxation times and dielectric susceptibilities,
then any dielectric function can be obtained by taking a
suitable distribution. Thus, although our model only applies
to Debye-like dielectrics, it can be applied to any dielectric
function as results of our computations only depend on the
frequency dependent dielectric function. Furthermore, as we
are interested in the approach to the equilibrium force, we
argue that the slowest relaxing polarizability fields will be the
thermal ones (zero Matsubara frequency term), and among
these, thermal modes, those with the slowest dynamics should
exhibit a Debye relaxation.

The dynamics we assume for the microscopic model
for a polarizable dielectric media is overdamped stochastic
dynamics for the polarization field. In the static limit, the
force between such media corresponds to the zero frequency
Matsubara term in the interaction energy between dielectric
media as found in the Lifshitz theory [1]. We show here
how the thermal van der Waals force between two objects
emerges via the correlation of dipoles in the interacting media.
Within this formalism, we can see how the force evolves
with time toward its equilibrium value, for instance, for two
slabs brought into close proximity where they initially had
infinite separation. We also can see how, on upon changing
the temperature of the system, the van der Waals force evolves
from its initial equilibrium value at the initial temperature to
the final equilibrium value at a different temperature. Although
the model is simple and restricted to the nonquantum part of the
van der Waals interaction, it may give useful intuition about
fluctuation induced forces out of equilibrium. An appealing
aspect of this approach is that the Laplace transform (with
respect to time) of the dynamical force can be expressed in
terms of static results that can be obtained via well established
equilibrium methods.

We note that the study of the quantum Casimir-Polder
interaction between atoms and surfaces has been studied in a
number of out-of-equilibrium contexts [26–29]. Specifically,
one can study the evolution of a quantum state of the system
that is not a stationary state and also modifications of the
Casimir-Polder force due to the atom’s motion. The study
here, thus, is more conceptually related to these studies as we
study the evolution of an initially out-of-equilibrium state to
the thermal equilibrium one.

II. MODEL OF POLARIZABLE MEDIA

In this section, we define a simple model for the polarizable
media and their dielectric properties, showing that the dielec-

tric response functions are a linear combination of Debye-like
terms. We then show how the average force between two
such media in thermal equilibrium is identical to the thermal
Casimir or van der Waals force as predicted by Lifshitz
theory. The argument we present is for the normal thermal
Casimir interaction between two semi-infinite dielectric slabs.
However, the argument clearly generalizes for the force in any
direction on dielectric bodies separated by vacuum.

Consider a system with an ensemble of local polarization
fields pν(x) at point x in the medium. The index ν corresponds
to a type or species of polarization field, which notably has
its own polarizability per unit volume denoted by χν(x). We
consider two semi-infinite regions (slabs) V + and V − defined
via the sign of the coordinate z such that z > 0 in V + and
z < 0 in V −. The two regions V + and V − will be separated
in the z direction by a distance L. In this notation, the total
energy for a given configuration of the dipole fields is

H = 1

2

∫
dx dy

∑
νν ′

pν(x) · Aνν ′(x,y,L)pν ′ (y), (1)

where

Aνν ′ (x,y) = δ(x − y)Iδνν ′

χ (x)
+ D(x,y,L). (2)

In the first term, I is the identity matrix in three-dimensional
space, and the polarization energy, Eq. (1), corresponds to
the classical harmonic energy needed to generate a local
polarization field. In the second term, D is the interaction
between the dipoles in two semi-infinite regions, which we
write in terms of the standard dipole-dipole coupling,

D0(x − y) = −∇i∇jG(x − y), (3)

where G is the Green’s function for the electrostatic field in
vacuo obeying

ε0∇2G(x) = −δ(x). (4)

Writing the energy in the above manner means that the
separation (L) dependent part of the energy is encoded in
the dipolar interaction term D. This interaction is given by

D(x,y,L) = D0(x − y), (5)

when x ∈ V + and y ∈ V + or when x ∈ V − and y ∈ V −,

D(x,y,L) = D0(x − y − Lẑ), (6)

when x ∈ V − and y ∈ V +, and

D(x,y,L) = D0(x + Lẑ − y), (7)

when x ∈ V + and y ∈ V −.
Notice that the L dependence for slabs will be replaced

by another general relative coordinate for bodies of arbitrary
geometry, for instance, the distance between the center of two
spheres or the distance between the center of a sphere and a
semi-infinite plane.

Before proceeding with the analysis of Casimir interactions
between two slabs, let us consider the dielectric properties
of the bulk systems. We will assume that each dipole field
obeys Langevin dynamics and that the only coupling between
the different polarization fields is their mutual dipole-dipole
interactions. The dynamical equations for each field in the
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presence of a uniform time dependent electric field E, thus, is
given by

∂piν(x)

∂t
= −κν(x)

δH

δpiν(x)
+ κν(x)Ei(t) + ζνi(x,t), (8)

where κν is a local diffusion constant for each polarization
field and determines the time scale of relaxation of the field.
The noise ζνi(x,t) is of a white noise type and has a space-time
correlation function,

〈ζνi(x,t)ζν ′j (x′,t ′)〉 = 2T δij κν(x)δνν ′δ(x − x′), (9)

where T is the temperature (imposed on the polarization field
by the local bulk environment) and the weighting κν assures
that detailed balance holds, i.e., that the dynamics eventually
leads to thermal equilibrium at temperature T .

In a bulk system (where κν and χν are constant), we
determine the dielectric properties of the model by computing
the response to a spatially uniform applied electric field E(t) =
E exp(iωt). The average response of each polarizability field is
uniform in space, and the interactions between dipoles average
to zero. The average value of each polarizability field then is
given by

〈pν(t)〉 = χν

1 + iωχν

κν

E exp(iωt), (10)

and, thus, the average total electric displacement is

D(t) = ε0E(t) +
∑

ν

〈pν(t)〉. (11)

This allows us to read off the frequency dependent dielectric
response as

ε(ω) = ε0 +
∑

ν

χν

1 + iωχνκν

, (12)

which is obviously just a superposition of Debye-like dielectric
responses. The frequency dependent dielectric response, thus,
depends on both the polarizabilities χν and the dynamical
variable κν . The static dielectric constant, however, depends
only on the static polarizabilities,

ε(0) = ε0 +
∑

ν

χν. (13)

III. EQUILIBRIUM VAN DER WAALS INTERACTION

After having established the basic bulk dielectric properties
of our model, we will show how they enter the equilibrium van
der Waals or thermal Casimir effect between two semi-infinite
dielectric slabs.

The force between two semi-infinite slabs separated by a
distance L for any configuration of the polarizability fields in
the two slabs is given by

f = −∂H

∂L
= −1

2

∑
νν ′

∫
dx dy pν(x) · ∂

∂L
A(x,y,L)pν ′ (y),

(14)

since only the dipole interaction term D depends on L. The
local polarizability only depends on the coordinates within

the two volumes V + and V −. The equilibrium value for the
average force may be obtained using the fact that

〈pν(x)pν ′(y)〉 = T [A−1(x,y,L)]νν ′ , (15)

and, thus,

〈f 〉 = −T

2
Tr

(
A−1 ∂

∂L
A

)
, (16)

where Tr indicates the trace over the operator, the spatial, and
the species indices. This average force, thus, may be written
as

〈f 〉 = −T

2

∂

∂L
Tr ln[A] = −∂F

∂L
, (17)

which of course agrees with the standard statistical mechanical
definition if F = −T ln(Z) is interpreted as the free energy
obtained from the partition function,

Z =
∫

d[p] exp(−βH ). (18)

This partition function can be written in a standard way by
introducing a Hubbard-Stratonovich auxiliary field φ, which
physically can be identified with iψ where ψ is the fluctuating
electrostatic potential to decouple the dipolar interaction. This
gives up to a constant factor independent of L,

Z =
∫ ∏

ν

d[pν]d[φ] exp

(
− β

2

∫
ε0[∇φ(x)]2

+β

∫
z<0

dx i
∑

ν

pν(x) · ∇φ(x) −
∑

ν

pν(x)2

2χν(x)

+β

∫
z>l

dx i
∑

ν

pν(x) · ∇φ(x) −
∑

ν

pν(x)2

2χν(x)

)
. (19)

We note that the variables χν are not necessarily the same
in regions z < 0 and z > L as, in general, they correspond
to two different materials. As the integrals over pν now are
decoupled, they may be carried out to yield, again up to
constants independent of L, the standard form of the partition
function for the thermal Casimir contribution for van der Waals
interactions between dielectric media,

Z =
∫

d[φ] exp

(
−β

2

∫
dx ε(x,0)[∇φ(x)]2

)
. (20)

Here, ε(x,0) = ε0 + ∑
ν χ (x) for z < 0 and z > L, i.e., in the

volumes V + and V − and ε(x) = ε0 for z ∈ [0,L], i.e., the
vacuum between the two media. We also see that the variables
ε(x,0) are simply the local static dielectric constants as defined
by Eq. (13). This form of the partition function corresponds to
the one stemming from the Lifshitz theory of the Casimir force
for the thermal van der Waals component of the interaction.
As mentioned above, the resulting expression for the partition
function is, in fact, valid for any geometry and configuration of
dielectric bodies if they are separated by vacuum—the partition
function depends on the position of the dielectrics only through
the local value of the dielectric constant in space.

The partition function in Eq. (20) can be evaluated exactly
for systems where ε(x) depends only on the coordinate z

(slablike configurations), whereas, for other geometries, it can
be evaluated via different approximation schemes, such as the

031108-3
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proximity force approximation or using systematic multipolar
expansions.

IV. DYNAMICS

We now turn to the problem of the dynamical evolution of
the force. In the absence of an applied field, the polarization
dynamics can be written as

∂piν(x)

∂t
= −κν(x)

δH

δpiν(x)
+ ζiν(x,t), (21)

where κν(x) determines the local relaxation in the region x of
space. The condition of detailed balance implies that the noise
correlator obeys

〈ζiν(x,t)ζjν ′ (x′,t ′)〉 = 2T Riνjν ′ (x,x′), (22)

where the operator R is given by

Riνjν ′(x,x′) = κν(x)δij δνν ′δ(x − x′). (23)

In operator notation, the dynamical equations can be written
as

∂p(x)

∂t
= −RAp(x) + ζ (x,t). (24)

The average value of the dynamical force, Eq. (14), can be
obtained from the time correlation function of the dipole field
defined as

〈piν(x,t)pjν ′(x′,t)〉 = Ciνjν ′ (x,x′,t), (25)

so that the time dependent average force is given by

〈f (t,L,T )〉 = −1

2
Tr C(t)

∂

∂L
A. (26)

The evolution equation for p, being of first order in time, can be
integrated to give an explicit form for the correlation function,

C(t) = exp(−tRA)C(0) exp(−tAR)

+ T A−1[1 − exp(−2tAR)], (27)

in operator notation, where C(0) is the value of the correlation
function at t = 0. We notice here that the force between the
two regions depends on the cross correlation between them.
If, at t = 0, the two regions are brought into proximity from a
long distance, the cross correlation at t = 0 is zero, and only
the second term in Eq. (27) remains. In the absence of initial
correlations, the Laplace transform of C,

LC(s) =
∫ ∞

0
dt C(t) exp(−st) (28)

is given by

LC(s) = T

s

[
A + sR−1

2

]−1

. (29)

This means that the Laplace transform of the time dependent
average force can be written as

L〈f 〉(s) = − T

2s
Tr

[
A + sR−1

2

]−1
∂

∂L
A. (30)

Two points should be noted at this stage: (i) the operator R

does not depend on the distance between the two regions V +
and V −, and (ii) its inverse is simply

R−1(x,x′)iνjν ′ = δij δνν ′

κν(x)
δ(x − x′). (31)

The first of these points means that we can write

L〈f 〉(s) = −1

s

∂Fs

∂L
= T

s

∂

∂L
ln(Zs), (32)

where

Zs =
∫ ∏

ν

d[pν] exp[−βHd (s)], (33)

and Hd (s) is an effective dynamical Hamiltonian given by

Hd (s) = H + s

4

∑
ν

p2
ν(x)

κν(x)
. (34)

It can be written as a static Hamiltonian with local dynamical
polarizabilities,

1

χν(x,s)
= 1

χν(x)
+ s

2κν(x)
, (35)

which, in turn, leads to local dynamic dielectric constants given
by

εd (x,s) = ε0 +
∑

ν

χν(x)

1 + sχν (x)
2κν (x)

. (36)

The observant reader immediately recognizes a similarity
between the form of Eq. (36) for the dynamical dielectric
constant and the frequency dependent dielectric constant
predicted by the dielectric response model from Eq. (12),
indeed, we find that εd (s) = ε(−i s

2 ). Thus, for the computation
of the thermal van der Waals forces in this model, knowledge
of the frequency dependent dielectric constants allows one
to predict the temporal evolution of the force toward its
equilibrium value. Although the computation above was
carried out with slab geometries in mind, it is easy to see
that it applies for general geometries where dielectric objects
are separated by vacuum. This means that we can write the
time dependent force as

〈f (t)〉 = −∂F (t,L)

∂L
, (37)

where F (t,L) is an effective time dependent free energy given
by

F (t,L) = −TL−1 1

s
ln

[
Z

(
ε

(
− i

s

2

))]
, (38)

where L−1 indicates the inverse Laplace transform and
the notation ε(is/2) denotes that the frequency dependent
dielectric constant is taken in all regions at the value −is/2.
The pole at s = 0 yields the equilibrium free energy and, thus,
the equilibrium force. We notice again, as in the static case,
that the dynamical computation also applies to an arbitrary
geometry of dielectric bodies separated by vacuum.

In the above, one can invert the Laplace transform using
the Bromwich integration formula to get

F (t,L) = −T

∫ i∞

−i∞

ds

2πis
exp(st) ln

[
Z

(
ε

(
− i

s

2

))]
, (39)
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where the integration is to the right of the imaginary axis (as
all singularities are at negative s). One can remove the term
with the pole at s = 0 by hand to write

F (t,L) = Feq(L) − T

∫ i∞

−i∞

ds

2πis
exp(st)

×
[

ln

[
Z

(
ε

(
− i

s

2

))]
− ln[Z(ε(0))]

]
, (40)

where

Feq(L) = −T ln [Z(ε(0))] (41)

is the equilibrium free energy Feq(L) = limt→∞ F (t,L). In
the above formula, the remaining contour integral is now free
of singularities on the imaginary axis, and therefore, we may
write it as a Fourier transform by performing the substitution
s = 2iω,

F (t,L) = Feq(L) − T

∫ ∞

−∞

dω

2πiω
exp(2iωt)[ ln[Z(ε(ω))]

− ln[Z(ε(0))]]. (42)

The above results can be generalized to the situation where
the two bodies are initially in equilibrium (at fixed distance
L) at a temperature T0, and then the temperature is changed
to T . We can write the force for two slabs as the sum of two
components,

〈f (L,t,T0 → T )〉 = 〈f (L,T0)〉eq + (T − T0)

T
〈f (0)(t,L,T )〉,

(43)

where 〈f (L,T0)〉eq is the equilibrium force at temperature
T0 and 〈f (0)(L,t,T )〉 is the time dependent force for two
initially uncorrelated bodies at temperature T . The result
for uncorrelated bodies at temperature T obviously can be
extracted from the above result by setting T0 = 0.

V. ANALYTICAL RESULTS FOR SLAB GEOMETRIES

Here, we consider the case of two parallel semi-infinite
slabs of dielectric constants ε1 and ε2 (we take subscripts 1
and 2 to refer to regions V − and V +, respectively). Whereas,
we claim that our results are applicable to general geometries,
we restrict our analysis to the interaction between semi-infinite
slabs as the static results necessary to extract the dynamical
results are simplest in this case,and we do not have to resort to
approximations.

The dynamical free energy,

Fs = −T ln
{
Z

[
ε
(
−i

s

2

)]}
(44)

can then be read off from standard equilibrium results and is
given by

Fs = T S

16πL2

∫ ∞

0
u du ln

[
1 − �1

(
−i

s

2

)
�2

(
−i

s

2

)

× exp(−u)

]
, (45)

where S is the area of the slabs and

�i(ω) = εi(ω) − ε0

εi(ω) + ε0
. (46)

The time dependent force for two initially uncorrelated slabs,
thus, is of the form

〈f (L,t,T )〉 = −T S

L3
H (t), (47)

where H (t) is a time dependent Hamaker coefficient whose
Laplace transform is given by

LH (s) = − 1

8πs

∫ ∞

0
u du ln

[
1 − �1

(
−i

s

2

)
�2

(
−i

s

2

)

× exp(−u)

]
. (48)

The above expression for the time dependent Hamaker
coefficient can then be written in terms of the polylogarithmic
function Li3(z) = ∑∞

n=1 zn/n3 to give

LH (s) = 1

8πs
Li3

[
�1

(
−i

s

2

)
�2

(
−i

s

2

)]
. (49)

The static equilibrium value simply is recovered from the pole
at s = 0 outside and is given by

Heq = 1

8π
Li3[�1(0)�2(0)]. (50)

Equation (47) represents an interesting and fundamental result
for slab geometries. It states that the nonequilibrium force has
the same separation dependence as the equilibrium force, but
its Hamaker coefficient is time dependent. Dynamic effects do
not modify the spatial dependence of the van der Waals force,
and the force is instantaneously long range. This decoupling
of the spatial and temporal behaviors of the force is in sharp
contrast to that of the critical Casimir force for free scalar fields
(again, in a parallel plate geometry) with Dirichlet or Neumann
boundary conditions undergoing model A dynamics. In that
case, the average force exhibits diffusive scaling, behaving
as f (L,t) = t−αg(L/

√
t) [6,7,10,11]. We finally note that

the mapping of the Laplace transform of the time dependent
force onto an effective equilibrium problem is reminiscent of
the results found in Refs. [10,11] when a similar correspon-
dence occurs for the time dependent thermal Casimir force for
a free scalar field.

Let us now investigate some special cases of the above
general results.

A. Short time behavior for Debye-type dielectrics

To begin with, we consider the temporal evolution of
the Hamaker coefficient in the simplest case where the two
bounding surfaces are described by identical Debye-type
dielectric responses and the time evolution is limited to short
time scales. Assuming that there is only one dipole type in
each dielectric slab, we, thus, have

εi

(
−i

s

2

)
= ε0 + χi

1 + sχi

2κi

. (51)

By dimensional analysis, we see that we can write κi = χi

τi
,

where τi is a microscopic polarization relaxation time in slab i.
This change in notation then yields the familiar Debye formula
for the dielectric constant,

ε(ω) = ε0 + �ε

1 + iωτ
, (52)
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where ε(0) − ε0 = �ε = χ . From this, we obtain

ε
(
−i

s

2

)
= ε0 + εi − ε0

1 + sτi

2

, (53)

which, in turn, yields

�i

(
−i

s

2

)
= εi − ε0

εi + ε0 + ε0τis
. (54)

At short times, the temporal behavior of H (t) can be obtained
by looking at the large s behavior of LH (s). In this limit, we
have that

�i

(
−i

s

2

)
≈

(
εi − ε0

ε0

)
1

sτi

. (55)

As the �i(−i s
2 ) are small, and we are effectively in the dilute

two body limit, this means that the correlations other than the
two body ones set in at later time scales. We, thus, find

LH (s) ≈ (ε1 − ε0)(ε2 − ε0)

8πs3τ1τ2ε
2
0

, (56)

and, thus, inverting the Laplace transform, we find that, at short
times,

H (t) ≈ (ε1 − ε0)(ε2 − ε0) t2

16πτ1τ2ε
2
0

. (57)

The above initial growth is quadratic in time, reflecting
the need for the polarization fields to become correlated.
This result can be generalized straightforwardly to several
polarization types νi in each slab, and we find that, at early
times,

H (t) ≈ t2

16πε2
0

∑
ν1ν2

χν1χν2

τν1τν2

. (58)

From this expression, one obviously discerns the pairwise
nature of the interaction between the distinct polarization types
ν1 and ν2 in slabs 1 and 2.

B. Long time behavior for Debye-type dielectrics

Next, we consider the long time behavior of the Hamaker
coefficient in the case of two identical Debye-type materials.
As we know the initial (and final equilibrium) values of the
force, we can examine its full temporal evolution by analyzing
the temporal derivative Ḣ (t) = dH/dt . As the initial value of
H is zero, standard results on Laplace transforms give

LḢ (s) = 1

8π
Li3

[
�1

(
−i

s

2

)
�2

(
−i

s

2

)]
. (59)

In this case, we have

�1

(
−i

s

2

)
=�2

(
−i

s

2

)
= ε − ε0

ε0τ

1

s + a
with a = ε + ε0

ε0τ
.

(60)

Now, by using the series representation of Li3, we can invert
the Laplace transform term by term to find

Ḣ (t) = 1

8π

∞∑
n=1

(
ε − ε0

ε0τ

)2n
t2n−1 exp(−at)

n3(2n − 1)!

= 1

4πt
exp(−at)R

(
(ε − ε0)t

ε0τ

)
, (61)

where

R(u) =
∞∑

n=1

u2n

n2(2n)!
= 4

∫ u

0
ds[ln(u) − ln(s)]

cosh(s) − 1

s

� 2
exp(u)

u2
for u → ∞. (62)

The asymptotic form for u → ∞ was derived by expressing
R(u) in terms of hypergeometric functions. Putting this all
together yields, for large t ,

Ḣ (t) ≈ τ 2

2πt3

(
ε0

ε − ε0

)2

exp

(
−2t

τ

)
. (63)

Therefore, at late times, the asymptotic form of the time
dependence of the Hamaker coefficient turns out to be

H (t) ≈ Heq − τ 2

4πt2

(
ε0

ε − ε0

)2

exp

(
−2t

τ

)
. (64)

The apparent divergence in the second term above, when
ε → ε0, appears strange at first sight, however, we must bare
in mind that the asymptotic expansion we carried out to
obtain this result depended on the variable u = (ε − ε0)t/τε0

being large. We numerically can verify the validity of the
asymptotic expansion by comparison with a direct numerical
evaluation of Eq. (61). It is found to be correct, but its realm
of validity is for very large values of u of the order of 50. The
asymptotic expansion, thus, is of limited use and just shows
that, at very late times, the final relaxation to the equilibrium
Hamaker coefficient is exponential with time scale τ ∗ = τ/2,
interestingly independent of ε.

A particularly nontrivial point about the above calculation
is that, although the pairwise approximation is valid for
the equilibrium Hamaker coefficient when �ε = ε − ε0 is
small, the pairwise approximation cannot be used to extract
the temporal behavior of the out-of-equilibrium Hamaker
coefficient. This is because �ε appears multiplied by time t ,
and thus, the product of the two eventually must become large.
Thus, even when the final equilibrium result is dominated
by pairwise interactions, the dynamical evolution to the
equilibrium actually depends crucially on the full n-body
interactions.

In the case where the two media are of Debye type but with
different dielectric parameters, the inversion of the Laplace
transform of Ḣ (s) is more complicated, and, in general, we
have not been able to find an analytical expression as in the
case where both slabs are composed of identical dielectric
media. However, in the case where the media are such that

a = a1 = ε1 + ε0

τ1ε0
= a2 = ε2 + ε0

τ2ε0
, (65)

this means that �1(−i s
2 ) and �2(−i s

2 ) have the same poles (at
s = −a1 = −a2), and we obtain

Ḣ (t) = 1

4πt
exp(−at)R

(√
(ε1 − ε0)(ε2 − ε0)t

ε0
√

τ1τ2

)
. (66)

Here, the late time relaxation to the equilibrium Hamaker
coefficient is again exponential with time scale τ ∗ = 1/[a −√

(a − 2
τ1

)(a − 2
τ2

)], which we see is dependent on the dielec-
tric constant but only through variable a.
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A subvariant of this situation, which can be resolved
analytically, is the case where one of the systems has a much
shorter relaxation time than the other, for instance, τ2  τ1.
In the inversion of the Laplace transform, we may use the
approximation,

�2

(
−i

s

2

)
= ε2 − ε0

ε2 + ε0 + ε0τ2s
≈ ε2 − ε0

ε2 + ε0
= �2(0), (67)

i.e., this is essentially the assumption that the polarization
field in slab 2 instantaneously equilibrates with the electric
field produced by the polarization field of the slab. In addition,
the approximation is valid only for times t such that t � τ1.
Within this approximation, we find that

Ḣ (t) = 1

8πt
exp(−a1t)W

(
�2(ε1 − ε0)t

ε0τ1

)
, (68)

where

W (u) =
∞∑

n=1

un

n!n2
� exp(u)

u2
for u → ∞, (69)

in the large u limit. Thus, for large t , we remain with

H (t) ≈ Heq − τ 2
1

4πt2

(
ε0

�2(ε1 − ε0)

)2

exp

(
−2t(ε1 + ε2)

τ1(ε2 + ε0)

)
.

(70)

Therefore, even though the relaxation time of slab 2 is very
small and the overall relaxation time scale is set by τ1, i.e.,
of the relaxation time of slab 1, the relaxation time of the full
Hamaker coefficient scales with τ1 but also depends on the
dielectric properties of slab 2 through the factor (ε1+ε2)

(ε2+ε0) .

C. Havriliak-Negami-type dielectrics

It is possible to obtain non-Debye-like behavior of the
dielectric constant by choosing a suitable distribution of po-
larizability and relaxation times for the associated polarization
fields, i.e., by assuming the existence of a distribution,

ρ(χ,τ ) =
∑

ν

δ(τ − τν)δ(χ − χν), (71)

such that

ε(ω) = ε0 +
∫

dτ dχ ρ(χ,τ )
χ

1 + iωτ
. (72)

A very general phenomenological formula for the dielectric
constant is the Havriliak-Negami formula [30,31],

ε(ω) = ε0 + �ε

[1 + (iωτ0)α]β
, (73)

with α ∈ [0,1] and β > 0. The Havriliak-Negami form reduces
to the Debye model in the case where α = β = 1. When β = 1,
it gives the Cole-Cole formula, and when α = 1, it gives the
Cole-Davidson formula. We should note that the Havriliak-
Negami dielectric function can be written explicitly as a
superposition of individual Debye relaxations, and thus, the
study of this functional form within the dynamical formalism
presented here is justified. In terms of our model, this model
is composed of polarization fields of the same polarizability

χ (= �ε = ε − ε0) but with different relaxation times τ . This
means that the dielectric function can be written in the form

ε(ω) = ε0 + �ε

∫
dτ ρ(τ )

χ

1 + iωτ
, (74)

where

ρ(τ ) = 1

τπ

(
τ
τ0

)αβ
sin(βθ )[(

τ
τ0

)2α

+ 2
(

τ
τ0

)α

+ 1

]β/2

and θ = tan−1

[
sin(πα)(

τ
τ0

)α

+ cos(πα)

]
. (75)

In the short time limit (corresponding to large s), we find

LH (s) ≈ 2α1β1+α2β2−5�ε1�ε2

πs1+α1β1+α2β2τ
α1β1
01 τ

α2β2
02 ε2

0

, (76)

which, after inverting the Laplace transform, gives for short
times,

H (t) ≈ 2α1β1+α2β2−5 tα1β1+α2β2�ε1�ε2

π�(α1β2 + α2β2 + 1)τα1β1
01 τ

α2β2
02 ε2

0

, (77)

where �(z) is the Euler γ function. Thus, we see that exponents
α and β in the Havriliak-Negami formula control the early
time growth exponent, which depends on the product of the
two αβ. We also can verify that this general formula agrees
with Eq. (58) in the Debye case where all α and β are equal
to 1.

The late time decay to the equilibrium Hamaker coefficient
between two slabs with Havriliak-Negami dielectric functions
can be extracted from the small s expansion of LH (s), and we
find

H (t) ≈ Heq − ε0

π
Li2[�1(0)�2(0)]

×
[

β1

(ε1 + ε0)�(−1 − α1)

(τ01

2t

)α1

+ β2

(ε2 + ε0)�(−1 − α2)

(τ02

2t

)α2
]
. (78)

Thus, the late time decay is dominated by the term above with
the smaller value of αi . This form of the Hamaker coefficient
relaxation is very different from the pure Debye exponential
relaxation, Eq. (64), and obviously shows a long time algebraic
tail. Thus, we see that the time needed to relax to equilibrium
in this case can be much longer than the microscopic time
scales τ0i that set the characteristic time of Hamaker coefficient
relaxation in the pure Debye model.

VI. NUMERICAL RESULTS

In this section, we numerically compute the time evolution
of the Hamaker coefficient to its equilibrium value by
numerically inverting the Laplace transform H (s).

A. Debye dielectrics

The most complete analytical results we have obtained are
for the temporal evolution of the Hamaker constant for two
Debye dielectrics composed of the same material. We have a
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FIG. 1. (Color online) Time derivative of the Hamaker constant
Ḣ (t) for initially uncorrelated Debye slabs made up from identical
media all with τ = 1 and (i) ε = 5ε0 (solid black line) (ii) ε = 10ε0

(short dashed red line), and (iii) ε = 20ε0 (long dashed green line).

closed form expression for the temporal derivative Ḣ (t) given
by Eq. (61). In Fig. 1, we have compared the analytical form
of Eq. (61) with the result obtained by numerical inversion
of the Laplace transform for Ḣ (t) for the cases τ = 1 and
ε = 5, 10, and 20. Only the analytical curves are shown as the
accord with the analytical formula is perfect. The figure shows
that the temporal derivative increases most rapidly at short
times for the systems of higher dielectric constant as predicted
by Eq. (56). However, the final relaxation is slowest for the
systems of lower dielectric constants.

Now, we consider a pure Debye case where each slab is
characterized by a single time scale τi and dielectric constant
εi . We examine the case where ε1 = 10ε0 and ε2 = 2ε0

in the following three cases where (i) τ1 = 1, τ2 = 1 (ii)
τ1 = 1, τ2 = 0.1, and (iii) τ1 = 0.1, τ2 = 1 (therefore, we are
measuring time in units of the longer of times τ1 and τ2. Note
that the equilibrium Heq value of the Hamaker coefficient is
the same in all of these cases. In Fig. 2, we plot the functions
H (t)/Heq for each case. We see that, in the last two cases where
the shorter time scale τ = 0.1 is introduced, the approach
to the equilibrium value is quicker. However, the quickest
relaxation occurs when the shorter of the two relaxation times
is associated with the more dilute dielectric medium, i.e., that
with the lower dielectric constant.

B. Havriliak-Negami dielectrics

We now consider the Havriliak-Negami form for the
dielectric constant of two media. For simplicity, we consider
media of the same type with a fixed �ε = ε − ε0, and we
use units such that τ0 = 1. The case where �ε = 3 and when
β = 1 (the Cole-Cole) is shown in Fig. 3 for several values of
α. We see that, as α decreases from 1 toward 0, the relaxation
to the final equilibrium Hamaker coefficient (which is the
same for all the curves as the static dielectric constants are
the same) becomes increasingly slow as one would expect
from Eq. (78). Also, numerical fitting of the late time decay
toward 1 in Fig. 3 is compatible with the analytic prediction of
the late time exponents given in Eq. (78). The initial behavior

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

H
(t

)/
H

eq

0 0.5 1 1.5 2 2.5 3
t

FIG. 2. (Color online) Time evolution of the Hamaker constant
normalized by its equilibrium value for two initially uncorrelated
slabs of pure Debye-type dielectric slabs 1 and 2 with ε1 = 10ε0, ε2 =
2ε0, and relaxation times (i) τ1 = 1, τ2 = 1 (solid black line) (ii)
τ1 = 1, τ2 = 0.1 (short dashed red line), and (iii) τ1 = 0.1, τ2 = 1
(long dashed green line).

is the inverse, the systems with smallest α have a H (t) that
grows faster in accordance with the predictions of Eq. (77).
An interesting feature of Fig. 3 is that all the curves cross
each other at the same isosbesticlike point in time at around
t = 0.25.

In Fig. 4, we show the temporal evolution of H (t) for Cole-
Davidson-type dielectrics for different values of β but with
the same dielectric constants. As predicted from Eq. (77), the
systems with the smaller values of β show the most rapid
growth in H (t) at short times, but in contrast with the Cole-
Cole case, these systems also converge most rapidly to the
equilibrium value, and there is no isosbesticlike point in this
case.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
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0.4
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H
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)/
H

eq

FIG. 3. (Color online) Time evolution of the Hamaker constant
normalized by its equilibrium value for two identical initially
uncorrelated Cole-Cole (Havriliak-Negami with β = 1) dielectric
slabs 1 and 2 with ε = 10ε0 and characteristic relaxation times τ = 1
for different values of α: (i) α = 0.8 (solid black line), (ii) α = 0.6
(red short dashed line), (iii) α = 0.4 (green long dashed line), and
(iv) α = 0.2 (blue dot-dashed line).
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FIG. 4. (Color online) Time evolution of the Hamaker constant
normalized by its equilibrium value for two identical initially un-
correlated Cole-Davidson (Havriliak-Negami with α = 1) dielectric
slabs 1 and 2 with ε = 10ε0 and characteristic relaxation times τ = 1
for different values of α: (i) β = 0.8 (solid black line), (ii) β = 0.6
(red short dashed line), (iii) β = 0.4 (green long dashed line), and
(iv) β = 0.2 (blue dot-dashed line).

VII. DISCUSSION

We have formulated a theory describing how the thermal
van der Waals force between two dielectric objects evolves
with time toward its equilibrium value. As an example
of a general approach, we analyze the dynamics of the
thermal Casimir or zero Matsubara frequency van der Waals
interactions between two slabs brought into close proximity
from an infinite separation, corresponding to the limit of
the nonquantum part of the total van der Waals interaction.
Despite these simplifications, our calculations give a useful
intuition about fluctuation induced forces out of equilibrium.
The particular strength of our approach is that the Laplace
transform (with respect to time) of the dynamical force can
be expressed in terms of equilibrium results available from a
wide range of equilibrium methods.

We show that, for the zero frequency Matsubara term
in planar geometry, the coarse-grained dynamics of the
interacting dielectric media only enters via the Hamaker
coefficient, whereas, the dependence on the spacing between
the dielectric interfaces remains unchanged and coincides with
the equilibrium scaling. This is a fundamental result but is
limited to the high temperature part of the Casimir interaction.
However, it is this part of the van der Waals interaction that is
most important in (bio)colloid systems and nanosystems.

The time evolution of the thermal van der Waals force
between two surfaces of area S at temperature T separated
by L, f (L,t,T ), then is given by

〈f (L,t,T )〉 = −T S

L3
H (t). (79)

Whereas, the separation into an equilibrium separation scaling
and a nonequilibrium Hamaker coefficient appears to be
universal, the form of the time dependence of the Hamaker
coefficient H (t) is specific and strongly is dependent on the
dielectric response of the two bounding dielectric surfaces.

We have shown that, for Debye-type dielectric responses
of the interacting materials with a relaxation time of τ , the
scaling of the Hamaker coefficient for short times is given by

H (t) ∼ C<t2,

whereas, in the asymptotic time regime, we obtain H (t) ≈
Heq − C>

t2 exp(− 2t
τ

). The time scale of these nonequilibrium
effects in thermal Casimir interactions, thus, is determined
by the (longest) dielectric relaxation time of the interacting
media. This would render the practical observation of these
nonequilibrium effects difficult in general, however, it may be
possible to observe temporal evolution of the force for systems
with extremely long relaxation times, such as polymers,
colloids, and glassy systems.

Indeed, in the case of the non-Debye-like response that we
have studied, i.e., the Havriliak-Negami dielectric response
function (which commonly is applied to polymeric systems),
we obtain a completely different asymptotic behavior of the
Hamaker coefficient. Instead of an exponential scaling with
time, a long algebraic tail is obtained instead. We derived the
scaling form

H (t) ≈ Heq −
(

C>

2t

)α

,

in the late time asymptotic regime where α is one of the
scaling exponents in the Havriliak-Negami dielectric response
function. This long time algebraic tail in the relaxation of the
nonequilibrium Hamaker coefficient leads to the conclusion
that, for this particular dielectric model, it might be possible
to observe long time nonequilibrium effects.

Variation in the form of the time evolution of the nonequi-
librium Hamaker coefficient with the nature of the dielectric
response of the interacting media makes it possible or, indeed,
quite probable that, in some experiments where, at least
indirectly, time dependent van der Waals interactions are
probed, these effects may complicate a clear cut interpretation
of the experiments. This would be especially true for the
tapping mode atomic force microscopy (AFM) measurements
of macromolecular interactions or any other situation involving
time varying separation between the interacting dielectric
interfaces. The AFM tapping mode vibration of the interacting
surfaces together with the time evolution of the appropriate
nonequilibrium Hamaker coefficients would lead to a nontriv-
ial modification of the dependence of the magnitude of the van
der Waals interaction on the dielectric characteristics of the
interacting surfaces. In order to consider more experimentally
appropriate geometries, it would be interesting to extend
the results here to, for instance, sphere plane and sphere
sphere geometries. In these systems, the corresponding static
problems will involve more than one length scale, and the
simple scaling seen for slab geometries will break down. Our
results on slabs show that, even when the equilibrium problem
can be treated in the pairwise limit, the dynamics involves
many body effects. The standard approximations applied for
equilibrium Casimir forces may well break down for the study
of relaxation to equilibrium, and thus, one may have to resort to
numerical methods [32–34] to compute the Laplace transform
of the general result, Eq. (38), and then to numerically invert
the Laplace transform to obtain the temporal dependence.
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The nonequilibrium effects considered in this paper could
possibly complicate the quantitative interpretation of ex-
periments on van der Waals interactions in terms of the
dielectric susceptibilities of the interacting interfaces. In order
to interpret these experiments, one, thus, possibly would need
to incorporate the theory presented above to extract quanti-
tative measures of time-averaged van der Waals interactions.
Nonequilibrium effects also potentially could be important for
the functioning of Casimir ratchet devices where oscillating
surfaces are used to obtain directed motion via the Casimir
effect [35].

Another possible area of further analysis would be a
comparison between these dynamical nonequilibrium van der
Waals forces with the hydrodynamic drag forces of Stefan
type. These forces have their origins in the flow of fluid
from between the two interacting surfaces as they are pushed
together [36]. The time dependence of the nonequilibrium
van der Waals interaction and the specific model studied
here also could be related to and could shed light on the
phenomenon of drag induced on moving bodies by Casimir
forces [37–40].
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