
HAL Id: hal-00706662
https://hal.science/hal-00706662

Submitted on 11 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OMaxist Dialectics
Benjamin Lévy, Georges Bloch, Gérard Assayag

To cite this version:
Benjamin Lévy, Georges Bloch, Gérard Assayag. OMaxist Dialectics. New Interfaces for Musical
Expression, May 2012, Ann Arbor, United States. pp.137-140. �hal-00706662�

https://hal.science/hal-00706662
https://hal.archives-ouvertes.fr


OMaxist Dialectics:
Capturing, Visualizing and Expanding Improvisations

Benjamin Lévy
STMS Lab

IRCAM, CNRS, UMPC
1, place Igor Stravinsky

75004 Paris
Benjamin.Levy@ircam.fr

Georges Bloch
CNSMDP & IRCAM
209 av. Jean Jaurès

75019 Paris
gbloch@cnsmdp.fr

Gérard Assayag
STMS Lab

IRCAM, CNRS, UMPC
1, place Igor Stravinsky

75004 Paris
Gerard.Assayag@ircam.fr

ABSTRACT
OMax is an improvisation software based on a graph repre-
sentation encoding the pattern repetitions and structures of
a sequence, built incrementally and in real-time from a live
Midi or Audio source. We present in this paper a totally
rewritten version of the software. The new design leads
to refine the spectral listening of OMax and to consider
different methods to build the symbolic alphabet labeling
our symbolic units. The very modular and versatile archi-
tecture makes possible new musical configurations and we
tried the software with different styles and musical situa-
tions. A novel visualization is proposed, which displays the
current state of the learnt knowledge and allows to notice,
both on the fly and a posteriori, points of musical interest
and higher level structures.

Keywords
OMax, Improvisation, Machine Learning, Machine Listen-
ing, Visualization, Sequence Model, Software Architecture

1. PRINCIPLES
OMax [2][4][6] is a software environment oriented towards
human-machine interaction for musical improvisation. It
learns in real-time by listening to an acoustic musician and
extracting symbolic units from this stream. It then builds
a sequence model on these units constituting an internal
knowledge. The internal model of OMax (named Factor
Oracle [1][5]) is a graph which incrementally recognizes the
repeated factors (patterns and subpatterns) of any symbolic
string. Factor Oracle only needs strict on the symbolic units
to be built. They can be called letters over a formal alpha-
bet.
OMax is able to navigate through this model to create one
or several “clones” of the musician feeding the system [2].
These “clones” are recombinations of the original discourse
justified by the model and realized by cutting and pasting
the original material in real-time (audio editing or MIDI
deslicing, see 2.1 and [4]).This stylistic reinjection [4] cre-
ates a specific musical interaction in which the musician
is constantly confronted to a reinterpreted version of his
own playing. It emphasize the memory effects and usage
of (self-)reference found in improvisation contexts such as
collective free improvisation or jazz.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’12, May 21 – 23, 2012, University of Michigan, Ann Arbor.
Copyright remains with the author(s).

This technique, close to concatenative synthesis, has been
extended in a video version of OMax [6]. The video of
the musician (or any other visual material) is aligned and
recombined as a slave synchronization with audio.

Previous versions of OMax made use of two very different
software environment, Max/MSP and OpenMusic (hence its
name “OMax”) respectively for real-time signal processing
and abstract model construction and navigation processes.
In this paper we will present a new version of OMax we
developed solely based on Max5. We will describe the ma-
terial it is now able to“understand”and how it achieves this.
Then we will explain the architecture of this new version and
its novel visualization and interactions possibilities. Finally
we will discuss a few situations we encountered testing with
musicians.

2. MATERIAL
Historically, OMax emerged from studies on stylistic simu-
lation by Shlomo Dubnov and Gérard Assayag and Marc
Chemillier’s research on improvisation modeling. It has
since gained considerable attention from improvising musi-
cians worldwide through dozen of concerts, workshops and
master-classes.

2.1 Audio vs. MIDI
Both audio and MIDI streams can constitute a source for
OMax learning. Though MIDI is already a flow of abstract
data, it still needs to be segmented into consistent units to
be learnt. In the case of a monophonic MIDI input , segmen-
tation is trivial: a unit for a note. However a polyphonic
MIDI input feeds a continuous and overlapping flow of notes
to be separated into polyphonic chord-like slices (Figure 1).
This slicing happens with the birth and death of significant
events and has been described in [4]. It does not imply any
specific labeling (or lettering) to tag the symbolic units to
be compared and learnt.

In the case of an audio input, prior to any kind of group-
ing, information needs to be extracted from samples. We
have in OMax two very different types of audio analysis
which infer two different kind of listening. The first type of
analysis is pitch extraction. For now, we are able to deal
only with monophonic pitch extraction and use the YIN
algorithm [8]. To make the output of yin more consistent
and stable, we use a statistical analysis with concurrent vot-
ing agents gathering pitches over fixed windows [3]. Stable
pitches are gathered and grouped into units when equal and
consecutive to form notes. At this point, we are brought
back to the simpler case of monophonic MIDI-like data.

We summarize the different steps to form consistent units
for the different type of analysis in Figure 1. From an audio
stream, micro-units are constituted with an initial framing
and the extraction of a descriptor of the signal. Depending



Detection

Segmentation

Extraction

Grouping

Model

Audio

MIDI_poly

MIDI_mono frame sizestat window ticks Parameter

Algorithm

Boundaries

Window

Type

euclidean 
distance event basedequality

Pitch Spectral MIDI

—

—

stat window

YIN

FFT

MFCC

Time 
Stamping

Symbolic 
Labeling

Framing

Slicing

micro units

macro units

Figure 1: Analysis chain of the input

on the algorithm of extraction, different sliding windows
are used. Then, in a second phase, macro-units can be put
together by grouping similar and consecutive micro-units.
The boundaries are defined by different criteria depending
on the type of units. Then, to achieve the segmentation,
we time-stamp these units linking them with the chunk of
signal they encode — and we take into account the latency
and time specific parameters of each methods.

2.2 Spectral Segmentation
The second type of audio analysis in OMax uses spectral
descriptors. They allow the system to listen and play with
wider types of sound including noises, percussions or differ-
ent instrumental playing modes. Mel Frequency Cepstral
Coefficients has been proven (for example in [7]) to be eas-
ily computable, very compact and reliable for recognition
tasks. It is suitable to constitute our micro-units. However,
MFCCs are vectors of floating-point multi-scale coefficients.
It is thus necessary to have a clustering algorithm to put to-
gether consistent and meaningful macro-units.

Rather than using a rough quantization as in [6], we de-
signed a weighted Euclidean clustering algorithm. This al-
gorithm achieves both the macro-grouping and the symbolic
labeling at once.
For every incoming MFCC vector, dropping the first co-
efficient (which represent the overall energy of the slice),
we weight the remaining coefficients according to profiles
to help enhancing the differences we want to discriminate.
These profiles have been adjusted empirically along exper-
iments with several instruments and playing styles. Then
we compare the vector to the clusters already encountered
by computing the Euclidean distance with their centroids
and we determine (with an adjustable threshold) if it can
be identified or if it constitute a new letter in our spectral
alphabet.

2.3 Alphabets
This incremental clustering mechanism creates a growing al-
phabet of spectral letters in a multidimensional Euclidean
space, meaning that the system is able to discover the sym-
bolic units along the musicians playing. It allows us to have
an ad-hoc definition of the clusters depending on the input
material. Regions of the timbre space thoroughly explored
by the musician will have therefore more clusters than other
regions, less brought into play. On the other hand, pitch

classes and quantized spectral vectors constitute a fixed and
predetermined alphabet.

(a) Clusters (b) Clusters later on

Figure 2: Example of mutation in spectral clustering

Another effect of this classification is the possibility of
mutations according to the past of the learning. Depend-
ing on the material already encountered and known in the
system — which means in our MFCC space, depending on
the clusters already defined —, the same (or close) spectral
vectors can be identified differently. An example of such a
mutation is given in 2D Figure 2: vectors framed in red,
although very close, are recognize differently depending on
the moment they appear. The first vector (Figure 2a) is
considered in the “blue” class while the second occurrence
is closer to a more recently defined “yellow” cluster (Fig-
ure 2b). The appearance of the “yellow” cluster in between
did not change the class of the previously encountered vec-
tor but it modifies the classification of forthcoming material.
This also has a musical meaning: a specific playing mode
can be considered as an accident and identified as close to
an already heard mode if encountered only once. But the
same playing mode, if developed by the musician may be
rightfully creating one or more new cluster(s) — letter(s) in
our spectral alphabet —to describe its slighter differences.
Thus the mapping between signal units and symbols has
become adaptive instead of being rigid, which reflects an
important aspect of implicit learning in human interaction.

3. ARCHITECTURE
Further than being able to use different segmentations and
alphabets, the whole software has been reprogrammed to
adopt a very flexible and versatile architecture presented
Figure 3.

Interface

Modelling

Renderer

Detection Segmentation RecordInput

Output

Controls

Buffer

SchedulerImproviser

Delay

Figure 3: Functional diagram of OMax 4.x

3.1 Modularity
First of all, a modular approach has been taken to develop
the different functions needed (Figure 3). The audio in-
put is split in two streams. One is directly recorded into
a buffer while the other enters a two stage process to con-
stitute macro-units. The detection stage regroups both the
framing of the signal and the extraction of a descriptor to
get micro-units. Then the segmentation stage is in charge of
the grouping and the time-stamping to define macro-units



and date them (see 2.1 and Figure 1).
Thanks to a fixed delay, the analysis chain described in the
previous paragraph has a retro-action on the recording to
start and stop it consistently (mainly avoiding to record
long silences).

Once labelled (see 2.3), the symbolic units are fed incre-
mentally to the model which will be read and navigated by
improvising agents. To create a new “clone”, the improviser
is in charge of reading and jumping in the graph to create
a new coherent path — a musical variation on what the
acoustic musician played until now. The scheduler read-
ing this path puts it back “in time” with the possibility of
time-stretching or backward reading. Finally, the renderer
effectively reads and crossfades the different buffer chunks
corresponding to this new musical discourse.

3.2 Parallelism
The modularity of the new design allows now OMax to run
in parallel different analysis and labeling and to acquire this
way a multi-description model on a single input. The most
typical setup making use of this is to run both the pitch
and spectral analysis on a single audio input, building thus
two Factor Oracles which refer to the same buffer and time-
stamping.
Another very common option the new architecture allows,
is to have several independent “clones” improvising on the
same model. For that, we duplicate the whole generation
chain, improviser -scheduler -renderer. Each improviser is
able to have its own path on the common model of the
input.

Besides these simple configurations, more sophisticated
schemes are possible to create different musical linkage in-
side OMax. An example of these configurations is to have
two “clones” playing the same computer-based improvisa-
tion — possibly at different speed or with transposition —
ie. the same path in the model.

3.3 Versatility
Multiplying and combining at will the modules — the only
limit being the power of the computer — we can shape and
adapt our OMax setup to very diversified musical situations.
From one to several inputs in parallels with one or more de-
scriptions and models built on each of them and one to
several “clones” improvising together or independently, the
variety of arrangement allows us to start playing OMax al-
most as an instrument. We will see in 5 how OMax can now
take its own musical part in different musical ensemble.

4. VISUALIZATION
On top of the redesign of the architecture, OMax 4.x adds
to the software a whole new interface (thanks to Jitter, the
graphical part of Max5). This interface is based on a visual-
ization of the current state of one or two models being built.
It takes the simple form of a growing horizontal and linear
timeline representing what has already been learnt — time
“flows” from left to right: left is farther in the past, right
is the most recent element. Above and below this timeline
can be shown some links of the Factor Oracle graph indi-
cating the occurrences of repeated patterns. An example is
presented Figure 4.

4.1 Live
Although unadorned, this feedback constantly given on the
current state of the model revealed itself to be very effi-
cient to locate and memorize on the fly musically interest-
ing points. Seeing patterns of links appearing on the screen
related to what the musician is currently playing allows to

associate musical passages with particular sections of the
graph. And retrieve them easily later on.

Figure 4: “Clones”and regions on the sequence visualization

While playing with OMax, the visualization is also a new
interface to interact with the software. Indeed, as intro-
duced Figure 4, the different “clones” OMax is able to play
are also pictured on the display with moving arrows above
and below the timeline. These arrows reflect the current po-
sition of each “clone” in the model and jump along the links
when improvising new paths (see [2]). With the mouse, re-
gions of the graph can be selected (green and blue sections
on Figure 4) to constrain“clones”to specific sections of what
has been learnt.

Many other features and functions that can not be de-
tailed here have also been implemented to make the visual-
ization as intuitive, interactive and useful as possible.

4.2 A Posteriori
Following the same visualization principles with different
musical materials and visuals, we noticed that examining
our model, a posteriori, could reveal important higher level
structures. Moreover, this analysis may show, in real-time,
these higher level formal structures with little graphical pro-
cessing. For example, with colors to identify patterns and
thickness to stress the durations, we can enhance certain
aspects of the analysis and help discover interrelations of
parts.
Figure 5 shows the analysis of a saxophone improvisation.

Figure 5: Visualization with colors and thickness

On the bottom half (below the horizontal timeline, which
correspond to the model built on pitch), we can see with



the important number of arches, that the material intro-
duced at the beginning of the session is developed for about
a third of the total duration then the rest of the improvi-
sation is very different (few links/arches connecting it with
the beginning). Finally a short but strong recapitulation of
the first material is played: many arches connecting the last
moments of the improvisation with the beginning.

This way, the new interface of OMax may open possibili-
ties for a simple yet efficient musicology tool to study pieces
or improvisations and compare them.Automatic segmenta-
tion of formal high level structures in musical sequences has
been experimented as a derivation from this visualization
but is not presented in this paper.

5. OMAX IN ACTION
In the last two years, we had the opportunity to play with
OMax in numerous and various situation. Here are some
of the rough observations we could empirically make. We
encountered mainly two kinds of musical ensembles. The
first is a duet between an acoustic musician improvising and
feeding the system and an electronic musician controlling
the software. The second common situation is to include
OMax (and the person controlling it) into a small musical
group (usually up to ten musicians).

5.1 Duets
Naturally, the first idea to try out a software like OMax
is to ask a musician to feed the system with an improvi-
sation and play along with the computer based “clones”.
This allows us to test at the same time how the system
understands the musicians playing and how they musically
interact. Multiplying this kind of experiments with very
different instruments helped us refine the different analy-
sis stages of the software. While multiplying the different
styles showed us the musical possibilities and limits of such
a dialog.

It soon appeared in this situation that the choices made
by the person controlling OMax strongly influence the course
of the session. Thus, the acoustic musician could notice very
fast the interventions and the character of the electronic mu-
sician, and often referred to this partner as a mixed entity
constituted of OMax and the person controlling it, rather
than as the software by itself. Duets of short duration work
very well most of the time and some characteristics of purely
acoustic improvised duets can be found.
However, when musicians want to make it longer (and con-
front it with a public), they usually feel more confident
(pre)setting narrative elements. They frequently start to
predefine the type of interaction with the system, mostly
in terms of when to play and what part of the learning to
use (which could be identified to a music score for OMax
player). Or they feed OMax with some prepared mate-
rial (pre-composed and/or pre-recorded) and improvise with
these. Some previous experiments have been done in this
last direction such as in Peking Duck Soup (Bloch 2008 [6]).

5.2 Groups
The other kind of musical situation OMax has regularly
been involved in could be qualified as “collective free im-
provisation” or “band”, that is a small group of musicians
playing together, either improvising freely or with strong
predetermined structuresIn this cases, one or two instances
of OMax were used and each of them could listen and learn
from one or two of the acoustic musicians. Technically, the
question of feedback of other musicians and OMax into the
microphones gets really serious in these situations.

Despite the difference of nature between the acoustic in-
struments and OMax — which usually does not have its
own sound source — the computer and its player could re-
ally find a place comparable to the other musicians in the
group. And the work to build a whole concert program was
in almost every aspects similar to the work with an ensem-
ble of only acoustic instruments.

6. FURTHER DIRECTIONS
Both the entire renovation and the musical testing feed the
research around the musical aptness of OMax.

The explorations already started around the notion of al-
phabet in OMax constitute a strong direction of our future
work. It puts up questions about the consistency of these
alphabets and ways to build finer and even more meaningful
alphabets. On-going research about information geometry
or other content-oriented machine learning techniques may
nourish our reflexion.
Multiplying the alphabets and models built in parallel gives
opportunities to exploit more or differently the knowledge of
the system. The various descriptions of an input sequence
may be queried concurrently or jointly to help drive the sys-
tem towards more expressive and speaking musical paths.
This database oriented approach could use some reinforce-
ment learning technique in order to make interesting solu-
tions emerge.

Finally, numerous musical situation suggested we should
investigate the relation of OMax with the rhythm both in
a broad (phrase leading, endings. . . ) and in a strict (pulse,
time signature. . . ) sense. A strong anticipation mechanism
may be a relevant approach to these problems.

7. REFERENCES
[1] Allauzen, C., Crochemore, M., and Raffinot, M.

Factor oracle: a new structure for pattern matching. In
SOFSEM’99 (Milovy, Czech Republic, Nov. 1999),
vol. 1725 of LNCS, Springer-Verlag, pp. 291–306.

[2] Assayag, G., and Bloch, G. Navigating the oracle:
a heuristic approach. In International Computer Music
Conference ’07 (Copenhagen, Denmark, Août 2007),
pp. 405–412.

[3] Assayag, G., Bloch, G., and Chemillier, M.
Omax-ofon. In Sound and Music Computing (SMC)
2006 (Marseille, France, May 2006).

[4] Assayag, G., Bloch, G., Chemillier, M., Cont,
A., and Dubnov, S. Omax brothers : a dynamic
topology of agents for improvization learning. In
Workshop on Audio and Music Computing for
Multimedia, ACM Multimedia 2006 (Santa Barbara,
USA, Octobre 2006).

[5] Assayag, G., and Dubnov, S. Using factor oracles
for machine improvisation. Soft Computing 8-9 (2004),
604–610.

[6] Bloch, G., Dubnov, S., and Assayag, G.
Introducing video features and spectral descriptors in
the omax improvisation system. In International
Computer Music Conference ’08 (2008).

[7] Brown, J. C., Houix, O., and McAdams, S.
Feature dependence in the automatic identification of
musical woodwind instruments. J Acoust Soc Am 109,
3 (Mar 2001), 1064–72.

[8] De Cheveigné, A., and Kawahara, H. Yin, a
fundamental frequency estimator for speech and music.
JASA: Journal of the Acoustical Society of America
111 (2002), 1917–1930.


	Principles
	Material
	Audio vs. MIDI
	Spectral Segmentation
	Alphabets

	Architecture
	Modularity
	Parallelism
	Versatility

	Visualization
	Live
	A Posteriori

	OMax in Action
	Duets
	Groups

	Further Directions
	References

