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Capture, recognition and imitation of anthropomorphic motion

Sovannara Hak, Nicolas Mansard, Oscar Ramos, Layale Saab and Olivier Stasse

I. INTRODUCTION

We present an overview of our current research works

in generation, recognition and editing of anthropomorphic

motion using a unified framework: the stack of tasks [1].

It is based on the task function formalism classically used

for motion generation [2]. A task function maps the joint

space of a robot to a dedicated space which is usually linked

to the sensors of the robot: the task space. The task spaces

are suitable to perform motion analysis and task recognition

because the tasks are described in those spaces [3]. The

generation is originally based on inverse kinematics but can

be generalized to produce full-dynamic motions [4]. The

tasks are defined by a tasks space, a reference behavior

and a task Jacobian. The reference behaviors are originated

from human trajectories. Specific tasks are then integrated to

retarget and to edit the reference motion in order to respect

the dynamic constraints, the limits of the robot and the

general aspect [5]. In the next section, we quickly introduce

the stack of tasks framework. Then we present our methods

to perform task recognition, dynamic retargeting and editing

based on that framework.

II. STACK OF TASKS

The task-function approach [2] consists in designing the

motion to be performed as a control law in a subspace of

small dimension, and then back-projecting this control law

to the state space of the robot. A task is defined by the

triple (e, ė∗,G), where e belongs to the task space, ė∗ is

the reference behavior in the tangent space to the task space

at e, and G is the differential mapping between the task

space and the control space of the robot. The interest of

defining the robot motion inside a task space rather than

directly at the joint level is double: first, the task space

is chosen such that the control law can be easily designed

(typically, in visual servoing the task space is the space of

measurable visual features), making the link between sensor

feedback and control direct [6]; second, the interference

between two task spaces can be easily prevented and then

concurrent simultaneous objectives can be decoupled, using a

projection operator. Based on the redundancy of the system,

this approach can be extended to consider a hierarchical set

of tasks [7]. Complex motion can then be constructed from

simple tasks seen as atomic bricks of motion. We define a
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Fig. 1. The final positions of two similar looking movements. Their
purposes are different: in the left picture, the robot has to grab one ball,
whereas in the right picture, the robot has to grab two balls.

generic task function formulation [4] that can be applied in

both inverse kinematics and inverse dynamics. A complete

implementation of this approach is developed in [1] under

the name Stack of Tasks. The structure enables to easily add

or remove a task. The stack of tasks can be generalized to

generate dynamic motions.

III. TASK RECOGNITION

Several approaches for the representation of an action

and its recognition are studied in computer vision, robotics

and artificial intelligence [8]. The action recognition and

motion analysis is widely handled using statistic tools [9].

The recognition problem is formulated as a classification

problem using a Bayesian classifier [10], [11]. Generally,

for those statistic based method, the main assumption is

that the recognition is performed on a temporal sequence

of action. The motion recognition is then divided in two

steps, motion segmentation and motion classification [12],

[13]. The analysis of the motion has to be performed in a

suitable space to be efficient. These spaces can be chosen

arbitrary [12], automatically selected [14] or learned [15].

We rely on the task spaces defined using the task function

formalism to perform the motion analysis. Assuming that

the analyzed motion has been generated by a stack of

tasks involving tasks belonging to a known tasks pool,

the recognition problem is handled by applying a reverse

engineering of the motion. in order to reconstruct the original

stack of tasks. The joint trajectory to analyze is projected in

a given set of known task spaces. The projected trajectories

are compared with theoretical behaviors to decide which

tasks are active. Our method is able to recognize tasks

executed in parallel and can handle tasks coupling using task

spaces and nullspace projectors. Similar looking motion can

then be disambiguated. For example, Fig. 1 illustrates the

final positions of two different movements played by the

HRP-2 robot. Although they look similar, the purpose of the

movements are different. In the first movement, the robot

has to grab one ball with its right hand. This task modifies

the balance of the robot which consequently moves its left

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1404-6/12/$31.00 ©2012 IEEE 3539



Fig. 2. Inverse Dynamics Cascade Scheme

hand to compensate the balance. In the second movement,

the robot has to grab two balls. The second ball is placed at

the final position of the left hand in the previous movement.

This artificially introduces a visual ambiguity between the

two movements. This ambiguity can be solved using our

method [3].

IV. DYNAMIC RETARGETING AND EDITING

Generating motion from imitation has been adopted widely

by researchers in both fields of computer animation and

robotics. The starting point is usually the motion acquired

from a human expert using a motion capture system [16].

The easiest way to make a humanoid robot behave like

a human, is to simply copy human movements. However,

the challenges arise due to the kinematic and dynamic

disparity between the human and the humanoid. The original

movement has to be modified to enforce the kinematic and

dynamic constraints of the robot. This operation is called

motion retargeting [17], [18]. For example, the retargeting

can be done by optimization [19]. Typically, previous at-

tempts on dance motion imitation have been realized [20],

[12]. However, the robot dynamics have not been considered.

We propose a method for the imitation of whole-body

motion for humanoid robots based on the stack of tasks

framework. This method allows to quickly retarget a dynamic

motion demonstrated by a human expert and to adapt the

dynamics of the human body to the own dynamics of the

robot. Then the output motion is modified or edited to

rectify the differences with the original motion that were

introduced by the previous retargeting. The obtained motion

is dynamically consistent, and could be directly applied on

the real humanoid robot. The motion generation method

relies on an inverse-dynamics solver based on a cascade of

quadratic programs [4]. Each quadratic program is associated

to a desired task. The flexibility of the scheme allows the

addition of arbitrary tasks on the joint space and operational

space levels to rectify the movements. Fig. 2 illustrates

the adopted method that we applied on a dancing motion.

This dance motion is performed by a human and recorded

with an optical motion capture system. This motion is then

retargeted, edited and finally executed on the HRP-2 robot

in simulation [5].

V. CONCLUSION

We presented our works relative to anthropomorphic mo-

tions. We performed task recognition, full-dynamic motion

generation, motion retargeting and editing in a unified frame-

work: the stack of tasks. Thanks to the genericity of the task

function formalism, our works can be further extended. For

example, for the recognition, the use of the task function

formalism applied to human motion is currently investigated.

Also, preliminary results on the real robot for the retargeting

and editing method have been obtained.
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