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Using a large database (∼ 215 000 records) of
relevant articles, we empirically study the “com-
plex systems” field and its claims to find univer-
sal principles applying to systems in general. The
study of references shared by the papers allows us
to obtain a global point of view on the structure
of this highly interdisciplinary field. We show
that its overall coherence does not arise from a
universal theory but instead from computational
techniques and fruitful adaptations of the idea
of self-organization to specific systems. We also
find that communication between different disci-
plines goes through specific “trading zones”, ie
sub-communities that create an interface around
specific tools (a DNA microchip) or concepts (a
network).

INTRODUCTION

Fundamental science has striven to reduce the diver-
sity of the world to some stable building blocks such as
atoms and genes. To be fruitful, this reductionist ap-
proach must be complemented by the reverse step of ob-
taining the properties of the whole (materials, organisms)
by combining the microscopic entities, a notoriously dif-
ficult task [1–4]. The science of complex systems tackles
this challenge, albeit from a different perspective. It adds
the idea that “universal principles” could exist, which
would allow for the prediction of the organization of the
whole regardless of the nature of the microscopic entities.
Ludwig Von Bertalanffy wrote already in 1968: “It seems
legitimate to ask for a theory, not of systems of a more
or less special kind, but of universal principles applying
to systems in general ” [5]. This dream of universality
is still active: “[Complex networks science] suggests that
nature has some universal organizational principles that
might finally allow us to formulate a general theory of

complex systems ” [6]. Have such universal principles
been discovered? Could they link disciplines such as so-
ciology, biology, physics and computer science, which are
very different in both methodology and objects of inquiry
[7]?

RESULTS

In this paper, we empirically study the “complex sys-
tems” field using the quantitative tools developed to
understand the organization of scientific fields [8] and
their evolution [9–11]. Global science maps [8, 12–22]
have become feasible recently, offering a tentative overall
view of scientific fields and fostering dreams of a “sci-
ence of science” [14]. Specifically, to collect a represen-
tative database of articles, we selected from the ISI Web
of knowledge [23] all records containing topic keywords
relevant for the field of complex systems (Table I). Ta-
ble II contains the 20 most frequent cited references and
journals within our dataset. To analyze the data, we
build a network [14] in which the ∼ 215 000 articles are
the nodes. These nodes are linked according to the pro-
portion of shared references (bibliographic coupling [24]).
For this study, bibliographic coupling offers two advan-
tages over the more usual co-citation link: it offers a
faithful representation of the fields, giving equal weight
to all published papers (whether cited or not) and it can
be applied to recent papers (which have not yet been
cited). For more details, the reader is referred to the
section “Methods”.

Figure 1 shows the largest communities (thereafter also
called “fields” or “disciplines”) obtained by modularity
maximization of the network of papers published in the
years 2000-2008. The layout of all the graphs is ob-
tained thanks to a spring-based algorithm implemented
in the Gephi visualization software [48, 49]. We first
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TABLE I. Topic keywords used in our request in the
ISI Web of Knowledge database and number of ar-
ticles matching independently to each of these topic
keywords. Each topic keywords except the first six where
coupled with the topic keywords “complex*”. We moreover
rejected the articles containing the topic keywords “complex
scaling” or “linear search”, two terms refering respectively
to (heavily used) specific methods of quantum chemistry and
computer science.

topic keywords Results

self organ* 32484

complex network* 6953

dynamical system 8205

econophysics 633

strange attractor 769

synergetics 379

adaptive system* 1141

artificial intelligence 1812

attractor 1034

bifurcation 3164

chaos 5370

control 116017

criticality 980

ecology 5869

economics 2243

epistemology 345

far from equilibrium 253

feedback 12881

fractal 3867

ising 975

multi agent 2032

multiagent 665

multi scale 779

multifractal 390

multiscale 1439

neural network* 12747

(non linear* OR nonlinear*) NOT equation* 10240

non linear dynamic* 560

non linear system* 391

nonlinear dynamic* 2285

nonlinear system* 1826

phase transition 5503

plasticity 6667

random walk 758

robustness 6498

scaling 7008

social system* 586

spin glass* 643

stability AND (lyapunov OR non linear* OR nonlinear*) 1399

stochastic 9184

synchronization 4645

turbulence 4602

universality 861

cell* automat* 1659

note that all important complex systems subfields1 are

1 In the following, we use italics to refer to the names of the com-
munities.

FIG. 1. Community structure obtained with a first run
of the modularity maximization [47] on the 2000-2008
network (141 098 articles). The surface of a community I is
proportional to its number of articles NI and the width of the
link between two communities I and J is proportional to the
mean bibliographic coupling 〈ω〉IJ =

∑
i∈I,j∈J ωij/NI NJ .

The layout of the graph is obtained thanks to a spring-based
algorithm implemented in the Gephi visualization software
[48, 49]. For the sake of clarity, communities with less than
300 articles are not displayed. The label of a community rep-
resents the most frequent and/or significant keyword of its
articles. CN stands for Complex Networks, SOC for Self Or-
ganized Criticality, DS for Dynamical Systems, DigitCom for
Digital Communication and SurfaceSO for Self-organization
on Surfaces. EMC is a more composite community where the
three most representative keywords are Ecology, Management
and Computational Models. See Figure 2 for details.

present [25]. At the center, we find mostly theoretical
domains: self-organized criticality, dynamical systems,
complex networks, neural networks. These fields are con-
nected to more experimental communities lying at the
edges (materials science, biology or neurosciences). The
links between theoretical and experimental fields suggest
that complex systems science models have connections to
the “real” world, as claimed by their practitioners.

To understand the inner structure of these large com-
munities, we use recursive modularity optimization (see
[26] and “Methods”). Most fields display a rich in-
ner structure (Figure 2) with subcommunities (there-
after also called “subfields” or “subdisciplines”) orga-
nized around specific topics and references. The only
exceptions are self-organized criticality and complex net-
works, where all articles cohere around a few references.
For a short presentation of all the subfields, see Table
III. For a more detailed presentation of the main sub-
fields, including their authors, most used journals, refer-
ences and keywords, see the Supplementary Information.
We analyze this complex structure at two levels. First,
at the global scale, complex systems science appears to
be a densely interconnected network. This is somewhat
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TABLE II. The 20 references (including books and articles) and journals which are the more used by the articles
of the whole database

Reference Times used Journal (# distinct refs) Times used

Bak P, 1987,PHYS REV LETT (59) 2131 NATURE (29166) 169309

Albert R, 2002, REV MOD PHYS (74) 2050 P NATL ACAD SCI USA (42504) 151140

Laemmli UK, 1970, NATURE (227) 1762 J BIOL CHEM (59436) 149042

Watts DJ, 1998, NATURE (393) 1732 SCIENCE (24880) 148002

Barabasi AL, 1999, SCIENCE (286) 1693 CELL (11044) 99168

Bak P, 1988, PHYS REV A (38) 1555 PHYS REV LETT (23269) 94861

Sambrook J, 1989, MOL CLONING LAB MANU 1439 J AM CHEM SOC (29807) 82569

Newman MEJ, 2003, SIAM REV (45) 1308 EMBO J (10926) 53049

Bradford MM, 1976, ANAL BIOCHEM (72) 1255 MOL CELL BIOL (12866) 52694

Lowry OH, 1951, J BIOL CHEM (193) 1106 J NEUROSCI (12313) 43152

Rumelhart DE, 1986, PARALLEL DISTRIBUTED (1) 947 J IMMUNOL (18891) 41496

Strogatz SH, 2001, NATURE (410) 907 PHYS REV B (19367) 41450

Kohonen T, 1982, BIOL CYBERN (43) 901 J CELL BIOL (10239) 40560

Chomczynski P, 1987, ANAL BIOCHEM (162) 849 J CHEM PHYS (17136) 40074

Goldberg DE, 1989, GENETIC ALGORITHMS S 822 GENE DEV (4879) 38903

Lorenz EN, 1963, J ATMOS SCI (20) 726 BIOCHEMISTRY-US (16035) 32061

Mandelbrot BB, 1982, FRACTAL GEOMETRY NAT 721 BRAIN RES (15364) 30517

Kohonen T, 1990, P IEEE (78) 715 ANGEW CHEM INT EDIT (7572) 27718

Dorogovtsev SN, 2002, ADV PHYS (51) 688 NUCLEIC ACIDS RES (9738) 27242

Albert R, 2000, NATURE (406) 678 J EXP MED (8100) 27220

surprising since sharing references between subdisciplines
means that they are able to read and understand these
references, and moreover, that they find them useful.
Would these shared references point to “universal” prin-
ciples? Second, we focus on a more local scale, on the
links that specifically connect two different disciplines (ie
two different colors in Figure 1) to understand how they
manage to exchange knowledge.

Complex systems’ science overall coherence

Let us start with the field’s overall coherence. We have
looked for the references cited by many subfields. These
form the “glue” that links many subdisciplines and con-
nects the network. More precisely, we define the network-
ing force of a reference N (r) as the sum, over all pairs
of subfields, of the proportion of their links explained by
that reference (see Methods). Table IV shows that the
references that glue the network are more methodolog-
ical than theoretical: the most networking reference is
“Numerical Recipes” [27], a series of books that gath-
ers many routines for various numerical calculations and
their implementation in computers. Most of the other
linking references are mathematical handbooks or data
analysis tools. If one looks for universality in the complex
systems field, the computer – as a tool – seems to be a
serious candidate. Among the leading contributors to the
glue, we also find several references on self-organization
(SO). Self-organization is not a predictive theory, but an
approach that focuses on the spontaneous emergence of

large-scale structures out of local interactions between
the system’s subunits [28]. Several subdisciplines in Fig-
ure 2 can be related to this approach, as they use a key-
word akin to “self-organization” (SO) in more than 10%
of their articles (for a more complete list of the commu-
nities using this keyword, see the Supplementary Infor-
mation). Among these we find swarm SO, molecular SO
linking chemistry to biology, growth SO and pattern for-
mation SO linking surface science to dynamical systems.
This suggests that the field of complex systems focuses
on the cases in which the link from microscopic to macro-
scopic can be analyzed through self-organization, which
gave rise to several fruitful scientific programs, as we dis-
cuss below (section Discussion).

Interdisciplinary trading zones

At a more local scale, let us now look at the links
that specifically connect two distinct disciplines. How
are those connections established? It is widely accepted
that scientific disciplines cannot easily communicate or
be linked (in our case, share references) simply because
it is difficult for a physicist to understand a biology pa-
per and vice-versa. In addition, different disciplines have
different definitions of what counts as a result or as an in-
teresting research topic. For example, physical sciences
look for universal laws, while social [29] and biological
[30] sciences emphasize the variations in structure across
different groups or contexts and use these differences to
explain differences in outcomes. Physicians are interested
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FIG. 2. Community structure obtained with a second run of the modularity maximization on the 2000-2008
network. This community structure is obtained by optimizing the internal modularity Qi of each community obtained by
the first run of the modularity maximization algorithm on the 2000-2008 network, displayed on Figure 1 (See Methods for
details on the procedure). The layout of the graph is obtained thanks to a spring-based algorithm implemented in the Gephi
visualization software [48, 49]. The surface of each community is proportional to its number of articles and the width of the
link between two communities I and J is proportional to the mean weight 〈ω〉IJ . For the sake of clarity, communities with less
than 300 articles and links with a mean weight 〈ω〉IJ less than 2.10−5 are not displayed. The color of a community (see online)
corresponds to the color of the field (Fig 1) it belongs to. Community labels generally correspond to the most frequent and/or
significant keyword. For a detailed presentation of all the subfields, including their authors, most used journals, references and
keywords, see the Supplementary Information.

in practical medical advances while physicists want to
know whether physiological rhythms are chaotic or not
[31].

Where do the links come from then? In an illuminating
analogy, Peter Galison [32] compares the difficulty of con-
necting scientific disciplines to the difficulty of communi-
cating between different languages. History of language
has shown that when two cultures are strongly motivated
to communicate - generally for commercial reasons - they
develop simplified languages that allow for simple forms
of interaction. At first, a “foreigner talk” develops, which
becomes a “pidgin” when social uses consolidate this lan-
guage. In rare cases, the “trading zone” stabilizes and the

expanded pidgin becomes a creole, initiating the devel-
opment of an original, autonomous culture. Analogously,
biologists may create a simplified and partial version of
their discipline for interested physicists, which may de-
velop to a full-blown new discipline such as biophysics.
Specifically, Galison has studied [32] how Monte Carlo
simulations developed in the postwar period as a trading
language between theorists, experimentalists, instrument
makers, chemists and mechanical engineers. Our interest
in the concept of a trading zone is to allow us to explore
the dynamics of the interdisciplinary interaction instead
of ending analysis by reference to a “symbiosis” or “col-
laboration”.
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TABLE III. 2000-2008 subfields’ sizes N , inner coherences < ω >−1 and modules q.

Subfield N < ω >−1 q

Analytic Chemistry (AnalyticChem) 419 336.14 0.0002

Angiogenesis (Angiogen) 3642 1408.78 0.005

Apoptosis (Apopt) 2632 1424.23 0.0026

Attractors 1161 524.42 0.0013

Bacterial Genomics (BactGen) 1517 120.19 0.0103

Brain Chaos 1175 70.06 0.0105

Calibration (Calib) 538 371.17 0.0004

Cellular Automata(CA) 846 164.26 0.0023

Cellular Neural Networks (CellularNN) 620 86.17 0.0024

Chaos 3134 531.3 0.0099

ClimateChaos 352 205.31 0.0003

Complex Fluids (CFluid) 2310 994.14 0.0029

Complex Networks (CN) 3684 21.87 0.2235

Computational Complexity (ComputCompl) 1134 379.92 0.0018

Computational Systems Biology (CSB) 1799 323.99 0.0053

Computer 526 437.08 0.0003

Condensed Matter (CondMatt) 2629 631.99 0.0059

Condensed Matter - Polymers (CondPolymers) 471 131.85 0.0009

Control 4772 1086.35 0.0112

Crystal Structure (CrystalStruct) 3386 350.41 0.0175

Cytoskeleton Self-Organization(CytoskSO) 651 132.58 0.0017

Deformation 590 432.48 0.0004

Diabetes 1015 669.24 0.0008

Digital Communication (DigitCom) 3811 470.56 0.0165

Ecology 4751 1846.16 0.0066

Econophysics (Econophys) 738 96.12 0.003

Electrocardiogram (ECG) 987 117.68 0.0044

Endocrinology (Endocrino) 1223 607.63 0.0013

Energy Transfert (EnergyTransf) 801 258.27 0.0013

Epigenomics 3055 677.49 0.0074

Epilepsy 316 273.67 0.0001

Evolution 1318 796.76 0.0011

Fractals 1015 192.02 0.0029

Functional MRI (fMRI) 2634 897.28 0.0041

Functional Neurosciences (fNS) 935 497.44 0.0009

Genetic Algorithm (GenAlgo) 2177 197.96 0.0128

Genetic Diseases (GenDiseases) 2273 387.34 0.0072

Growth Self-Organization (GrowthSO) 1192 113.84 0.0067

Hemodynamics (Hemodyn) 346 344.37 0.0001

Immunology (Immuno) 4403 2234.66 0.0047

Subfield N < ω >−1 q

In Vitro Fertilization (IVF) 591 281.01 0.0006

Kolmogorov Complexity (K-Comp) 501 121.94 0.0011

Malaria 2702 747.44 0.0052

Management (Managt) 3563 2159.31 0.0031

Mitosis 3171 564.98 0.0095

Molecular Self-Organization (MolecularSO) 2684 409.08 0.0094

Multi-agent System (MAS) 1787 1094.91 0.0015

Nanofabrication (NanoFabr) 457 45.28 0.0025

Nanosciences (Nano) 1995 418.01 0.0051

Neural Networks (NN) 2902 221.15 0.0201

Neural Synchronization (NeuralSynchr) 1451 453.59 0.0025

Organic Chemistry (OrgChem) 649 368.67 0.0006

Pattern Formation (PattForm) 1403 205.82 0.0051

Pattern Formation & Self-Organization 691 142.82 0.0018

(PattformSO)

Petri Nets 957 275.76 0.0018

Photosynthesis (PhSynth) 2000 224.48 0.0096

Plasticity 1066 915.05 0.0006

Polimerization (Polymeriz) 645 98.54 0.0022

Protein Structure (ProteinStruct) 1830 237.07 0.0076

Protein Transport (ProteinTransp) 1305 308.77 0.0029

Quantum Chaos (QChaos) 1456 636.22 0.0018

Quantum Dots (QDots) 921 130.93 0.0035

Reinforcement Learning (RLearning) 891 287.57 0.0014

Respiration Rhythm 416 57.35 0.0016

Self-Organized Criticality (SOC) 4447 199.3 0.0509

Self-Organizing Maps(SOM) 3495 168.85 0.0376

Social Cognition Therory (SocialCognTheor) 800 680.59 0.0005

Sorption 1354 925.37 0.001

Support Vector Machines(SVM) 3660 867.91 0.0082

Surface Self-Organization (SurfSO) 1511 468.34 0.0026

Swarm Intelligence (SwarmIntel) 608 145.94 0.0013

Synaptic Plasticity (SynPlasticity) 1625 370.25 0.0038

Transcriptomics (Transcrip) 2043 439.37 0.0051

Transcriptomics Data Analysis (TDA) 628 43.32 0.0049

Transmission Control Protocol (TCP) 1473 718.93 0.0016

Tuberous Sclerosis (TubScler) 766 153.33 0.002

Turbulent Flow (TurbFlow) 3172 1212.32 0.0045

Visual Cortex Model 2851 845.22 0.0051

VocalLearning 389 162.56 0.0005

The acronyms and abbreviations in parenthesis correspond to the label of the subfields displayed on Fig 2. The
inverse of the average of the weight of the inner links of a subfield < ω >−1 can be taken as an inner coherence
measure. Indeed, would the weight of these links be homogeneously distributed between all pairs of articles of a

given subfield, then two articles of this subfield chosen at random would share 1 reference over < ω >−1.

Table V gives a list of the main “trading zones” which
connect theoretical and experimental fields in Figure 1
and capture a significant fraction of the links between
these fields. The clearest example is transcriptomics
data analysis, a subfield of neural networks which con-
nects biologists interested in the interpretation of data
retrieved from DNA chips and computer scientists inter-
ested in data analysis via methods from the neural net-
works field. The transcriptomics data analysis subfield
represents 2.3% of neural networks papers but accounts

for 46.3% of the connections between neural networks and
biology and 16.5% of the links between neural networks
and complex networks. Other trading zones are computa-
tional systems biology, linking biology to many theoreti-
cal fields, among which dynamical systems, self-organized
criticality and complex networks, neural synchronization
linking dynamical systems and neurosciences, cytoskele-
ton self-organization linking biology to dynamical systems
and self-organized criticality and calibration linking neu-
ral networks and material sciences. Note that a single
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FIG. 3. Local “networking” force for four different references on the 2000-2008 network (Fig 2). Links
established using the reference are shown in color. The number of citations corresponds to those included in papers of our
database published between 2000 and 2008 a. Ref used: Albert & Barabasi [40] (2058 citations) b. Ref used: Press WH et al,
Numerical Recipes - all editions [27] (1267 citations) c. Ref used: Nicolis [50] (342 citations) d. Ref used: Barabasi and Oltvai
[42] (244 citations).

trading zone can be used by a fields to exchange with
several other fields, as long as these other fields share the
same “language”. For example, computational systems
biology, links biology to dynamical systems, self-organized
criticality and complex networks, three subfields which
share the physicists’ toolkit. Since our map cannot cover
all scientific fields, we may not recognize some subfields
as trading zones, such as electrocardiogram which is likely
to connect dynamical systems to medecine, or even miss a
trading zone between geosciences and self-organized crit-
icality.

By analyzing carefully the references used by trad-
ing zones and also the references that make the links
between the trading zones and their neighbors, we can
distinguish two types of trading zones, applicative and
speculative. Let us start with transcriptomics data anal-
ysis, which is a clear example of “applicative” trading
zone. The development of new measurement techniques
in cellular biology (mainly DNA microarrays) produced

huge amounts of data together with the need of new tools
to analyze them. Since this new technique promised
a better understanding of cell dynamics, a new scien-
tific subdiscipline, able to understand data analysis and
its biological interest was built around transcriptomic
tools. The two references most used by this subfield
stress the applicative side: the purpose of the first paper
is “to describe a system of cluster analysis for genome-
wide expression data from DNA microarray hybridiza-
tion [. . . ] in a form intuitive for biologists” [33] while
the second “describes the application of self-organizing
maps for recognizing and classifying features in complex,
multidimensional [transcriptomic] data” [34]. The tran-
scriptomics data analysis papers are clustered together
because they share references presenting this kind of ap-
plications. The applicative character of transcriptomics
data analysis can also be seen in the origin of the refer-
ences that link them to neighbor subfields (Figure 4).
The common references between transcriptomics data
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FIG. 4. Directed network. On this subset of the graph
presented in Figure 2, the arrows are directed to the subfield
that uses the other subfield’s references to establish the link.
More precisely, the common references shared by two linked
subfields are more similar to the internal references of the
subfield from which the arrow originates than to the inter-
nal references of the subfield to which the arrow points (see
“Methods” for more details). The figure shows that transcrip-
tional data analysis (TDA) feeds from self-organizing maps
(SOM) and neural networks (NN) methodological references,
while biology subcommunities (mainly Transcriptomics) use
transcriptional data analysis references. The orientation of
the links is quite different for computational systems biology
(CSB) and complex networks (CN), because these subfields
tend to pump their neighbors’ references, while the other sub-
fields do not find much use in computational systems biology
and complex networks references.

analysis and biology (mainly transcriptomics) are sim-
ilar to references used by transcriptomics data analy-
sis papers themselves. This means that the link arises
from biologists citing results obtained by transcriptomics
data analysis scientists or techniques they use. On the
other hand, the common references between transcrip-
tomics data analysis and self-organizing maps (a subfield
of neural networks) are similar to references used by self-
organizing maps papers. Therefore, the link arises from
transcriptomics data analysis scientists citing classifica-
tion techniques created by self-organizing maps scientists,
while these scientists do not often use transcriptomics
data analysis references. Therefore, transcriptomics data
analysis allows self-organizing maps techniques to be un-
derstood and used to interpret biological data, with a
relevance certified by biologists’ citations. The case of
another trading zone, computational systems biology, is
different. Its most used references point to computational
methods - mainly Gillespie’s algorithm [35] or to experi-
mental papers in which there is no explicit modeling but
that show complex cellular dynamics, thus justifying in-
directly the need for modeling. The link between exper-

TABLE IV. The 20 most networking references in the
2000-2008 decade

Reference Topic N (r) (%)

Press et al. (1992)* Numerical recipes (book) 1.250

Shannon (1948)* Information theory 0.607

Metropolis et al. (1953) Monte Carlo integration 0.509

Nicolis et al. (1977)* Self organization (book) 0.420

Kauffman (1993)* Self organization (book) 0.309

Hebb (1949) Neuropsychology and behavior 0.297

(book)

Alberts et al. (1994) Molecular and cellular biology 0.288

(book)

Abramowitz et al. (1968)* Handbook of mathematical 0.269

functions

Feller (1958)* Introduction to probability 0.268

theory (book)

Watson & Crick (1953) Structure of DNA 0.250

Lakowicz (1999) Fluorescence spectroscopy 0.249

Turing (1952) Morphogenesis 0.237

Witten et al. (1981) Diffusion-limited aggregation 0.234

Cohen (1988) Statistics and behavioral 0.223

sciences (book)

Hopfield (1982) Neural networks 0.217

Stanley (1971) Phase transition (book) 0.202

Whitesides et al. (2002) Self-assembly 0.188

Marquardt (1963) Applied mathematics 0.174

Chomczynski (1987) RNA isolation 0.167

Venter et al. (2001) Human genome sequence 0.160

The references followed by a star correspond to books or
papers which appeared in the database under several forms -
essentially different publication years for the books - for
which the networking power N (r) have been summed. The
complete references of these papers are given in
Supplementary Information.

iments and modeling is still speculative, as summarized
by one of the most used references in this subfield [36]:
“we hope that this review will [...] promote closer col-
laboration between experimental and computational biol-
ogists.” Moreover, the common references between com-
putational systems biology and biology are from biology,
as if computational systems biology scientists were eager
to quote potentially interesting biological applications for
their modeling approach, while many biologists were still
unaware of these models. In short, compared to tran-
scriptomics data analysis, computational systems biology
seems a more speculative trading zone, at the frontier
of biology and modeling, but presently lacking a specific
object or concept to define an operational trading zone.
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TABLE V. Strongest trading zones.

Subfield Fields T (%) T/T exp

TDA Biology/Neural Networks 46.355 20.51

CSB Biology/Dynamical Systems 49.704 8.87

CSB Biology/SOC 49.255 8.79

ProteinStruct Biology/Material Sciences 47.442 8.32

CSB Biology/CN 42.931 7.66

TDA CN/Neural Networks 16.543 7.32

Hemodyn Neurosciences/FluidMech 54.552 7.22

NeuralSynchr Neurosciences/Dynamical Systems 59.788 5.20

Hemodyn Biology/FluidMech 39.113 5.18

CytoskSO Biology/SOC 9.561 4.71

CytoskSO Biology/Dynamical Systems 9.522 4.69

Calib Material Sciences/Neural Networks 8.717 4.51

CellularNN CN/Neural Networks 9.605 4.30

Transcrip Biology/CN 25.806 4.05

The trading force T of a subcommunity measures the
fraction of the links between two fields (in Fig. 1) which
goes through this subcommunity. More precisely, the trading
force of I, a subcommunity of Ī, towards any community J̄
is the total weight of the article-article links between the
subcommunity I and community J̄ , normalized by the total
weight of the the article-article links between Ī and J̄ :
TĪJ̄(I) =

∑
i∈I,j∈J̄ ωij/

∑
i∈Ī,j∈J̄ ωij . The expected force

T exp is the value of the trading force one would expect if all
the links between Ī and outside communities were equally
shared among all sub-communities of Ī, which is simply the
fraction NI/NĪ of articles of I in Ī. The acronyms of the
subfiels used here correspond to those explained in Table III.

DISCUSSION

Our empirical study of the “complex systems” field
shows that its overall coherence does not arise from a uni-
versal theory but from computational techniques and suc-
cessful adaptations of the idea of self-organization. The
computer is important for advancing the understanding
of complex systems because it allows scientists to play
with simple but nonlinear models and to handle large
sets of data obtained from complex systems. At a more
local level — specifically the interdisciplinary level —
trading zones allow for coordination between vastly dif-
ferent scientific cultures, who differ on their conception of
an interesting topic, but who can work together around
specific tools (a DNA microchip) or concepts (a network).

We now discuss how our study sheds light on the over-
all philosophy of the complex systems field. First, we
examine the various claims to universality. A “general
systems theory” would possess a collection of theoretical
books or papers revealing the “universal” explanation;
this would be evidenced in Figure 2 by a central group
to which other groups would connect. Instead, our anal-
ysis shows a variety of modeling disciplines in a central
position.

We argue that claims to universality are part of a

rhetoric that legitimates the study of abstract and sim-
ple models [38]. Certainly, a few theoretical papers, such
as Bak’s [39] (in SOC) or Albert and Barabasi’s [40] (in
CN) point to “universal” mechanisms and are heavily
cited. However, more than 90% of their citations arise
from modelers themselves [41], suggesting that they may
be universal... for theorists. Our data support the lo-
cal character of these “universal” laws. First, Albert
and Barabasi’s [40] paper is the most cited in the 2000-
2008 decade but only links complex networks and self-
organized criticality subfields (Figure 3a). The contrast
with the global networking achieved by methodological
references such as Metropolis’ algorithm or Numerical
Recipes (Figure 3b) or self-organization references (Fig-
ure 3c) is clear. Second, the references that complex net-
works (Figure 4) and self-organized criticality communi-
ties share with experimental fields are similar to those
of the experimental fields. This seizure of experimental
references suggests that the links between modeling prac-
tices and their potential applications are mostly rhetor-
ical: complex networks and self-organized criticality pa-
pers often quote experimental work as legitimating their
models, while experimentalists rarely refer to them. To
try to become universal, theoretical approaches have to
be “translated” into other disciplines. An example of
this strategy is shown in Figure 3d which shows the links
established between network science and biology thanks
to Barabasi and Oltvai’s introduction of networks for bi-
ologists [42]. Regardless, many physicists are likely to
continue looking for common patterns across systems to
justify their neglect of the “details” of the system under
study, the precise components and interactions [30, 52].
Universality is then another name for simplicity, a strong
motivation for many physicists as expressed by the Santa
Fe institute who aims at uncovering “the mechanisms
that underlie the deep simplicity present in our complex
world.” [53]. It is true that simple analytical models
such as SOC or chaotic systems may lead to complicated
behaviors and patterns. But this does not prove the re-
verse proposition, i.e. that all complex patterns can be
explained by simple mechanisms. The “simplicity” ap-
proach turned out to be a successful strategy in the study
of phase transitions, which can be studied through the
very simple Ising model [51, 54, 55], but arguments for
the usefulness of such an approach for biological or social
systems are unconvincing [38].

It could be argued that links between these theories
and experimental fields take time to establish and will
be seen in the future. An interesting insight of the possi-
ble evolution of universality claims is given by the history
of self-organization, which was considered by many as a
universal key to Nature in the 1980’s [51]. This idea
was fecund in that it gave birth to several active sub-
disciplines (cytoskeleton SO, growth SO...) (Figure 2).
However, it should be noticed that these heirs of self-
organization are nowadays almost unrelated. The differ-
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ent self-organization subfields are more linked to their
own discipline (biology, materials science . . . ) than be-
tween them. This is shown by the plain fact that com-
munity detection puts these SO subfields into different
disciplines (different colors in Figure 2) instead of creat-
ing a single, unified, self-organization field. The reason
is that these subfields use widely different references, as
illustrated by the fact that there is no common refer-
ence among the 10 most used references for all the differ-
ent self-organization subcommunities. Self-organization
is therefore not a universal explanation but rather a kind
of banner, which needs to be associated to references to
specific elements (including techniques, microscopic enti-
ties and their interactions) to be fruitful.

To understand the essential role of the computer, it
is important to distinguish between complex and compli-
cated. A complex phenomenon has to be understood syn-
thetically, as a whole, while a complicated phenomenon
can be explained analytically [56]. In other words, a sys-
tem is complex when the “parts” that are relevant to link
the micro to the macro cannot be properly defined, as in
social systems where humans cannot be defined without
taking into account society (e.g. language, an essential
part of the individual which is acquired through society).
Similarly, synthetic biology aims at using functional com-
ponents of living systems as building blocks to create ar-
tificial devices [57]. But many difficulties arise from the
intertwining of the elements in a living being [58]. Bi-
ological parts are ill defined and their function cannot
be isolated from the context that they themselves create.
Despite its claims to complexity and holism, the “com-
plex systems” field proposes a standard mechanistic vi-
sion of nature and society. As for most natural sciences,
its aim is to transform complex systems into complicated
systems that can be handled and eventually engineered
by models and computer force.

This is confirmed by historical studies showing [51, 59]
that the complex systems field is heir of the postwar sci-
ences born around the computer: operational research,
game theory and cybernetics. These fields started when
physicists, mathematicians and engineers started collabo-
rating to maximize the efficiency of WW II military oper-
ations [37, 59, 60]. These sciences extended the mechanis-
tic, engineering vision of the physical world to the biolog-
ical and social worlds. This view is still present in many
today’s prominent CS scientists: “our knowledge of [so-
cial] mechanisms [..] is essential for self-optimization of
the society as a whole” [61]; “We spend billions of dollars
trying to understand the origins of the universe, while we
still don’t understand the conditions for a stable society,
a functioning economy, or peace” [62] or “[Systems bi-
ology] leads to a future where biology and medicine are
transformed into precision engineering” [63].

In summary, we have obtained a global point of view
on the structure of the ”complex systems” field. This

has allowed us to test empirically the idea of universal-
ity, showing that it remains a dream, albeit one which
has lead to interesting but more modest realities. At
the global scale, the whole domain is linked by the fo-
cus on self-organization and the use of computer-based
methods for solving non-linear models. At a more local
scale, the links between different disciplines are achieved
through the development of “trading zones” [32]. These
allow for coordination between vastly different scientific
cultures, for example theoretical and experimental disci-
plines, which are only marginally connected. These dis-
ciplines may differ on the very conception of what is an
interesting topic, but can work together around specific
tools (a DNA microchip) or concepts (a network). To-
day, these interdisciplinary collaborations are a key to
essential scientific challenges such as the analysis of the
massive amount of data recently made available on bio-
logical and social systems [43, 44] and the understanding
of the complex intertwining of different levels of organi-
zation that is characteristic of these systems.

METHODS

Extraction of the data

Our data have been extracted from the ISI Web of
Knowledge database [23] in December 2008. The sci-
ence of complex systems is particularly challenging as an
epistemic object since there exists no consensual defini-
tion of the domain, nor any list of disciplines or journals
that would gather all the relevant papers. Therefore,
we selected all the articles of the database whose title,
abstract (for articles published after 1990) or keywords
contained at least one of a chosen list of topic keywords
(Table I). These keywords were derived from discussions
with experts of the field, mainly scientists working at the
complex systems institute in Lyon (IXXI). We have re-
trieved 215 305 articles (141 098 between 2000 and 2008)
containing 4 050 318 distinct references. Each record con-
tains: authors, journal, year of publication, title, key-
words (given by the authors and/or ISI Web of Science)
and the list of references of the article. Any choice of key-
words being potentially biased and partial, our strategy
was to risk choosing too many of them - thus bypassing
the lack of precise definition of the “complex systems”
field and retrieving all its important subfields - and to
trust the subsequent analysis to eliminate irrelevant ar-
ticles.

In fact, as shown in table I, around 40% of the arti-
cles of the database comes solely from the combination
of keywords “complex*” and “control”. While most of
those articles were close to biology and not directly re-
lated to the field of complex systems, we chose to keep
them in order to test the robustness of our analysis. As
shown below, our strategy was successful, since most of
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these “irrelevant” articles are grouped into a few commu-
nities (such as Apoptosis or Immunology) that lie at the
network’s edges and do not bias the results.

Links between articles

Weight of links between articles are calculated through
their common references (bibliographic coupling [24]).
We define a similarity between two articles i and j as
the cosine distance:

ωij =
|Ri ∩Rj |√
|Ri| |Rj |

(1)

where Ri is the set of references of article i. By def-
inition, ωij ∈ [0, 1], is equal to zero when i and j do
not share any reference and is equal to 1 when their
sets of references are identical. For this study, bibli-
ographic coupling offers two advantages over the more
usual co-citation link: it offers a faithful representation
of the fields, giving equal weight to all published papers
(whether cited or not) and it can be applied to recent pa-
pers (which have not yet been cited). Moreover, the links
are established on the basis of the author’s own decisions
(to include or not a given reference) rather than retro-
spectively from other scientists’ citations. Thus, biblio-
graphic coupling can be used to analyze the community
of research as it builds itself rather than as it is perceived
by later scientists that cite its publications.

Community detection and characterization

In order to structure this network into groups of cohe-
sive articles, we partition the set of papers by maximizing
the modularity function. Given a partition of the nodes
of the network, the modularity is the number of edges
inside clusters (as opposed to crossing between clusters),
minus the expected number of such edges if the network
was randomly conditioned on the degree of each node.
Community structures often maximize the modularity
measure. We compute our partition using the algorithm
presented in [47], which is designed to efficiently maxi-
mize the modularity function in large networks. More
precisely, we used the weighted modularity Q [45, 46],
which is defined as Q =

∑
I qI , where the module qI of a

community I is given by

qI =
ΩII

Ω
−
(∑

J 6=I ΩIJ + 2ΩII

2Ω

)2

(2)

where

ΩII =
1

2

∑
i∈I, j∈I

ωij

is the total weight of the links inside community I,

ΩIJ =
∑

i∈I, j∈J
ωij

is the total weight of the links between

communities I and J 6= I

Ω =
1

2

∑
i,j

ωij =
∑
(i,j)

ωij

is the total weight of the links of the graph.

Each module qI compares the relative weight of edges
ΩII

Ω inside a community I with the expected weight of

edges
(∑

J 6=I ΩIJ+2ΩII

2Ω

)2

that one would find in commu-

nity I if the network were a random network with the
same number of nodes and where each node keeps its de-
gree, but edges are otherwise randomly attached. See Ref
[26] for a more explicit interpretation of the modularity,
its properties and limits.

Applying the Louvain algorithm yields a first parti-
tion of the network into communities (also referred to
as “fields” or “disciplines”, see Figure 1). To obtain the
substructure of these communities, we apply the Louvain
algorithm a second time on each of them. We find that
most of these communities display a clear substructure
with high values of internal modularity Qi (typically be-
tween 0.4 and 0.8). Only two of them (self-organized crit-
icality and complex networks) are strongly bound around
a few references and present much lower values of Qi

(typically less than or around 0.2). Consequently they
were not split into subfields which would not have much
scientific relevance.

This recursive modularity optimization [26] leads us to
a “subfield” graph (Figure 2). We have checked that all
the obtained sub-communities satisfy the criterion (qI ≥
0) proposed by Fortunato and Barthélémy [26] to check
their relevance (see Table III).

Links between communities and their orientation

The link between two communities I and J can be
quantified by the average distance between an article i ∈
I and an article j ∈ J :

< w >−1
IJ =< wij >

−1
i∈I,j∈J = (ΩIJ/NI NJ)

−1
(3)

A link between a community I and a community J ex-
ists if at least one reference is shared between an article
of I and an article of J . To analyze the scientific con-
tent conveyed by the link, it is important to know if the
shared references are more similar to the references used
by community I or to the references used by community
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J . To take into account this similarity, we define the ori-
entation of a community-community link in the following
way.

Let nr,I be the number of papers of community I using
reference r. Then,

• the number of article-article links inside community
I which use reference r is Lr,II = nr,I (nr,I − 1)/2

• the number of article-article links between commu-
nities I and J which use reference r is Lr,IJ =
nr,Inr,J

We compare the set of references shared by the two
communities I and J to the references used by I and J
by computing the cosine similarity measures:

cosII,IJ =

∑
r Lr,IILr,IJ√∑

r L
2
r,II

∑
r L

2
r,IJ

(4)

comparing the shared refs to those of I

cosJJ,IJ =

∑
r Lr,JJLr,IJ√∑

r L
2
r,JJ

∑
r L

2
r,IJ

(5)

comparing the shared refs to those of J

For example, if cosII,IJ < cosJJ,IJ , the shared refer-
ences are more similar to the references binding commu-
nity J than to the references binding community I. We
then direct the link from community J to community
I, as community I “pumps” community J references to
establish the link. See Figure 4 for examples of link ori-
entation.

Visualizing linked communities

To obtain Figures 1 and 2, we use Gephi [48]. The
layout of the graph is obtained thanks to a spring-based
algorithm implemented in it [49]. ForceAtlas is a force
directed layout: it simulates a physical system. Nodes
repulse each other (like magnets) while edges attract the
nodes they connect (like springs). These forces create
a movement that converges to a balanced state, which
helps in the interpretation of the data.

Networking power of references

To understand which references link the different sub-
disciplines to form a connected network, we define the
“glue” as the set of references shared between subfields.
To give equal weight to all these links, we normalize each
link to 1, leading to the normalized networking strength
N (r) of reference r as:

N (r) =
1

Z

∑
I 6=J

fIJ(r) (6)

where fIJ(r) is the fraction of links between an article
of community I and an article of community J in which
reference r is used and where Z is a normalization con-
stant such that

∑
rN (r) = 1. The normalization ensures

that N (r) represents the proportion of all the links of the
complex systems field that can be assigned to reference
r.
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