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Complex Systems Science: Dreams of Universality, Reality of Interdisciplinarity

Using a large database (∼ 215 000 records) of relevant articles, we empirically study the "complex systems" field and its claims to find universal principles applying to systems in general. The study of references shared by the papers allows us to obtain a global point of view on the structure of this highly interdisciplinary field. We show that its overall coherence does not arise from a universal theory but instead from computational techniques and fruitful adaptations of the idea of self-organization to specific systems. We also find that communication between different disciplines goes through specific "trading zones", ie sub-communities that create an interface around specific tools (a DNA microchip) or concepts (a network).

INTRODUCTION

Fundamental science has striven to reduce the diversity of the world to some stable building blocks such as atoms and genes. To be fruitful, this reductionist approach must be complemented by the reverse step of obtaining the properties of the whole (materials, organisms) by combining the microscopic entities, a notoriously difficult task [START_REF] Hayden | Life is complicated[END_REF][START_REF] Anderson | More is Different[END_REF][START_REF] Grauwin | Competition between collective and individual dynamics[END_REF][START_REF] Gannon | Too complex to comprehend?[END_REF]. The science of complex systems tackles this challenge, albeit from a different perspective. It adds the idea that "universal principles" could exist, which would allow for the prediction of the organization of the whole regardless of the nature of the microscopic entities. Ludwig Von Bertalanffy wrote already in 1968: "It seems legitimate to ask for a theory, not of systems of a more or less special kind, but of universal principles applying to systems in general " [START_REF] Bertalanffy | General System Theory: Foundations, Development, Applications[END_REF]. This dream of universality is still active: "[Complex networks science] suggests that nature has some universal organizational principles that might finally allow us to formulate a general theory of complex systems " [START_REF] Solé | First Cells, Then Species, Now the Web[END_REF]. Have such universal principles been discovered? Could they link disciplines such as sociology, biology, physics and computer science, which are very different in both methodology and objects of inquiry [START_REF]The web site of the Santa Fe complex systems institute[END_REF]?

RESULTS

In this paper, we empirically study the "complex systems" field using the quantitative tools developed to understand the organization of scientific fields [START_REF] Small | Visualizing Science by Citation Mapping[END_REF] and their evolution [START_REF] Glnzel | Bibliometrics as a research field: A course on theory and application of bibliometric indicators[END_REF][START_REF] Chavalarias | The Reconstruction of Science Phylogeny[END_REF][START_REF] Cambrosio | Mapping the emergence and development of translational cancer research[END_REF]. Global science maps [START_REF] Small | Visualizing Science by Citation Mapping[END_REF][START_REF] Klavans | Toward a consensus map of science[END_REF][START_REF] Small | Co-citation in the scientific literature: A new measure of the relationship between two documents[END_REF][START_REF] Börner | Visual conceptualizations and models of science[END_REF][START_REF] Börner | Atlas of Science: Visualizing What We Know[END_REF][START_REF] Noyons | Science maps within a science policy context[END_REF][START_REF] Leydesdorff | A Global Map of Science Based on the ISI Subject Categories[END_REF][START_REF] Rafols | Science Overlay Maps: A NewTool for Research Policy and Library Management[END_REF][START_REF] Agarwal | Self-organising maps: applications in geographic information science[END_REF][START_REF] Cobo | Science mapping software tools: review, analysis, and cooperative study among tools[END_REF][START_REF] Leydesdorff | Mapping the Geography of Science: Distribution Patterns and Networks of Relations among Cities and Institutes[END_REF][START_REF] Grauwin | Mapping scientific institutions[END_REF] have become feasible recently, offering a tentative overall view of scientific fields and fostering dreams of a "science of science" [START_REF] Börner | Visual conceptualizations and models of science[END_REF]. Specifically, to collect a representative database of articles, we selected from the ISI Web of knowledge [23] all records containing topic keywords relevant for the field of complex systems (Table I). Table II contains the 20 most frequent cited references and journals within our dataset. To analyze the data, we build a network [START_REF] Börner | Visual conceptualizations and models of science[END_REF] in which the ∼ 215 000 articles are the nodes. These nodes are linked according to the proportion of shared references (bibliographic coupling [START_REF] Kessler | Bibliographic coupling between scientific papers[END_REF]). For this study, bibliographic coupling offers two advantages over the more usual co-citation link: it offers a faithful representation of the fields, giving equal weight to all published papers (whether cited or not) and it can be applied to recent papers (which have not yet been cited). For more details, the reader is referred to the section "Methods".

Figure 1 shows the largest communities (thereafter also called "fields" or "disciplines") obtained by modularity maximization of the network of papers published in the years 2000-2008. The layout of all the graphs is obtained thanks to a spring-based algorithm implemented in the Gephi visualization software [START_REF] Bastian | Gephi: An Open Source Software for Exploring and Manipulating Networks[END_REF][START_REF] Jacomy | ForceAtlas2, a graph layout algorithm for handy network visualization[END_REF]. We first TABLE I. Topic keywords used in our request in the ISI Web of Knowledge database and number of articles matching independently to each of these topic keywords. Each topic keywords except the first six where coupled with the topic keywords "complex*". We moreover rejected the articles containing the topic keywords "complex scaling" or "linear search", two terms refering respectively to (heavily used) specific methods of quantum chemistry and computer science. note that all important complex systems subfields 1 are 1 In the following, we use italics to refer to the names of the communities.

FIG. 1.

Community structure obtained with a first run of the modularity maximization [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF] on the 2000-2008 network (141 098 articles). The surface of a community I is proportional to its number of articles NI and the width of the link between two communities I and J is proportional to the mean bibliographic coupling ω IJ = i∈I,j∈J ωij/NI NJ . The layout of the graph is obtained thanks to a spring-based algorithm implemented in the Gephi visualization software [START_REF] Bastian | Gephi: An Open Source Software for Exploring and Manipulating Networks[END_REF][START_REF] Jacomy | ForceAtlas2, a graph layout algorithm for handy network visualization[END_REF]. For the sake of clarity, communities with less than 300 articles are not displayed. The label of a community represents the most frequent and/or significant keyword of its articles. CN stands for Complex Networks, SOC for Self Organized Criticality, DS for Dynamical Systems, DigitCom for Digital Communication and SurfaceSO for Self-organization on Surfaces. EMC is a more composite community where the three most representative keywords are Ecology, Management and Computational Models. See Figure 2 for details.

present [START_REF]As can be checked by consulting authoritative CS web sites such as Santa Fe's and its "Exploring complexity[END_REF]. At the center, we find mostly theoretical domains: self-organized criticality, dynamical systems, complex networks, neural networks. These fields are connected to more experimental communities lying at the edges (materials science, biology or neurosciences). The links between theoretical and experimental fields suggest that complex systems science models have connections to the "real" world, as claimed by their practitioners.

To understand the inner structure of these large communities, we use recursive modularity optimization (see [START_REF] Fortunato | Resolution limit in community detection[END_REF] and "Methods"). Most fields display a rich inner structure (Figure 2) with subcommunities (thereafter also called "subfields" or "subdisciplines") organized around specific topics and references. The only exceptions are self-organized criticality and complex networks, where all articles cohere around a few references. For a short presentation of all the subfields, see Table III. For a more detailed presentation of the main subfields, including their authors, most used journals, references and keywords, see the Supplementary Information. We analyze this complex structure at two levels. First, at the global scale, complex systems science appears to be a densely interconnected network. This is somewhat surprising since sharing references between subdisciplines means that they are able to read and understand these references, and moreover, that they find them useful. Would these shared references point to "universal" principles? Second, we focus on a more local scale, on the links that specifically connect two different disciplines (ie two different colors in Figure 1) to understand how they manage to exchange knowledge.

Complex systems' science overall coherence

Let us start with the field's overall coherence. We have looked for the references cited by many subfields. These form the "glue" that links many subdisciplines and connects the network. More precisely, we define the networking force of a reference N (r) as the sum, over all pairs of subfields, of the proportion of their links explained by that reference (see Methods). Table IV shows that the references that glue the network are more methodological than theoretical: the most networking reference is "Numerical Recipes" [START_REF] Press | Numerical Recipes[END_REF], a series of books that gathers many routines for various numerical calculations and their implementation in computers. Most of the other linking references are mathematical handbooks or data analysis tools. If one looks for universality in the complex systems field, the computer -as a tool -seems to be a serious candidate. Among the leading contributors to the glue, we also find several references on self-organization (SO). Self-organization is not a predictive theory, but an approach that focuses on the spontaneous emergence of large-scale structures out of local interactions between the system's subunits [START_REF] Moussaid | Collective Information Processing and Pattern Formation in Swarms, Flocks, and Crowds[END_REF]. Several subdisciplines in Figure 2 can be related to this approach, as they use a keyword akin to "self-organization" (SO) in more than 10% of their articles (for a more complete list of the communities using this keyword, see the Supplementary Information). Among these we find swarm SO, molecular SO linking chemistry to biology, growth SO and pattern formation SO linking surface science to dynamical systems. This suggests that the field of complex systems focuses on the cases in which the link from microscopic to macroscopic can be analyzed through self-organization, which gave rise to several fruitful scientific programs, as we discuss below (section Discussion).

Interdisciplinary trading zones

At a more local scale, let us now look at the links that specifically connect two distinct disciplines. How are those connections established? It is widely accepted that scientific disciplines cannot easily communicate or be linked (in our case, share references) simply because it is difficult for a physicist to understand a biology paper and vice-versa. In addition, different disciplines have different definitions of what counts as a result or as an interesting research topic. For example, physical sciences look for universal laws, while social [START_REF] Borgatti | Network Analysis in the Social Sciences[END_REF] and biological [START_REF] Fox-Keller | Revisiting "scale-free" networks[END_REF] sciences emphasize the variations in structure across different groups or contexts and use these differences to explain differences in outcomes. Physicians are interested 1 (See Methods for details on the procedure). The layout of the graph is obtained thanks to a spring-based algorithm implemented in the Gephi visualization software [START_REF] Bastian | Gephi: An Open Source Software for Exploring and Manipulating Networks[END_REF][START_REF] Jacomy | ForceAtlas2, a graph layout algorithm for handy network visualization[END_REF]. The surface of each community is proportional to its number of articles and the width of the link between two communities I and J is proportional to the mean weight ω IJ . For the sake of clarity, communities with less than 300 articles and links with a mean weight ω IJ less than 2.10 -5 are not displayed. The color of a community (see online) corresponds to the color of the field (Fig 1) it belongs to. Community labels generally correspond to the most frequent and/or significant keyword. For a detailed presentation of all the subfields, including their authors, most used journals, references and keywords, see the Supplementary Information.

in practical medical advances while physicists want to know whether physiological rhythms are chaotic or not [START_REF] Glass | Synchronization and rhythmic processes in physiology[END_REF].

Where do the links come from then? In an illuminating analogy, Peter Galison [START_REF] Galison | Image and Logic: A Material Culture of Microphysics[END_REF] compares the difficulty of connecting scientific disciplines to the difficulty of communicating between different languages. History of language has shown that when two cultures are strongly motivated to communicate -generally for commercial reasons -they develop simplified languages that allow for simple forms of interaction. At first, a "foreigner talk" develops, which becomes a "pidgin" when social uses consolidate this language. In rare cases, the "trading zone" stabilizes and the expanded pidgin becomes a creole, initiating the development of an original, autonomous culture. Analogously, biologists may create a simplified and partial version of their discipline for interested physicists, which may develop to a full-blown new discipline such as biophysics. Specifically, Galison has studied [START_REF] Galison | Image and Logic: A Material Culture of Microphysics[END_REF] how Monte Carlo simulations developed in the postwar period as a trading language between theorists, experimentalists, instrument makers, chemists and mechanical engineers. Our interest in the concept of a trading zone is to allow us to explore the dynamics of the interdisciplinary interaction instead of ending analysis by reference to a "symbiosis" or "collaboration". The acronyms and abbreviations in parenthesis correspond to the label of the subfields displayed on Fig 2 . The inverse of the average of the weight of the inner links of a subfield < ω > -1 can be taken as an inner coherence measure. Indeed, would the weight of these links be homogeneously distributed between all pairs of articles of a given subfield, then two articles of this subfield chosen at random would share 1 reference over < ω > -1 .

Table V gives a list of the main "trading zones" which connect theoretical and experimental fields in Figure 1 and capture a significant fraction of the links between these fields. The clearest example is transcriptomics data analysis, a subfield of neural networks which connects biologists interested in the interpretation of data retrieved from DNA chips and computer scientists interested in data analysis via methods from the neural networks field. The transcriptomics data analysis subfield represents 2.3% of neural networks papers but accounts for 46.3% of the connections between neural networks and biology and 16.5% of the links between neural networks and complex networks. Other trading zones are computational systems biology, linking biology to many theoretical fields, among which dynamical systems, self-organized criticality and complex networks, neural synchronization linking dynamical systems and neurosciences, cytoskeleton self-organization linking biology to dynamical systems and self-organized criticality and calibration linking neural networks and material sciences. Note that a single trading zone can be used by a fields to exchange with several other fields, as long as these other fields share the same "language". For example, computational systems biology, links biology to dynamical systems, self-organized criticality and complex networks, three subfields which share the physicists' toolkit. Since our map cannot cover all scientific fields, we may not recognize some subfields as trading zones, such as electrocardiogram which is likely to connect dynamical systems to medecine, or even miss a trading zone between geosciences and self-organized criticality.

By analyzing carefully the references used by trading zones and also the references that make the links between the trading zones and their neighbors, we can distinguish two types of trading zones, applicative and speculative. Let us start with transcriptomics data analysis, which is a clear example of "applicative" trading zone. The development of new measurement techniques in cellular biology (mainly DNA microarrays) produced huge amounts of data together with the need of new tools to analyze them. Since this new technique promised a better understanding of cell dynamics, a new scientific subdiscipline, able to understand data analysis and its biological interest was built around transcriptomic tools. The two references most used by this subfield stress the applicative side: the purpose of the first paper is "to describe a system of cluster analysis for genomewide expression data from DNA microarray hybridization [. . . ] in a form intuitive for biologists" [START_REF] Eisen | Cluster analysis and display of genome-wide expression patterns[END_REF] while the second "describes the application of self-organizing maps for recognizing and classifying features in complex, multidimensional [transcriptomic] data" [START_REF] Tamayo | Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation[END_REF]. The transcriptomics data analysis papers are clustered together because they share references presenting this kind of applications. The applicative character of transcriptomics data analysis can also be seen in the origin of the references that link them to neighbor subfields (Figure 4). The common references between transcriptomics data FIG. 4. Directed network. On this subset of the graph presented in Figure 2, the arrows are directed to the subfield that uses the other subfield's references to establish the link. More precisely, the common references shared by two linked subfields are more similar to the internal references of the subfield from which the arrow originates than to the internal references of the subfield to which the arrow points (see "Methods" for more details). The figure shows that transcriptional data analysis (TDA) feeds from self-organizing maps (SOM) and neural networks (NN) methodological references, while biology subcommunities (mainly Transcriptomics) use transcriptional data analysis references. The orientation of the links is quite different for computational systems biology (CSB) and complex networks (CN), because these subfields tend to pump their neighbors' references, while the other subfields do not find much use in computational systems biology and complex networks references.

analysis and biology (mainly transcriptomics) are similar to references used by transcriptomics data analysis papers themselves. This means that the link arises from biologists citing results obtained by transcriptomics data analysis scientists or techniques they use. On the other hand, the common references between transcriptomics data analysis and self-organizing maps (a subfield of neural networks) are similar to references used by selforganizing maps papers. Therefore, the link arises from transcriptomics data analysis scientists citing classification techniques created by self-organizing maps scientists, while these scientists do not often use transcriptomics data analysis references. Therefore, transcriptomics data analysis allows self-organizing maps techniques to be understood and used to interpret biological data, with a relevance certified by biologists' citations. The case of another trading zone, computational systems biology, is different. Its most used references point to computational methods -mainly Gillespie's algorithm [START_REF] Gillespie | Exact Stochastic Simulation of Coupled Chemical Reactions[END_REF] or to experimental papers in which there is no explicit modeling but that show complex cellular dynamics, thus justifying indirectly the need for modeling. The link between exper- Human genome sequence 0.160

The references followed by a star correspond to books or papers which appeared in the database under several formsessentially different publication years for the books -for which the networking power N (r) have been summed. The complete references of these papers are given in Supplementary Information.

iments and modeling is still speculative, as summarized by one of the most used references in this subfield [START_REF] Tyson | Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell[END_REF]: "we hope that this review will [...] promote closer collaboration between experimental and computational biologists." Moreover, the common references between computational systems biology and biology are from biology, as if computational systems biology scientists were eager to quote potentially interesting biological applications for their modeling approach, while many biologists were still unaware of these models. In short, compared to transcriptomics data analysis, computational systems biology seems a more speculative trading zone, at the frontier of biology and modeling, but presently lacking a specific object or concept to define an operational trading zone. The trading force T of a subcommunity measures the fraction of the links between two fields (in Fig. 1) which goes through this subcommunity. More precisely, the trading force of I, a subcommunity of Ī, towards any community J is the total weight of the article-article links between the subcommunity I and community J, normalized by the total weight of the the article-article links between Ī and J: TĪ J (I) = i∈I,j∈ J ωij/ i∈ Ī,j∈ J ωij. The expected force T exp is the value of the trading force one would expect if all the links between Ī and outside communities were equally shared among all sub-communities of Ī, which is simply the fraction NI /NĪ of articles of I in Ī. The acronyms of the subfiels used here correspond to those explained in Table III.

DISCUSSION

Our empirical study of the "complex systems" field shows that its overall coherence does not arise from a universal theory but from computational techniques and successful adaptations of the idea of self-organization. The computer is important for advancing the understanding of complex systems because it allows scientists to play with simple but nonlinear models and to handle large sets of data obtained from complex systems. At a more local level -specifically the interdisciplinary leveltrading zones allow for coordination between vastly different scientific cultures, who differ on their conception of an interesting topic, but who can work together around specific tools (a DNA microchip) or concepts (a network).

We now discuss how our study sheds light on the overall philosophy of the complex systems field. First, we examine the various claims to universality. A "general systems theory" would possess a collection of theoretical books or papers revealing the "universal" explanation; this would be evidenced in Figure 2 by a central group to which other groups would connect. Instead, our analysis shows a variety of modeling disciplines in a central position.

We argue that claims to universality are part of a rhetoric that legitimates the study of abstract and simple models [START_REF] Edmonds | Complexity and Context-Dependency[END_REF]. Certainly, a few theoretical papers, such as Bak's [START_REF] Bak | Self-organized criticality: an explanation of 1/f noise[END_REF] (in SOC) or Albert and Barabasi's [40] (in CN) point to "universal" mechanisms and are heavily cited. However, more than 90% of their citations arise from modelers themselves [41], suggesting that they may be universal... for theorists. Our data support the local character of these "universal" laws. First, Albert and Barabasi's [40] paper is the most cited in the 2000-2008 decade but only links complex networks and selforganized criticality subfields (Figure 3a). The contrast with the global networking achieved by methodological references such as Metropolis' algorithm or Numerical Recipes (Figure 3b) or self-organization references (Figure 3c) is clear. Second, the references that complex networks (Figure 4) and self-organized criticality communities share with experimental fields are similar to those of the experimental fields. This seizure of experimental references suggests that the links between modeling practices and their potential applications are mostly rhetorical: complex networks and self-organized criticality papers often quote experimental work as legitimating their models, while experimentalists rarely refer to them. To try to become universal, theoretical approaches have to be "translated" into other disciplines. An example of this strategy is shown in Figure 3d which shows the links established between network science and biology thanks to Barabasi and Oltvai's introduction of networks for biologists [START_REF] Barabási | Network biology: understanding the cells functional organization[END_REF]. Regardless, many physicists are likely to continue looking for common patterns across systems to justify their neglect of the "details" of the system under study, the precise components and interactions [START_REF] Fox-Keller | Revisiting "scale-free" networks[END_REF][START_REF] Stanley | Scale Invariance and Universality: Organizing Principles in Complex Systems[END_REF]. Universality is then another name for simplicity, a strong motivation for many physicists as expressed by the Santa Fe institute who aims at uncovering "the mechanisms that underlie the deep simplicity present in our complex world." [53]. It is true that simple analytical models such as SOC or chaotic systems may lead to complicated behaviors and patterns. But this does not prove the reverse proposition, i.e. that all complex patterns can be explained by simple mechanisms. The "simplicity" approach turned out to be a successful strategy in the study of phase transitions, which can be studied through the very simple Ising model [START_REF] Fox-Keller | Organisms, Machines, and Thunderstorms, a history of Self-Organization[END_REF][START_REF] Castellano | Statistical physics of social dynamics[END_REF][START_REF] Solé | Criticality and scaling in evolutionary ecology[END_REF], but arguments for the usefulness of such an approach for biological or social systems are unconvincing [START_REF] Edmonds | Complexity and Context-Dependency[END_REF].

It could be argued that links between these theories and experimental fields take time to establish and will be seen in the future. An interesting insight of the possible evolution of universality claims is given by the history of self-organization, which was considered by many as a universal key to Nature in the 1980's [START_REF] Fox-Keller | Organisms, Machines, and Thunderstorms, a history of Self-Organization[END_REF]. This idea was fecund in that it gave birth to several active subdisciplines (cytoskeleton SO, growth SO...) (Figure 2). However, it should be noticed that these heirs of selforganization are nowadays almost unrelated. The differ-ent self-organization subfields are more linked to their own discipline (biology, materials science . . . ) than between them. This is shown by the plain fact that community detection puts these SO subfields into different disciplines (different colors in Figure 2) instead of creating a single, unified, self-organization field. The reason is that these subfields use widely different references, as illustrated by the fact that there is no common reference among the 10 most used references for all the different self-organization subcommunities. Self-organization is therefore not a universal explanation but rather a kind of banner, which needs to be associated to references to specific elements (including techniques, microscopic entities and their interactions) to be fruitful.

To understand the essential role of the computer, it is important to distinguish between complex and complicated. A complex phenomenon has to be understood synthetically, as a whole, while a complicated phenomenon can be explained analytically [START_REF]For a telling example of this distinction in agriculture[END_REF]. In other words, a system is complex when the "parts" that are relevant to link the micro to the macro cannot be properly defined, as in social systems where humans cannot be defined without taking into account society (e.g. language, an essential part of the individual which is acquired through society). Similarly, synthetic biology aims at using functional components of living systems as building blocks to create artificial devices [START_REF] Benner | Synthetic biology[END_REF]. But many difficulties arise from the intertwining of the elements in a living being [START_REF] Serrano | Synthetic biology: promises and challenges[END_REF]. Biological parts are ill defined and their function cannot be isolated from the context that they themselves create. Despite its claims to complexity and holism, the "complex systems" field proposes a standard mechanistic vision of nature and society. As for most natural sciences, its aim is to transform complex systems into complicated systems that can be handled and eventually engineered by models and computer force. This is confirmed by historical studies showing [START_REF] Fox-Keller | Organisms, Machines, and Thunderstorms, a history of Self-Organization[END_REF][START_REF] Schweber | Complex Systems, Modelling and Simulation[END_REF]] that the complex systems field is heir of the postwar sciences born around the computer: operational research, game theory and cybernetics. These fields started when physicists, mathematicians and engineers started collaborating to maximize the efficiency of WW II military operations [START_REF] Pickering | The mangle of practice[END_REF][START_REF] Schweber | Complex Systems, Modelling and Simulation[END_REF][START_REF] Bowker | How to Be Universal: Some Cybernetic Strategies, 1943-70[END_REF]. These sciences extended the mechanistic, engineering vision of the physical world to the biological and social worlds. This view is still present in many today's prominent CS scientists: "our knowledge of [social] mechanisms [..] is essential for self-optimization of the society as a whole" [START_REF] Palla | Quantifying social group evolution[END_REF]; "We spend billions of dollars trying to understand the origins of the universe, while we still don't understand the conditions for a stable society, a functioning economy, or peace" [START_REF] Helbing | Ourselves and Our Interactions: The Ultimate Physics Problem?[END_REF] or "[Systems biology] leads to a future where biology and medicine are transformed into precision engineering" [START_REF] Kaneko | Computational systems biology[END_REF].

In summary, we have obtained a global point of view on the structure of the "complex systems" field. This has allowed us to test empirically the idea of universality, showing that it remains a dream, albeit one which has lead to interesting but more modest realities. At the global scale, the whole domain is linked by the focus on self-organization and the use of computer-based methods for solving non-linear models. At a more local scale, the links between different disciplines are achieved through the development of "trading zones" [START_REF] Galison | Image and Logic: A Material Culture of Microphysics[END_REF]. These allow for coordination between vastly different scientific cultures, for example theoretical and experimental disciplines, which are only marginally connected. These disciplines may differ on the very conception of what is an interesting topic, but can work together around specific tools (a DNA microchip) or concepts (a network). Today, these interdisciplinary collaborations are a key to essential scientific challenges such as the analysis of the massive amount of data recently made available on biological and social systems [START_REF] Lazer | Computational social science[END_REF][START_REF]Towards 2020 Science[END_REF] and the understanding of the complex intertwining of different levels of organization that is characteristic of these systems.

METHODS

Extraction of the data

Our data have been extracted from the ISI Web of Knowledge database [23] in December 2008. The science of complex systems is particularly challenging as an epistemic object since there exists no consensual definition of the domain, nor any list of disciplines or journals that would gather all the relevant papers. Therefore, we selected all the articles of the database whose title, abstract (for articles published after 1990) or keywords contained at least one of a chosen list of topic keywords (Table I). These keywords were derived from discussions with experts of the field, mainly scientists working at the complex systems institute in Lyon (IXXI). We have retrieved 215 305 articles (141 098 between 2000 and 2008) containing 4 050 318 distinct references. Each record contains: authors, journal, year of publication, title, keywords (given by the authors and/or ISI Web of Science) and the list of references of the article. Any choice of keywords being potentially biased and partial, our strategy was to risk choosing too many of them -thus bypassing the lack of precise definition of the "complex systems" field and retrieving all its important subfields -and to trust the subsequent analysis to eliminate irrelevant articles.

In fact, as shown in table I, around 40% of the articles of the database comes solely from the combination of keywords "complex*" and "control". While most of those articles were close to biology and not directly related to the field of complex systems, we chose to keep them in order to test the robustness of our analysis. As shown below, our strategy was successful, since most of these "irrelevant" articles are grouped into a few communities (such as Apoptosis or Immunology) that lie at the network's edges and do not bias the results.

Links between articles

Weight of links between articles are calculated through their common references (bibliographic coupling [START_REF] Kessler | Bibliographic coupling between scientific papers[END_REF]). We define a similarity between two articles i and j as the cosine distance:

ω ij = |R i ∩ R j | |R i | |R j | (1) 
where R i is the set of references of article i. By definition, ω ij ∈ [0, 1], is equal to zero when i and j do not share any reference and is equal to 1 when their sets of references are identical. For this study, bibliographic coupling offers two advantages over the more usual co-citation link: it offers a faithful representation of the fields, giving equal weight to all published papers (whether cited or not) and it can be applied to recent papers (which have not yet been cited). Moreover, the links are established on the basis of the author's own decisions (to include or not a given reference) rather than retrospectively from other scientists' citations. Thus, bibliographic coupling can be used to analyze the community of research as it builds itself rather than as it is perceived by later scientists that cite its publications.

Community detection and characterization

In order to structure this network into groups of cohesive articles, we partition the set of papers by maximizing the modularity function. Given a partition of the nodes of the network, the modularity is the number of edges inside clusters (as opposed to crossing between clusters), minus the expected number of such edges if the network was randomly conditioned on the degree of each node. Community structures often maximize the modularity measure. We compute our partition using the algorithm presented in [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF], which is designed to efficiently maximize the modularity function in large networks. More precisely, we used the weighted modularity Q [START_REF] Girvan | Finding and evaluating community structure in networks[END_REF][START_REF] Fortunato | Community detection in graphs[END_REF], which is defined as Q = I q I , where the module q I of a community I is given by

q I = Ω II Ω - J =I Ω IJ + 2Ω II 2Ω 2 (2) 
where

Ω II = 1 2 i∈I, j∈I ω ij
is the total weight of the links inside community I,

Ω IJ = i∈I, j∈J ω ij
is the total weight of the links between communities I and J

= I Ω = 1 2 i,j ω ij = (i,j) ω ij
is the total weight of the links of the graph.

Each module q I compares the relative weight of edges

Ω II
Ω inside a community I with the expected weight of edges

J =I Ω IJ +2Ω II 2Ω 2
that one would find in community I if the network were a random network with the same number of nodes and where each node keeps its degree, but edges are otherwise randomly attached. See Ref [START_REF] Fortunato | Resolution limit in community detection[END_REF] for a more explicit interpretation of the modularity, its properties and limits.

Applying the Louvain algorithm yields a first partition of the network into communities (also referred to as "fields" or "disciplines", see Figure 1). To obtain the substructure of these communities, we apply the Louvain algorithm a second time on each of them. We find that most of these communities display a clear substructure with high values of internal modularity Q i (typically between 0.4 and 0.8). Only two of them (self-organized criticality and complex networks) are strongly bound around a few references and present much lower values of Q i (typically less than or around 0.2). Consequently they were not split into subfields which would not have much scientific relevance.

This recursive modularity optimization [START_REF] Fortunato | Resolution limit in community detection[END_REF] leads us to a "subfield" graph (Figure 2). We have checked that all the obtained sub-communities satisfy the criterion (q I ≥ 0) proposed by Fortunato and Barthélémy [START_REF] Fortunato | Resolution limit in community detection[END_REF] to check their relevance (see Table III).

Links between communities and their orientation

The link between two communities I and J can be quantified by the average distance between an article i ∈ I and an article j ∈ J:

< w > -1 IJ = < w ij > -1 i∈I,j∈J = (Ω IJ /N I N J ) -1 (3) 
A link between a community I and a community J exists if at least one reference is shared between an article of I and an article of J. To analyze the scientific content conveyed by the link, it is important to know if the shared references are more similar to the references used by community I or to the references used by community J. To take into account this similarity, we define the orientation of a community-community link in the following way.

Let n r,I be the number of papers of community I using reference r. Then,

• the number of article-article links inside community I which use reference r is L r,II = n r,I (n r,I -1)/2

• the number of article-article links between communities I and J which use reference r is L r,IJ = n r,I n r,J

We compare the set of references shared by the two communities I and J to the references used by I and J by computing the cosine similarity measures: 

comparing the shared refs to those of J For example, if cos II,IJ < cos JJ,IJ , the shared references are more similar to the references binding community J than to the references binding community I. We then direct the link from community J to community I, as community I "pumps" community J references to establish the link. See Figure 4 for examples of link orientation.

Visualizing linked communities

To obtain Figures 1 and2, we use Gephi [START_REF] Bastian | Gephi: An Open Source Software for Exploring and Manipulating Networks[END_REF]. The layout of the graph is obtained thanks to a spring-based algorithm implemented in it [START_REF] Jacomy | ForceAtlas2, a graph layout algorithm for handy network visualization[END_REF]. ForceAtlas is a force directed layout: it simulates a physical system. Nodes repulse each other (like magnets) while edges attract the nodes they connect (like springs). These forces create a movement that converges to a balanced state, which helps in the interpretation of the data.

Networking power of references

To understand which references link the different subdisciplines to form a connected network, we define the "glue" as the set of references shared between subfields. To give equal weight to all these links, we normalize each link to 1, leading to the normalized networking strength N (r) of reference r as:

N (r) = 1 Z I =J f IJ (r) (6) 
where f IJ (r) is the fraction of links between an article of community I and an article of community J in which reference r is used and where Z is a normalization constant such that r N (r) = 1. The normalization ensures that N (r) represents the proportion of all the links of the complex systems field that can be assigned to reference r.

FIG. 2 .

 2 FIG. 2.Community structure obtained with a second run of the modularity maximization on the 2000-2008 network. This community structure is obtained by optimizing the internal modularity Q i of each community obtained by the first run of the modularity maximization algorithm on the 2000-2008 network, displayed on Figure1(See Methods for details on the procedure). The layout of the graph is obtained thanks to a spring-based algorithm implemented in the Gephi visualization software[START_REF] Bastian | Gephi: An Open Source Software for Exploring and Manipulating Networks[END_REF][START_REF] Jacomy | ForceAtlas2, a graph layout algorithm for handy network visualization[END_REF]. The surface of each community is proportional to its number of articles and the width of the link between two communities I and J is proportional to the mean weight ω IJ . For the sake of clarity, communities with less than 300 articles and links with a mean weight ω IJ less than 2.10 -5 are not displayed. The color of a community (see online) corresponds to the color of the field (Fig1) it belongs to. Community labels generally correspond to the most frequent and/or significant keyword. For a detailed presentation of all the subfields, including their authors, most used journals, references and keywords, see the Supplementary Information.

FIG. 3 .

 3 FIG. 3. Local "networking" force for four different references on the 2000-2008 network (Fig 2). Links established using the reference are shown in color. The number of citations corresponds to those included in papers of our database published between 2000 and 2008 a. Ref used: Albert & Barabasi [40] (2058 citations) b. Ref used: Press WH et al, Numerical Recipes -all editions [27] (1267 citations) c. Ref used: Nicolis [50] (342 citations) d. Ref used: Barabasi and Oltvai [42] (244 citations).

  cos II,IJ = r L r,II L r,IJ r the shared refs to those of I cos JJ,IJ = r L r,JJ L r,IJ r

TABLE II .

 II The 20 references (including books and articles) and journals which are the more used by the articles of the whole database

	Reference	Times used	Journal (# distinct refs)	Times used
	Bak P, 1987,PHYS REV LETT (59)	2131	NATURE (29166)	169309
	Albert R, 2002, REV MOD PHYS (74)	2050	P NATL ACAD SCI USA (42504)	151140
	Laemmli UK, 1970, NATURE (227)	1762	J BIOL CHEM (59436)	149042
	Watts DJ, 1998, NATURE (393)	1732	SCIENCE (24880)	148002
	Barabasi AL, 1999, SCIENCE (286)	1693	CELL (11044)	99168
	Bak P, 1988, PHYS REV A (38)	1555	PHYS REV LETT (23269)	94861
	Sambrook J, 1989, MOL CLONING LAB MANU	1439	J AM CHEM SOC (29807)	82569
	Newman MEJ, 2003, SIAM REV (45)	1308	EMBO J (10926)	53049
	Bradford MM, 1976, ANAL BIOCHEM (72)	1255	MOL CELL BIOL (12866)	52694
	Lowry OH, 1951, J BIOL CHEM (193)	1106	J NEUROSCI (12313)	43152
	Rumelhart DE, 1986, PARALLEL DISTRIBUTED (1)	947	J IMMUNOL (18891)	41496
	Strogatz SH, 2001, NATURE (410)	907	PHYS REV B (19367)	41450
	Kohonen T, 1982, BIOL CYBERN (43)	901	J CELL BIOL (10239)	40560
	Chomczynski P, 1987, ANAL BIOCHEM (162)	849	J CHEM PHYS (17136)	40074
	Goldberg DE, 1989, GENETIC ALGORITHMS S	822	GENE DEV (4879)	38903
	Lorenz EN, 1963, J ATMOS SCI (20)	726	BIOCHEMISTRY-US (16035)	32061
	Mandelbrot BB, 1982, FRACTAL GEOMETRY NAT	721	BRAIN RES (15364)	30517
	Kohonen T, 1990, P IEEE (78)	715	ANGEW CHEM INT EDIT (7572)	27718
	Dorogovtsev SN, 2002, ADV PHYS (51)	688	NUCLEIC ACIDS RES (9738)	27242
	Albert R, 2000, NATURE (406)	678	J EXP MED (8100)	27220

TABLE III .

 III [2000][2001][2002][2003][2004][2005][2006][2007][2008] subfields' sizes N , inner coherences < ω > -1 and modules q.

	Subfield	N < ω > -1	q	Subfield	N < ω > -1	q
	Analytic Chemistry (AnalyticChem)	419	336.14 0.0002	In Vitro Fertilization (IVF)	591	281.01 0.0006
	Angiogenesis (Angiogen)	3642 1408.78 0.005	Kolmogorov Complexity (K-Comp)	501	121.94 0.0011
	Apoptosis (Apopt)	2632 1424.23 0.0026	Malaria	2702	747.44 0.0052
	Attractors	1161	524.42 0.0013	Management (Managt)	3563 2159.31 0.0031
	Bacterial Genomics (BactGen)	1517	120.19 0.0103	Mitosis	3171	564.98 0.0095
	Brain Chaos	1175	70.06 0.0105	Molecular Self-Organization (MolecularSO) 2684	409.08 0.0094
	Calibration (Calib)	538	371.17 0.0004	Multi-agent System (MAS)	1787 1094.91 0.0015
	Cellular Automata(CA)	846	164.26 0.0023	Nanofabrication (NanoFabr)	457	45.28 0.0025
	Cellular Neural Networks (CellularNN)	620	86.17 0.0024	Nanosciences (Nano)	1995	418.01 0.0051
	Chaos	3134	531.3 0.0099	Neural Networks (NN)	2902	221.15 0.0201
	ClimateChaos	352	205.31 0.0003	Neural Synchronization (NeuralSynchr)	1451	453.59 0.0025
	Complex Fluids (CFluid)	2310	994.14 0.0029	Organic Chemistry (OrgChem)	649	368.67 0.0006
	Complex Networks (CN)	3684	21.87 0.2235	Pattern Formation (PattForm)	1403	205.82 0.0051
	Computational Complexity (ComputCompl)	1134	379.92 0.0018	Pattern Formation & Self-Organization	691	142.82 0.0018
	Computational Systems Biology (CSB)	1799	323.99 0.0053	(PattformSO)	
	Computer	526	437.08 0.0003	Petri Nets	957	275.76 0.0018
	Condensed Matter (CondMatt)	2629	631.99 0.0059	Photosynthesis (PhSynth)	2000	224.48 0.0096
	Condensed Matter -Polymers (CondPolymers) 471	131.85 0.0009	Plasticity	1066	915.05 0.0006
	Control	4772 1086.35 0.0112	Polimerization (Polymeriz)	645	98.54 0.0022
	Crystal Structure (CrystalStruct)	3386	350.41 0.0175	Protein Structure (ProteinStruct)	1830	237.07 0.0076
	Cytoskeleton Self-Organization(CytoskSO)	651	132.58 0.0017	Protein Transport (ProteinTransp)	1305	308.77 0.0029
	Deformation	590	432.48 0.0004	Quantum Chaos (QChaos)	1456	636.22 0.0018
	Diabetes	1015	669.24 0.0008	Quantum Dots (QDots)	921	130.93 0.0035
	Digital Communication (DigitCom)	3811	470.56 0.0165	Reinforcement Learning (RLearning)	891	287.57 0.0014
	Ecology	4751 1846.16 0.0066	Respiration Rhythm	416	57.35 0.0016
	Econophysics (Econophys)	738	96.12 0.003	Self-Organized Criticality (SOC)	4447	199.3 0.0509
	Electrocardiogram (ECG)	987	117.68 0.0044	Self-Organizing Maps(SOM)	3495	168.85 0.0376
	Endocrinology (Endocrino)	1223	607.63 0.0013	Social Cognition Therory (SocialCognTheor) 800	680.59 0.0005
	Energy Transfert (EnergyTransf)	801	258.27 0.0013	Sorption	1354	925.37 0.001
	Epigenomics	3055	677.49 0.0074	Support Vector Machines(SVM)	3660	867.91 0.0082
	Epilepsy	316	273.67 0.0001	Surface Self-Organization (SurfSO)	1511	468.34 0.0026
	Evolution	1318	796.76 0.0011	Swarm Intelligence (SwarmIntel)	608	145.94 0.0013
	Fractals	1015	192.02 0.0029	Synaptic Plasticity (SynPlasticity)	1625	370.25 0.0038
	Functional MRI (fMRI)	2634	897.28 0.0041	Transcriptomics (Transcrip)	2043	439.37 0.0051
	Functional Neurosciences (fNS)	935	497.44 0.0009	Transcriptomics Data Analysis (TDA)	628	43.32 0.0049
	Genetic Algorithm (GenAlgo)	2177	197.96 0.0128	Transmission Control Protocol (TCP)	1473	718.93 0.0016
	Genetic Diseases (GenDiseases)	2273	387.34 0.0072	Tuberous Sclerosis (TubScler)	766	153.33 0.002
	Growth Self-Organization (GrowthSO)	1192	113.84 0.0067	Turbulent Flow (TurbFlow)	3172 1212.32 0.0045
	Hemodynamics (Hemodyn)	346	344.37 0.0001	Visual Cortex Model	2851	845.22 0.0051
	Immunology (Immuno)	4403 2234.66 0.0047	VocalLearning	389	162.56 0.0005

TABLE IV .

 IV The 20 most networking references in the 2000-2008 decade

	Reference	Topic	N (r) (%)
	Press et al. (1992)*	Numerical recipes (book)	1.250
	Shannon (1948)*	Information theory	0.607
	Metropolis et al. (1953)	Monte Carlo integration	0.509
	Nicolis et al. (1977)*	Self organization (book)	0.420
	Kauffman (1993)*	Self organization (book)	0.309
	Hebb (1949)	Neuropsychology and behavior	0.297
		(book)	
	Alberts et al. (1994)	Molecular and cellular biology	0.288
		(book)	
	Abramowitz et al. (1968)* Handbook of mathematical	0.269
		functions	
	Feller (1958)*	Introduction to probability	0.268
		theory (book)	
	Watson & Crick (1953)	Structure of DNA	0.250
	Lakowicz (1999)	Fluorescence spectroscopy	0.249
	Turing (1952)	Morphogenesis	0.237
	Witten et al. (1981)	Diffusion-limited aggregation	0.234
	Cohen (1988)	Statistics and behavioral	0.223
		sciences (book)	
	Hopfield (1982)	Neural networks	0.217
	Stanley (1971)	Phase transition (book)	0.202
	Whitesides et al. (2002)	Self-assembly	0.188
	Marquardt (1963)	Applied mathematics	0.174
	Chomczynski (1987)	RNA isolation	0.167
	Venter et al. (2001)		

TABLE V .

 V Strongest trading zones.

	Subfield	Fields	T (%) T /T exp
	TDA	Biology/Neural Networks	46.355	20.51
	CSB	Biology/Dynamical Systems	49.704	8.87
	CSB	Biology/SOC	49.255	8.79
	ProteinStruct Biology/Material Sciences	47.442	8.32
	CSB	Biology/CN	42.931	7.66
	TDA	CN/Neural Networks	16.543	7.32
	Hemodyn	Neurosciences/FluidMech	54.552	7.22
	NeuralSynchr Neurosciences/Dynamical Systems 59.788	5.20
	Hemodyn	Biology/FluidMech	39.113	5.18
	CytoskSO	Biology/SOC	9.561	4.71
	CytoskSO	Biology/Dynamical Systems	9.522	4.69
	Calib	Material Sciences/Neural Networks 8.717	4.51
	CellularNN	CN/Neural Networks	9.605	4.30
	Transcrip	Biology/CN	25.806	4.05
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