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Using a large database ( 215 000 records) of
relevant articles, we empirically study the \com-
plex systems" eld and its claims to nd univer-
sal principles applying to systems in general. The
study of references shared by the papers allows us
to obtain a global point of view on the structure
of this highly interdisciplinary eld. We show
that its overall coherence does not arise from a
universal theory but instead from computational
techniques and fruitful adaptations of the idea
of self-organization to specic systems. We also
nd that communication between di erent disci-
plines goes through specic \trading zones",
sub-communities that create an interface around
speci ¢ tools (a DNA microchip) or concepts (a
network).

ie

INTRODUCTION

Fundamental science has striven to reduce the diver-
sity of the world to some stable building blocks such as
atoms and genes. To be fruitful, this reductionist ap-
proach must be complemented by the reverse step of ob-
taining the properties of the whole (materials, organisms)
by combining the microscopic entities, a notoriously dif-
cult task [1{4]. The science of complex systems tackles
this challenge, albeit from a di erent perspective. It adds
the idea that \universal principles" could exist, which
would allow for the prediction of the organization of the
whole regardless of the nature of the microscopic entities.
Ludwig Von Bertalan y wrote already in 1968: \ It seems
legitimate to ask for a theory, not of systems of a more
or less special kind, but of universal principles applying
to systems in general" [5]. This dream of universality
is still active: \ [Complex networks science] suggests that
nature has some universal organizational principles that
might nally allow us to formulate a general theory of

. IXXI, Rhone Alpes Institute of complex systems, 69364 Lyon, France

. Laboratoire de Physique, UMR CNRS 5672, ENS de Lyon, 69364 Lyon, France
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complex systems' [6]. Have such universal principles
been discovered? Could they link disciplines such as so-
ciology, biology, physics and computer science, which are
very di erent in both methodology and objects of inquiry
[71?

RESULTS

In this paper, we empirically study the \complex sys-
tems" eld using the quantitative tools developed to
understand the organization of scientic elds [8] and
their evolution [9{11]. Global science maps [8, 12{22]
have become feasible recently, o ering a tentative overall
view of scientic elds and fostering dreams of a \sci-
ence of science" [14]. Speci cally, to collect a represen-
tative database of articles, we selected from the ISI Web
of knowledge [23] all records containing topic keywords
relevant for the eld of complex systems (Table I). Ta-
ble Il contains the 20 most frequent cited references and
journals within our dataset. To analyze the data, we
build a network [14] in which the 215 000 articles are
the nodes. These nodes are linked according to the pro-
portion of shared references (bibliographic coupling [24]).
For this study, bibliographic coupling o ers two advan-
tages over the more usual co-citation link: it oers a
faithful representation of the elds, giving equal weight
to all published papers (whether cited or not) and it can
be applied to recent papers (which have not yet been
cited). For more details, the reader is referred to the
section \Methods".

Figure 1 shows the largest communities (thereafter also
called \ elds" or \disciplines") obtained by modularity
maximization of the network of papers published in the
years 2000-2008. The layout of all the graphs is ob-
tained thanks to a spring-based algorithm implemented
in the Gephi visualization software [48, 49]. We rst



TABLE I. Topic keywords used in our request in the

ISI Web of Knowledge database and number of ar-
ticles matching independently to each of these topic
keywords. Each topic keywords except the rst six where
coupled with the topic keywords \complex*'. We moreover
rejected the articles containing the topic keywords \complex
scaling" or \linear search”, two terms refering respectively
to (heavily used) speci ¢ methods of quantum chemistry and
computer science.

topic keywords Results
self organ* 32484
complex network* 6953
dynamical system 8205
econophysics 633
strange attractor 769
synergetics 379
adaptive system* 1141
arti cial intelligence 1812
attractor 1034
bifurcation 3164
chaos 5370
control 116017
criticality 980
ecology 5869
economics 2243
epistemology 345
far from equilibrium 253
feedback 12881
fractal 3867
ising 975
multi agent 2032
multiagent 665
multi scale 779
multifractal 390
multiscale 1439
neural network* 12747
(non linear* OR nonlinear*) NOT equation* 10240

non linear dynamic* 560
non linear system* 391
nonlinear dynamic* 2285
nonlinear system* 1826
phase transition 5503
plasticity 6667
random walk 758
robustness 6498
scaling 7008
social system* 586
spin glass* 643
stability AND (lyapunov OR non linear* OR nonlinear*) 1399
stochastic 9184
synchronization 4645
turbulence 4602
universality 861
cell* automat* 1659

note that all important complex systems sub elds! are

1 In the following, we use italics to refer to the names of the com-
munities.

FIG. 1. Community structure obtained with a rst run

of the modularity maximization [47] on the 2000-2008
network (141 098articles). The surface of a community | is
proportional to its number of articles N, and the width of the
link between two communities | and J igproportional to the
mean bibliographic coupling H i3 i215 29 Li =N Ng.
The layout of the graph is obtained thanks to a spring-based
algorithm implemented in the Gephi visualization software
[48, 49]. For the sake of clarity, communities with less than
300 articles are not displayed. The label of a community rep-
resents the most frequent and/or signi cant keyword of its
articles. CN stands for Complex Networks, SOC for Self Or-
ganized Criticality, DS for Dynamical Systems, DigitCom for
Digital Communication and SurfaceSO for Self-organization
on Surfaces. EMC is a more composite community where the
three most representative keywords are Ecology, Management
and Computational Models. See Figure 2 for details.

present [25]. At the center, we nd mostly theoretical
domains: self-organized criticality, dynamical systems
complex networks neural networks These elds are con-
nected to more experimental communities lying at the
edges (naterials science biology or neuroscience3. The
links between theoretical and experimental elds suggest
that complex systems science models have connections to
the \real" world, as claimed by their practitioners.

To understand the inner structure of these large com-
munities, we use recursive modularity optimization (see
[26] and \Methods"). Most elds display a rich in-
ner structure (Figure 2) with subcommunities (there-
after also called \sub elds" or \subdisciplines") orga-
nized around specic topics and references. The only
exceptions areself-organized criticality and complex net-
works, where all articles cohere around a few references.
For a short presentation of all the sub elds, see Table
I1l. For a more detailed presentation of the main sub-
elds, including their authors, most used journals, refer-
ences and keywords, see the Supplementary Information.
We analyze this complex structure at two levels. First,
at the global scale, complex systems science appears to
be a densely interconnected network. This is somewhat



TABLE II. The 20 references (including books and articles) and journals which are the more used by the articles

of the whole database
Reference Times used Journal (# distinct refs) Times used
Bak P, 1987,PHYS REV LETT (59) 2131 NATURE (29166) 169309
Albert R, 2002, REV MOD PHYS (74) 2050 P NATL ACAD SCI USA (42504) 151140
Laemmli UK, 1970, NATURE (227) 1762 J BIOL CHEM (59436) 149042
Watts DJ, 1998, NATURE (393) 1732 SCIENCE (24880) 148002
Barabasi AL, 1999, SCIENCE (286) 1693 CELL (11044) 99168
Bak P, 1988, PHYS REV A (38) 1555 PHYS REV LETT (23269) 94861
Sambrook J, 1989, MOL CLONING LAB MANU 1439 J AM CHEM SOC (29807) 82569
Newman MEJ, 2003, SIAM REV (45) 1308 EMBO J (10926) 53049
Bradford MM, 1976, ANAL BIOCHEM (72) 1255 MOL CELL BIOL (12866) 52694
Lowry OH, 1951, J BIOL CHEM (193) 1106 J NEUROSCI (12313) 43152
Rumelhart DE, 1986, PARALLEL DISTRIBUTED (1) 947 J IMMUNOL (18891) 41496
Strogatz SH, 2001, NATURE (410) 907 PHYS REV B (19367) 41450
Kohonen T, 1982, BIOL CYBERN (43) 901 J CELL BIOL (10239) 40560
Chomczynski P, 1987, ANAL BIOCHEM (162) 849 J CHEM PHYS (17136) 40074
Goldberg DE, 1989, GENETIC ALGORITHMS S 822 GENE DEV (4879) 38903
Lorenz EN, 1963, J ATMOS SCI (20) 726 BIOCHEMISTRY-US (16035) 32061
Mandelbrot BB, 1982, FRACTAL GEOMETRY NAT 721 BRAIN RES (15364) 30517
Kohonen T, 1990, P IEEE (78) 715 ANGEW CHEM INT EDIT (7572) 27718
Dorogovtsev SN, 2002, ADV PHYS (51) 688 NUCLEIC ACIDS RES (9738) 27242
Albert R, 2000, NATURE (406) 678 J EXP MED (8100) 27220

surprising since sharing references between subdisciplines large-scale structures out of local interactions between

means that they are able to read and understand these
references, and moreover, that they nd them useful.
Would these shared references point to \universal" prin-

ciples? Second, we focus on a more local scale, on the

links that speci cally connect two di erent disciplines ( ie
two di erent colors in Figure 1) to understand how they
manage to exchange knowledge.

Complex systems' science overall coherence

Let us start with the eld's overall coherence. We have
looked for the references cited by many sub elds. These
form the \glue" that links many subdisciplines and con-
nects the network. More precisely, we de ne the network-
ing force of a referenceN (r) as the sum, over all pairs
of sub elds, of the proportion of their links explained by
that reference (see Methods). Table IV shows that the
references that glue the network are more methodolog-
ical than theoretical: the most networking reference is
\Numerical Recipes" [27], a series of books that gath-
ers many routines for various numerical calculations and
their implementation in computers. Most of the other
linking references are mathematical handbooks or data
analysis tools. If one looks for universality in the complex
systems eld, the computer { as a tool { seems to be a
serious candidate. Among the leading contributors to the
glue, we also nd several references on self-organization
(SO). Self-organization is not a predictive theory, but an

the system's subunits [28]. Several subdisciplines in Fig-
ure 2 can be related to this approach, as they use a key-
word akin to \self-organization" (SO) in more than 10%
of their articles (for a more complete list of the commu-
nities using this keyword, see the Supplementary Infor-
mation). Among these we nd swarm SQ molecular SO
linking chemistry to biology, growth SOand pattern for-
mation SO linking surface science to dynamical systems.
This suggests that the eld of complex systems focuses
on the cases in which the link from microscopic to macro-
scopic can be analyzed through self-organization, which
gave rise to several fruitful scienti c programs, as we dis-
cuss below (section Discussion).

Interdisciplinary trading zones

At a more local scale, let us now look at the links
that speci cally connect two distinct disciplines. How
are those connections established? It is widely accepted
that scienti ¢ disciplines cannot easily communicate or
be linked (in our case, share references) simply because
it is di cult for a physicist to understand a biology pa-
per and vice-versa. In addition, di erent disciplines have
di erent de nitions of what counts as a result or as an in-
teresting research topic. For example, physical sciences
look for universal laws, while social [29] and biological
[30] sciences emphasize the variations in structure across
di erent groups or contexts and use these di erences to

approach that focuses on the spontaneous emergence of explain di erences in outcomes. Physicians are interested



FIG. 2. Community structure obtained with a second run of the modularity maximization on the 2000-2008

network.  This community structure is obtained by optimizing the internal modularity = Q' of each community obtained by
the rst run of the modularity maximization algorithm on the 2000-2008 network, displayed on Figure 1 (See Methods for
details on the procedure). The layout of the graph is obtained thanks to a spring-based algorithm implemented in the Gephi
visualization software [48, 49]. The surface of each community is proportional to its number of articles and the width of the
link between two communities | and J is proportional to the mean weight h i,; . For the sake of clarity, communities with less
than 300 articles and links with a mean weight H i,; less than 210 5 are not displayed. The color of a community (see online)
corresponds to the color of the eld (Fig 1) it belongs to. Community labels generally correspond to the most frequent and/or
signi cant keyword. For a detailed presentation of all the sub elds, including their authors, most used journals, references and

keywords, see the Supplementary Information.

in practical medical advances while physicists want to
know whether physiological rhythms are chaotic or not
[31].

Where do the links come from then? In an illuminating
analogy, Peter Galison [32] compares the di culty of con-
necting scienti ¢ disciplines to the di culty of communi-
cating between di erent languages. History of language
has shown that when two cultures are strongly motivated
to communicate - generally for commercial reasons - they
develop simpli ed languages that allow for simple forms
of interaction. At rst, a \foreigner talk" develops, which
becomes a \pidgin" when social uses consolidate this lan-
guage. In rare cases, the \trading zone" stabilizes and the

expanded pidgin becomes a creole, initiating the devel-
opment of an original, autonomous culture. Analogously,
biologists may create a simpli ed and partial version of
their discipline for interested physicists, which may de-
velop to a full-blown new discipline such as biophysics.
Speci cally, Galison has studied [32] how Monte Carlo
simulations developed in the postwar period as a trading
language between theorists, experimentalists, instrument
makers, chemists and mechanical engineers. Our interest
in the concept of a trading zone is to allow us to explore
the dynamics of the interdisciplinary interaction instead
of ending analysis by reference to a \symbiosis" or \col-
laboration".



TABLE Ill.  2000-2008 sub elds' sizes N, inner coherences <!> ! and modules g
Sub eld N <!> ! q Subeld N <!> 1 q
Analytic Chemistry (AnalyticChem) 419 336.14 0.0002 In Vitro Fertilization (IVF) 591 281.01 0.0006
Angiogenesis (Angiogen) 3642 1408.78 0.005 Kolmogorov Complexity (K-Comp) 501 121.94 0.0011
Apoptosis (Apopt) 2632 1424.23 0.0026 Malaria 2702 747.44 0.0052
Attractors 1161 524.42 0.0013 Management (Managt) 3563 2159.31 0.0031
Bacterial Genomics (BactGen) 1517 120.19 0.0103 Mitosis 3171 564.98 0.0095
Brain Chaos 1175 70.06 0.0105 Molecular Self-Organization (MolecularSO) 2684 409.08 0.0094
Calibration (Calib) 538  371.17 0.0004 Multi-agent System (MAS) 1787 1094.91 0.0015
Cellular Automata(CA) 846 164.26 0.0023 Nanofabrication (NanoFabr) 457 45.28 0.0025
Cellular Neural Networks (CellularNN) 620 86.17 0.0024 Nanosciences (Nano) 1995 418.01 0.0051
Chaos 3134 531.3 0.0099 Neural Networks (NN) 2902 221.15 0.0201
ClimateChaos 352 205.31 0.0003 Neural Synchronization (NeuralSynchr) 1451 453.59 0.0025
Complex Fluids (CFluid) 2310 994.14 0.0029 Organic Chemistry (OrgChem) 649 368.67 0.0006
Complex Networks (CN) 3684 21.87 0.2235 Pattern Formation (PattForm) 1403 205.82 0.0051
Computational Complexity (ComputCompl) 1134 379.92 0.0018 Pattern Formation & Self-Organization 691 142.82 0.0018
Computational Systems Biology (CSB) 1799 323.99 0.0053 (PattformSO)
Computer 526 437.08 0.0003  Petri Nets 957 275.76 0.0018
Condensed Matter (CondMatt) 2629 631.99 0.0059 Photosynthesis (PhSynth) 2000 224.48 0.0096
Condensed Matter - Polymers (CondPolymers) 471 131.85 0.0009 Plasticity 1066 915.05 0.0006
Control 4772 1086.35 0.0112 Polimerization (Polymeriz) 645 98.54 0.0022
Crystal Structure (CrystalStruct) 3386 350.41 0.0175 Protein Structure (ProteinStruct) 1830 237.07 0.0076
Cytoskeleton Self-Organization(CytoskSO) 651 132.58 0.0017 Protein Transport (ProteinTransp) 1305 308.77 0.0029
Deformation 590 432.48 0.0004 Quantum Chaos (QChaos) 1456 636.22 0.0018
Diabetes 1015 669.24 0.0008 Quantum Dots (QDots) 921 130.93 0.0035
Digital Communication (DigitCom) 3811 470.56 0.0165 Reinforcement Learning (RLearning) 891 287.57 0.0014
Ecology 4751 1846.16 0.0066 Respiration Rhythm 416 57.35 0.0016
Econophysics (Econophys) 738 96.12 0.003 Self-Organized Criticality (SOC) 4447 199.3 0.0509
Electrocardiogram (ECG) 987 117.68 0.0044 Self-Organizing Maps(SOM) 3495 168.85 0.0376
Endocrinology (Endocrino) 1223 607.63 0.0013 Social Cognition Therory (SocialCognTheor) 800 680.59 0.0005
Energy Transfert (EnergyTransf) 801 258.27 0.0013 Sorption 1354 925.37 0.001
Epigenomics 3055 677.49 0.0074  Support Vector Machines(SVM) 3660 867.91 0.0082
Epilepsy 316 273.67 0.0001  Surface Self-Organization (SurfSO) 1511 468.34 0.0026
Evolution 1318 796.76 0.0011 Swarm Intelligence (Swarmintel) 608 145.94 0.0013
Fractals 1015 192.02 0.0029  Synaptic Plasticity (SynPlasticity) 1625 370.25 0.0038
Functional MRI (fMRI) 2634 897.28 0.0041 Transcriptomics (Transcrip) 2043 439.37 0.0051
Functional Neurosciences (fNS) 935 497.44 0.0009 Transcriptomics Data Analysis (TDA) 628 43.32 0.0049
Genetic Algorithm (GenAlgo) 2177 197.96 0.0128 Transmission Control Protocol (TCP) 1473 718.93 0.0016
Genetic Diseases (GenDiseases) 2273 387.34 0.0072 Tuberous Sclerosis (TubScler) 766 153.33 0.002
Growth Self-Organization (GrowthSO) 1192 113.84 0.0067 Turbulent Flow (TurbFlow) 3172 1212.32 0.0045
Hemodynamics (Hemodyn) 346 344.37 0.0001 Visual Cortex Model 2851 845.22 0.0051
Immunology (Immuno) 4403 2234.66 0.0047 VocalLearning 389 162.56 0.0005

The acronyms and abbreviations in parenthesis correspond to the label of the sub elds displayed on Fig 2. The

inverse of the average of the weight of the inner links of a sub eld ! >

1 can be taken as an inner coherence

measure. Indeed, would the weight of these links be homogeneously distributed between all pairs of articles of a
given sub eld, then two articles of this sub eld chosen at random would share 1 reference ovex ! > 1.

Table V gives a list of the main \trading zones" which
connect theoretical and experimental elds in Figure 1
and capture a signi cant fraction of the links between
these elds. The clearest example istranscriptomics
data analysis a sub eld of neural networks which con-
nects biologists interested in the interpretation of data
retrieved from DNA chips and computer scientists inter-
ested in data analysis via methods from theneural net-
works eld. The transcriptomics data analysis sub eld
represents 2.3% ofneural networks papers but accounts

for 46.3% of the connections betweeneural networksand
biology and 16.5% of the links betweenneural networks
and complex networks Other trading zones arecomputa-
tional systems biology linking biology to many theoreti-
cal elds, among which dynamical systems self-organized
criticality and complex networks neural synchronization
linking dynamical systemsand neurosciences cytoskele-
ton self-organizationlinking biologyto dynamical systems
and self-organized criticality and calibration linking neu-
ral networks and material sciences Note that a single



FIG. 3.

Local \networking" force for four dierent references on the 2000-2008 network (Fig 2).

Links

established using the reference are shown in color. The number of citations corresponds to those included in papers of our
database published between 2000 and 200&. Ref used: Albert & Barabasi [40] (2058 citations) b. Ref used: Press WHet al,
Numerical Recipes - all editions [27] (1267 citations) c. Ref used: Nicolis [50] (342 citations) d. Ref used: Barabasi and Oltvai

[42] (244 citations).

trading zone can be used by a elds to exchange with
several other elds, as long as these other elds share the
same \language”. For example,computational systems
biology, links biologyto dynamical systems self-organized
criticality and complex networks three sub elds which
share the physicists' toolkit. Since our map cannot cover
all scientic elds, we may not recognize some sub elds
as trading zones, such aglectrocardiogramwhich is likely
to connectdynamical systemso medecine, or even miss a
trading zone between geosciences arsklf-organized crit-
icality .

By analyzing carefully the references used by trad-
ing zones and also the references that make the links
between the trading zones and their neighbors, we can
distinguish two types of trading zones, applicative and
speculative. Let us start with transcriptomics data anal-
ysis, which is a clear example of \applicative" trading
zone. The development of new measurement techniques
in cellular biology (mainly DNA microarrays) produced

huge amounts of data together with the need of new tools
to analyze them. Since this new technique promised
a better understanding of cell dynamics, a new scien-
ti ¢ subdiscipline, able to understand data analysis and
its biological interest was built around transcriptomic
tools. The two references most used by this sub eld
stress the applicative side: the purpose of the rst paper
is \to describe a system of cluster analysis for genome-
wide expression data from DNA microarray hybridiza-
tion [...] in a form intuitive for biologists " [33] while
the second \describes the application of self-organizing
maps for recognizing and classifying features in complex,
multidimensional [transcriptomic] data" [34]. The tran-
scriptomics data analysispapers are clustered together
because they share references presenting this kind of ap-
plications. The applicative character of transcriptomics
data analysiscan also be seen in the origin of the refer-
ences that link them to neighbor sub elds (Figure 4).
The common references betweeriranscriptomics data



FIG. 4. Directed network. On this subset of the graph
presented in Figure 2, the arrows are directed to the sub eld
that uses the other sub eld's references to establish the link.
More precisely, the common references shared by two linked
sub elds are more similar to the internal references of the
sub eld from which the arrow originates than to the inter-
nal references of the sub eld to which the arrow points (see
\Methods" for more details). The gure shows that transcrip-
tional data analysis (TDA) feeds from self-organizing maps
(SOM) and neural networks (NN) methodological references,
while biology subcommunities (mainly Transcriptomics) use
transcriptional data analysis references. The orientation of
the links is quite di erent for computational systems biology
(CSB) and complex networks (CN), because these sub elds
tend to pump their neighbors' references, while the other sub-
elds do not nd much use in computational systems biology
and complex networksreferences.

analysis and biology (mainly transcriptomics) are sim-
ilar to references used bytranscriptomics data analy-
sis papers themselves. This means that the link arises
from biologists citing results obtained by transcriptomics
data analysis scientists or techniques they use. On the
other hand, the common references betweetranscrip-
tomics data analysisand self-organizing maps(a sub eld
of neural networks are similar to references used byself-
organizing mapspapers. Therefore, the link arises from
transcriptomics data analysis scientists citing classi ca-
tion techniques created byself-organizing mapsscientists,
while these scientists do not often usetranscriptomics
data analysisreferences. Thereforetranscriptomics data
analysis allows self-organizing mapstechniques to be un-
derstood and used to interpret biological data, with a
relevance certi ed by biologists' citations. The case of
another trading zone, computational systems biologyis
di erent. Its most used references point to computational
methods - mainly Gillespie's algorithm [35] or to experi-
mental papers in which there is no explicit modeling but
that show complex cellular dynamics, thus justifying in-
directly the need for modeling. The link between exper-

TABLE IV. The 20 most networking references in the
2000-2008 decade

Reference Topic N (r) (%)
Press et al. (1992)* Numerical recipes (book) 1.250
Shannon (1948)* Information theory 0.607
Metropolis et al. (1953) Monte Carlo integration 0.509
Nicolis et al. (1977)* Self organization (book) 0.420
Kau man (1993)* Self organization (book) 0.309

Hebb (1949) Neuropsychology and behavior 0.297
(book)

Alberts et al. (1994) Molecular and cellular biology 0.288
(book)

Abramowitz et al. (1968)* Handbook of mathematical 0.269
functions

Feller (1958)* Introduction to probability 0.268
theory (book)

Watson & Crick (1953) Structure of DNA 0.250

Lakowicz (1999) Fluorescence spectroscopy 0.249

Turing (1952) Morphogenesis 0.237

Witten et al. (1981) Di usion-limited aggregation 0.234

Cohen (1988) Statistics and behavioral 0.223
sciences (book)

Hop eld (1982) Neural networks 0.217

Stanley (1971) Phase transition (book) 0.202

Whitesides et al. (2002) Self-assembly 0.188

Marquardt (1963) Applied mathematics 0.174

Chomczynski (1987) RNA isolation 0.167

Venter et al. (2001) Human genome sequence 0.160

The references followed by a star correspond to books or
papers which appeared in the database under several forms -
essentially di erent publication years for the books - for

which the networking power N (r) have been summed. The
complete references of these papers are given in
Supplementary Information.

iments and modeling is still speculative, as summarized
by one of the most used references in this sub eld [36]:
\we hope that this review will [...] promote closer col-
laboration between experimental and computational biol-
ogists." Moreover, the common references betweeoom-
putational systems biologyand biology are from biology,
as if computational systems biologyscientists were eager
to quote potentially interesting biological applications for
their modeling approach, while many biologists were still
unaware of these models. In short, compared tdran-
scriptomics data analysis computational systems biology
seems a more speculative trading zone, at the frontier
of biology and modeling, but presently lacking a specic
object or concept to de ne an operational trading zone.



TABLE V. Strongest trading zones.

Sub eld Fields T (%) T=T®P
TDA Biology/Neural Networks 46.355 20.51
CSB Biology/Dynamical Systems 49.704 8.87
CSB Biology/SOC 49.255 8.79
ProteinStruct Biology/Material Sciences 47.442 8.32
CSB Biology/CN 42.931 7.66
TDA CN/Neural Networks 16.543 7.32
Hemodyn Neurosciences/FluidMech 54.552 7.22
NeuralSynchr Neurosciences/Dynamical Systems 59.788 5.20
Hemodyn Biology/FluidMech 39.113 5.18
CytoskSO Biology/SOC 9.561 4.71
CytoskSO Biology/Dynamical Systems 9.522 4.69
Calib Material Sciences/Neural Networks 8.717 4.51
CellularNN CN/Neural Networks 9.605 4.30
Transcrip Biology/CN 25.806 4.05

The trading force T of a subcommunity measures the
fraction of the links between two elds (in Fig. 1) which
goes through this subcommunity. More precisely, the trading
force of I, a subcommunity of |, towards any community J
is the total weight of the article-article links between the
subcommunity | and community J, normalized by the total
weight of ghe the article-grticle links between | and J:
To()=" 5255 = 21529 'i - The expected force
TP is the value of the trading force one would expect if all
the links between | and outside communities were equally
shared among all sub-communities of |, which is simply the
fraction N, =N, of articles of | in I. The acronyms of the
sub els used here correspond to those explained in Table IlI.

DISCUSSION

Our empirical study of the \complex systems" eld
shows that its overall coherence does not arise from a uni-
versal theory but from computational techniques and suc-
cessful adaptations of the idea of self-organization. The
computer is important for advancing the understanding
of complex systems because it allows scientists to play
with simple but nonlinear models and to handle large
sets of data obtained from complex systems. At a more
local level | specically the interdisciplinary level |
trading zones allow for coordination between vastly dif-
ferent scienti ¢ cultures, who di er on their conception of
an interesting topic, but who can work together around
speci c tools (a DNA microchip) or concepts (a network).

We now discuss how our study sheds light on the over-
all philosophy of the complex systems eld. First, we
examine the various claims to universality. A \general
systems theory" would possess a collection of theoretical
books or papers revealing the \universal” explanation;
this would be evidenced in Figure 2 by a central group
to which other groups would connect. Instead, our anal-
ysis shows a variety of modeling disciplines in a central
position.

We argue that claims to universality are part of a
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rhetoric that legitimates the study of abstract and sim-
ple models [38]. Certainly, a few theoretical papers, such
as Bak's [39] (in SOC) or Albert and Barabasi's [40] (in
CN) point to \universal" mechanisms and are heavily
cited. However, more than 90% of their citations arise
from modelers themselves [41], suggesting that they may
be universal... for theorists. Our data support the lo-
cal character of these \universal" laws. First, Albert
and Barabasi's [40] paper is the most cited in the 2000-
2008 decade but only linkscomplex networksand self-
organized criticality sub elds (Figure 3a). The contrast
with the global networking achieved by methodological
references such as Metropolis' algorithm or Numerical
Recipes (Figure 3b) or self-organization references (Fig-
ure 3c) is clear. Second, the references thaiomplex net-
works (Figure 4) and self-organized criticality communi-
ties share with experimental elds are similar to those
of the experimental elds. This seizure of experimental
references suggests that the links between modeling prac-
tices and their potential applications are mostly rhetor-
ical: complex networksand self-organized criticality pa-
pers often quote experimental work as legitimating their
models, while experimentalists rarely refer to them. To
try to become universal, theoretical approaches have to
be \translated" into other disciplines. An example of
this strategy is shown in Figure 3d which shows the links
established between network science and biology thanks
to Barabasi and Oltvai's introduction of networks for bi-
ologists [42]. Regardless, many physicists are likely to
continue looking for common patterns across systems to
justify their neglect of the \details" of the system under
study, the precise components and interactions [30, 52].
Universality is then another name for simplicity, a strong
motivation for many physicists as expressed by the Santa
Fe institute who aims at uncovering \the mechanisms
that underlie the deep simplicity present in our complex
world." [53]. It is true that simple analytical models
such as SOC or chaotic systems may lead to complicated
behaviors and patterns. But this does not prove the re-
verse proposition, i.e. that all complex patterns can be
explained by simple mechanisms. The \simplicity" ap-
proach turned out to be a successful strategy in the study
of phase transitions, which can be studied through the
very simple Ising model [51, 54, 55], but arguments for
the usefulness of such an approach for biological or social
systems are unconvincing [38].

It could be argued that links between these theories
and experimental elds take time to establish and will
be seen in the future. An interesting insight of the possi-
ble evolution of universality claims is given by the history
of self-organization, which was considered by many as a
universal key to Nature in the 1980's [51]. This idea
was fecund in that it gave birth to several active sub-
disciplines (cytoskeleton SQ growth SQ..) (Figure 2).
However, it should be noticed that these heirs of self-
organization are nowadays almost unrelated. The di er-



ent self-organization sub elds are more linked to their
own discipline (biology, materials science...) than be-
tween them. This is shown by the plain fact that com-
munity detection puts these SO sub elds into di erent
disciplines (di erent colors in Figure 2) instead of creat-
ing a single, uni ed, self-organization eld. The reason
is that these sub elds use widely di erent references, as
illustrated by the fact that there is no common refer-
ence among the 10 most used references for all the di er-
ent self-organization subcommunities. Self-organization
is therefore not a universal explanation but rather a kind
of banner, which needs to be associated to references to
speci ¢ elements (including techniques, microscopic enti-
ties and their interactions) to be fruitful.

To understand the essential role of the computer, it
is important to distinguish between complex and compli-
cated. A complex phenomenon has to be understood syn-
thetically, as a whole, while a complicated phenomenon
can be explained analytically [56]. In other words, a sys-
tem is complex when the \parts" that are relevant to link
the micro to the macro cannot be properly de ned, as in
social systems where humans cannot be de ned without
taking into account society (e.g. language, an essential
part of the individual which is acquired through society).
Similarly, synthetic biology aims at using functional com-
ponents of living systems as building blocks to create ar-
ti cial devices [57]. But many di culties arise from the
intertwining of the elements in a living being [58]. Bi-
ological parts are ill de ned and their function cannot
be isolated from the context that they themselves create.
Despite its claims to complexity and holism, the \com-
plex systems" eld proposes a standard mechanistic vi-
sion of nature and society. As for most natural sciences,
its aim is to transform complex systems into complicated
systems that can be handled and eventually engineered
by models and computer force.

This is con rmed by historical studies showing [51, 59]
that the complex systems eld is heir of the postwar sci-
ences born around the computer: operational research,
game theory and cybernetics. These elds started when
physicists, mathematicians and engineers started collabo-
rating to maximize the e ciency of WW Il military oper-
ations [37, 59, 60]. These sciences extended the mechanis-
tic, engineering vision of the physical world to the biolog-
ical and social worlds. This view is still present in many
today's prominent CS scientists: \our knowledge of [so-
cial] mechanisms [..] is essential for self-optimization of
the society as a whole" [61]; \We spend billions of dollars
trying to understand the origins of the universe, while we
still don't understand the conditions for a stable society,
a functioning economy, or peace" [62] or \[Systems bi-
ology] leads to a future where biology and medicine are
transformed into precision engineering" [63].

In summary, we have obtained aglobal point of view
on the structure of the "complex systems" eld. This

has allowed us to test empirically the idea of universal-
ity, showing that it remains a dream, albeit one which
has lead to interesting but more modest realities. At
the global scale, the whole domain is linked by the fo-
cus on self-organization and the use of computer-based
methods for solving non-linear models. At a more local
scale, the links between di erent disciplines are achieved
through the development of \trading zones" [32]. These
allow for coordination between vastly di erent scienti ¢
cultures, for example theoretical and experimental disci-
plines, which are only marginally connected. These dis-
ciplines may di er on the very conception of what is an
interesting topic, but can work together around specic
tools (a DNA microchip) or concepts (a network). To-
day, these interdisciplinary collaborations are a key to
essential scienti ¢ challenges such as the analysis of the
massive amount of data recently made available on bio-
logical and social systems [43, 44] and the understanding
of the complex intertwining of di erent levels of organi-
zation that is characteristic of these systems.

METHODS
Extraction of the data

Our data have been extracted from the ISI Web of
Knowledge database [23] in December 2008. The sci-
ence of complex systems is particularly challenging as an
epistemic object since there exists no consensual de ni-
tion of the domain, nor any list of disciplines or journals
that would gather all the relevant papers. Therefore,
we selected all the articles of the database whose title,
abstract (for articles published after 1990) or keywords
contained at least one of a chosen list of topic keywords
(Table I). These keywords were derived from discussions
with experts of the eld, mainly scientists working at the
complex systems institute in Lyon (IXXI). We have re-
trieved 215 305 articles (141 098 between 2000 and 2008)
containing 4 050 318 distinct references. Each record con-
tains: authors, journal, year of publication, title, key-
words (given by the authors and/or ISI Web of Science)
and the list of references of the article. Any choice of key-
words being potentially biased and partial, our strategy
was to risk choosing too many of them - thus bypassing
the lack of precise de nition of the \complex systems"
eld and retrieving all its important sub elds - and to
trust the subsequent analysis to eliminate irrelevant ar-
ticles.

In fact, as shown in table I, around 40% of the arti-
cles of the database comes solely from the combination
of keywords \complex*' and \control" . While most of
those articles were close to biology and not directly re-
lated to the eld of complex systems, we chose to keep
them in order to test the robustness of our analysis. As
shown below, our strategy was successful, since most of



these \irrelevant" articles are grouped into a few commu-
nities (such asApoptosis or Immunology) that lie at the
network's edges and do not bias the results.

Links between articles

Weight of links between articles are calculated through
their common references (bibliographic coupling [24]).
We de ne a similarity between two articles i and j as
the cosine distance:

_ JRi\R jj
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where R; is the set of references of article. By def-
inition, ! 2 [0;1], is equal to zero wheni and j do
not share any reference and is equal to 1 when their
sets of references are identical. For this study, bibli-
ographic coupling o ers two advantages over the more
usual co-citation link: it o ers a faithful representation
of the elds, giving equal weight to all published papers
(whether cited or not) and it can be applied to recent pa-
pers (which have not yet been cited). Moreover, the links
are established on the basis of the author's own decisions
(to include or not a given reference) rather than retro-
spectively from other scientists' citations. Thus, biblio-
graphic coupling can be used to analyze the community
of research as it builds itself rather than as it is perceived
by later scientists that cite its publications.

Community detection and characterization

In order to structure this network into groups of cohe-
sive articles, we partition the set of papers by maximizing
the modularity function. Given a partition of the nodes
of the network, the modularity is the number of edges
inside clusters (as opposed to crossing between clusters),
minus the expected number of such edges if the network
was randomly conditioned on the degree of each node.
Community structures often maximize the modularity
measure. We compute our partition using the algorithm
presented in [47], which is designed to e ciently maxi-
mize the modularity function in large networks. More
precisely, we used the Iweighted modularityQ [45, 46],
which is dened asQ = | g, where themoduleq of a
community | is given by
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is the total weight of the links of the graph.

Each moduleq compares the relative weight of edges
e insige a community | with the expected weight of

2
+2 .
edges —*' "~ that one would nd in commu-

nity | if the network were a random network with the
same number of nodes and where each node keeps its de-
gree, but edges are otherwise randomly attached. See Ref
[26] for a more explicit interpretation of the modularity,

its properties and limits.

Applying the Louvain algorithm yields a rst parti-
tion of the network into communities (also referred to
as \ elds" or \disciplines", see Figure 1). To obtain the
substructure of these communities, we apply the Louvain
algorithm a second time on each of them. We nd that
most of these communities display a clear substructure
with high values of internal modularity Q' (typically be-
tween 04 and 08). Only two of them (self-organized crit-
icality and complex network$ are strongly bound around
a few references and present much lower values @
(typically less than or around 0:2). Consequently they
were not split into sub elds which would not have much
scienti ¢ relevance.

This recursive modularity optimization [26] leads us to
a \sub eld" graph (Figure 2). We have checked that all
the obtained sub-communities satisfy the criterion (g
0) proposed by Fortunato and Bartreemy [26] to check
their relevance (see Table III).

Links between communities and their orientation

The link between two communities | and J can be
qguanti ed by the average distance between an articlei 2
| and an articlej 2 J:

<w> t=<wy >i21I;j 23=( 13=Ni Ny) ! (3

A link between a community | and a community J ex-
ists if at least one reference is shared between an article
of I and an article of J. To analyze the scienti c con-
tent conveyed by the link, it is important to know if the
shared references are more similar to the references used
by community | or to the references used by community



J. To take into account this similarity, we de ne the ori-
entation of a community-community link in the following
way.

Let n.; be the number of papers of communityl using
referencer. Then,

the number of article-article links inside community
| which use reference isL.; = ng (N 1)=2

the number of article-article links between commu-
nities | and J which use referencer is Ly =
N Neg

We compare the set of references shared by the two
communities | and J to the references used by and J
by computing the cosine similarity measures:
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For example, if cosiiy < €015 , the shared refer-
ences are more similar to the references binding commu-
nity J than to the references binding communityl. We
then direct the link from community J to community
I, as community | \pumps" community J references to
establish the link. See Figure 4 for examples of link ori-
entation.

Visualizing linked communities

To obtain Figures 1 and 2, we use Gephi [48]. The
layout of the graph is obtained thanks to a spring-based
algorithm implemented in it [49]. ForceAtlas is a force
directed layout: it simulates a physical system. Nodes
repulse each other (like magnets) while edges attract the
nodes they connect (like springs). These forces create
a movement that converges to a balanced state, which
helps in the interpretation of the data.

Networking power of references

To understand which references link the di erent sub-
disciplines to form a connected network, we de ne the
\glue" as the set of references shared between sub elds.
To give equal weight to all these links, we normalize each
link to 1, leading to the normalized networking strength
N (r) of referencer as:

1 X
N (r) = 7 fla(r) (6)
16J
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where f; (r) is the fraction of links between an article
of community | and an article of community J in which
referencer is uged and whereZ is a normalization con-
stant such that . N (r) = 1. The normalization ensures
that N (r) represents the proportion of all the links of the
complex systems eld that can be assigned to reference
r.
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