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Abstract

Liver X receptor (LXR) α and LXRβ belong to the nuclear receptor superfamily. For many years they 

have been called orphan receptors, as no natural ligand was identified. In the last decade the LXR 

natural ligands have been shown to be oxysterols, molecules derived from cholesterol. While these  

nuclear receptors have been abundantly studied for their roles in the regulation of lipid metabolism, it 

appears that they also present crucial activities in reproductive organs such as testis and epididymis, as  

well as prostate. Phenotypic analyses of mice lacking LXRs (lxr−/−) pointed out their physiological 

activies in the various cells and organs regulating reproductive functions. This review summarizes the  

impact of LXR-deficiency in male reproduction, highlighting the novel information coming from the 

phenotypic analyses of lxrα−/−, lxrβ−/− and lxrα;β−/− mice. 

Key-words: Testis, epididymis, prostate, LXR, lipids
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1. LXRs AT A GLANCE…

In the early 90’s, the discovery of numerous nuclear receptors, called “orphan” since no  bona fide 

ligand had been identified, opened the way of the reverse endocrinology [1]. In contrast to classical  

endocrinology  where  the  effector  is  discovered  following  the  study  of  its  hormone,  the  nuclear 

receptor is used to screen for ligands, either natural or not, which modulate its transcriptional activity.  

The ligand, in turn, is used as a chemical tool to dissect the role of its nuclear receptor in physiology  

and pathophysiology [2]. Over the past decade, reverse endocrinology has been used to link several  

orphan receptors to ligands and biological functions. Such philosophy has led to the identification of 

liver X receptors (LXRs) α ([3]; NR1H3) and β ([4, 5]; NR1H2) as oxysterol receptors [6, 7], and to 

deciphering  of  their  physiological  functions.  In  turn,  synthesis  of  non-metabolisable  molecules 

modulating  their  transcriptional  activity,  permitted  the  investigations  of  their  putative  interest  as 

pharmacological targets [8]. 

LXRα  and  LXRβ  form  obligatory  heterodimers  with  retinoid  receptors  (RXR,  NR2B1-3),  the 

receptors of 9-cis retinoic acid [3, 9].  LXRβ was found to be expressed in many tissues, whereas 

LXRα is expressed mainly in a restricted subset of tissues known to play an important role in lipid  

metabolism (such as liver, small intestine, kidney, spleen, and adipose tissue; for a review see [10]). In 

absence of ligand, LXRs constitutively bind to RXRs and specific binding sequences localized on  

target gene promoters [3], together with co-repressors, which block transcription by recruitment of  

histone deacetylase. Hence, the presence of the complex [RXR/LXR-corepressor-histone deacetylase]  

on the DNA usually acts as a basal repressor of gene transcription [9]. Oxysterol or 9-cis retinoic acid 

binding to their respective nuclear receptors leads to modifications of the ligand binding pocket within 

the  carboxy-terminus  domain.  This  induces  the  release  of  the  co-repressors  and  reinforces  the 

interactions with the co-activators [11]. This cascade of events allows the recruitment of proteins with  

acetyl-transferase  activity and a permissive  chromatin environment,  which finally enhances  LXR-

target gene expression and thus the physiological response of the cell. 

A  large  number  of  natural  LXR  ligands  have  been  described,  such  as  oxidized  derivatives  of 

cholesterol  (for  a  review  see  [12,  13]).  In  mammals,  the  main  source  of  oxysterols  remains 
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endogenous production [13]. An important enzyme of this pathway is the sterol 14α-demethylase (EC 

1.14.13.70, CYP51), a cytochrome P450 required for sterol biosynthesis in different phyla, and the  

most widely distributed P450 gene family being found in all biological kingdoms [14]. It catalyzes the 

first step following cyclization in sterol biosynthesis such as removal of the 14 alpha-methyl  group 

from lanosterol in the cholesterol biosynthetic pathway (Figure 1). Interestingly, although the human 

14α-demethylase gene is expressed in a variety of tissues, the highest levels are observed in testis, 

ovary, adrenal, prostate, liver, kidney, and lung. In the reproductive tract, many activating oxysterols 

are  present  (for  a  review see  [13]):  including  22(R)-hydroxycholesterol  (within  the  steroidogenic 

pathway),  follicular  fluid  meiosis  activating  sterol  (FF-MAS),  and  its  derivative,  testis  meiosis-

activating sterol (T-MAS).

Due to the lipid nature of the ligands, the physiological roles of LXRs have been extensively detailed 

in  the  homeostasis  of  cholesterol  in  the  gut-liver  axis  [15].  The role  of  the  LXRs on cholesterol 

metabolism was determined using engineered knock-out mice lacking one (lxrα−/− or lxrβ−/−) or both 

(lxrα;β−/−)  isoforms.  Historically,  the  first  analyses  were  performed  on  the  lxrα−/− mice,  which 

developed a hepatic steatosis, due to cholesteryl ester accumulation when fed a cholesterol-rich diet  

[16]. The molecular mechanism leading to this phenotype was the lack of up-regulation of  cyp7a1 

encoding for the rate-limiting enzyme  for the metabolism of cholesterol  into bile acid (Figure 1).  

Lxrβ−/− [17] and  lxrα;β−/− [17, 18] mice were then obtained. The role of the LXRs in cholesterol 

metabolism  was  thus  extended  to  de  novo synthesis  of  cholesterol  [19],  excretion  [16]  and 

detoxification of bile acids [20] or lipids [21], as well as in glucose homeostasis [22], immunity [23], 

skin development and homeostasis [24] and brain functions [25, 26]. LXRs, by regulating expression 

of several genes (including ABCA1 [18, 27], ABCG1 [28], apolipoprotein E (APOE) [29], and PLTP 

[30])  also play a critical  role in reverse cholesterol  transport.  Interestingly,  activation of LXRs in 

intestine and macrophages efficiently prevents atherosclerosis [31, 32]. This review will emphasize the 

physiological roles of LXRs in the male and thus focus on testis, epidydimis and prostate (Figure 2).

The  hypothesis  that  LXRs  could  also  have  physiological  roles  in  steroidogenic  and 

reproductive tissues came from difficulties in maintainance of the mouse colony, as well as  
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from previous studies performed on the adrenals [33, 34]. LXRα-deficient mice presented an 

adrenomegaly  due  to  a  higher  cholesteryl  ester  content  and  a  Cushing-like  syndrome,  as  

shown by the increased levels of blood corticosterone [33]. This work emphasized the role of 

LXRα as  an  important  regulator  of  adrenal  cholesterol  homeostasis  through its  ability  to  

modulate transcription of genes that govern the three major pathways of adrenal cholesterol, 

namely efflux, storage, and conversion into steroid hormones [33]. In vivo studies also showed 

that  LXRα- and LXRβ-deficient  mice  had reduced fertility,  characterized by less frequent 

conception and lower number of pups per litter [35, 36]. Careful examination confirmed that  

both  sexes  were  affected  by  reproductive  abnormalities.  Female  mice  showed  i)  ovarian 

hyperstimulation-like  syndrome  [37],  a  syndrome  characterized  in  women  by  ovarian 

enlargement  associated  with  an  extra-vascular  fluid  concentration,  haemorrhagic  ovarian 

corpora lutea and elevated estradiol serum levels [38, 39], as well as ii) parturition defects due 

to abnormal  uterine contraction [40].  LXR-deficient  males  present  abnormal  features both 

within the testis and epididymis (see following chapter). Besides, experiments performed on 

human cell culture suggested that LXRs could have a protective effect in prostate cancer (see  

chapter 4.1). 

2. LXRα AND LXRβ ARE INVOLVED IN VARIOUS PHYSIOLOGICAL PROCESSES IN 

THE TESTIS

Investigation of LXR-double knock-out mice revealed a decreased fertility at 5 months of age and 

evolving to complete infertility by 9 months [35, 36]. Several testicular functions have been found 

impaired  in  LXRα-  and  LXRβ-deficient  mice:  (1)  steroidogenesis,  (2)  lipid  metabolism  and  (3) 

proliferation/apoptosis balance in germ cells (Figure 2). 

Quantitative PCR analysis of both LXR isoforms showed that LXRα is expressed in Leydig cells, 

while LXRβ was found in Sertoli cells, suggesting a specific role of each isoform. Both LXRs are 

present in the germ cells.
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2.1. LXRα is involved in germ cell apoptosis while LXRβ controls their proliferation

Spermatogenesis is maintained by a delicate balance between proliferation, differentiation, and death 

of germ cells. Alteration of these processes results in spermatogenic impairment and thus infertility.  

Both proliferation and apoptosis were found altered in LXR-deficient mice [36]. 

Analysis of the single LXR-KO mice showed that LXRα is involved in the regulation of apoptosis in 

the testis [36]. TUNEL analyses revealed that  lxrα-/- (as well as  lxrα;β-/-) mice had a significantly 

higher  number  of  apoptotic  cells  compared  with  wild-type  mice,  whereas  a  slightly  but  not  

significantly decreased number of apoptotic cells was observed in lxrβ-/- mice. Consistent with these 

data, mRNA expression analyses showed a higher accumulation of the proapoptotic transcript Bad, as 

well as TNFα in LXRα-lacking mice. Conversely, LXRβ-deficient (as well as  lxrα;β-/-) mice had a 

significantly lower number of proliferating cells [36] and cyclinA1 mRNA accumulation, suggesting 

that LXRβ is involved in germ cell proliferation. Infertility and destructured testis were observed only 

when both isoforms were absent [36]. A schematic view of a testis tubule with the various cells and 

the proteins, whose accumulation was altered, is given in figure 3. 

2.2. LXRα controls androgen synthesis in testis

The hypothesis  that  LXRα could regulate  androgen production came from the decreased level  of  

testicular  testosterone  observed  in  lxrα-/-  and  lxrα;β-/-  mice  [36].  Type  1  3β-hydroxysteroid 

dehydrogenase isomerase (3βhsdI) mRNA accumulation was the most affected of the mRNA encoding 

the steroidogenic proteins (Figure 3), whereas levels of steroidogenic acute regulatory protein (StAR) 

and the cytochromes 11a1 (cyp11a1) and 17 (cyp17) transcripts remained unchanged (refer to figure 1 

for the proteins). Moreover, significantly lower plasma concentrations of luteinizing hormone (LH) 

were found in LXRα-deficient mice [36]. These data were confirmed by lower level of expression of  

the specific β-chain of LH in the pituitary of these animals. Additionally, LXRα-deficient mice were 

able to respond to human chorionic gonadotropin challenge by an increased production of testosterone 
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similar  to  their  wild-type  controls.  Interestingly,  LXR  agonist  T0901317  increased  testosterone  

concentration in wild-type mice (almost 14-fold compared to the vehicle-gavaged mice), as well as  

accumulation of StAR at both mRNA and protein levels. Together, these data indicate that LXRα 

regulates steroid synthesis not only in adrenal cells [33] but also in Leydig cells [36].

2.3. Both LXRα and LXRβ play a crucial role in lipid homeostasis in the testis

Part of the phenotype observed in the LXR-deficient mice was correlated with an alteration of lipid  

homeostasis  [35,  36,  41].  The main enzymes  involved in the fatty acid pathway are indicated on  

Figure 4. mRNA levels of sterol response element binding protein-1c (srebp1c) and fatty acid synthase 

(fas,  Figure 4), encoding the sterol response element binding protein-1c and the fatty acid synthase, 

respectively, were decreased by 40% in lxrα;β-/- mice (Figure 3) compared to the wild-type mice [36]. 

In contrast, the level of scd1, encoding the stearoyl CoA-desaturase 1 (Figure 4), was increased by 2-

fold in LXR-deficient mice (Figure 3), while srb1, encoding the scavenger receptor B1, abca1 (ATP-

binding cassette, sub-family A member 1), and  scd2 (Figure 4) were unchanged [36]. Interestingly, 

oil-red O staining pointed an accumulation of lipids in the Sertoli cells and in spermatids of LXR-

deficient mice. These observations confirmed that fatty acid metabolism is important for reproductive  

functions, as previously reported [42]. It could also be concluded that lipid homeostasis alteration was 

the first event in this long process of testis disorganization in  lxrα;β-/- mice [36], as suggested by 

Mascrez et al. [35]. 

Our data also showed that the lack of both LXRα and LXRβ leads to an increase of RARα and RARβ 

(all-trans retinoic acid receptors, NR1B1 and NR1B3), and retinaldehyde dehydrogenase-2 (RALDH-

2) expressions [36] (Figure 3), resulting in deregulation of retinoic acid signaling. This is seen in the  

expression pattern of known RAR-target genes, such as dosage suppressor of mck1 homolog, meiosis-

specific homologous recombination (dmc1) and  synaptonemal complex protein 3 (scp3), and could 

lead to spermatogenic disorders. Lipid accumulation has previously been observed in rat Sertoli cells 

in hypervitaminosis A [43], suggesting links between retinoid and lipid pathways. How the lack of 

LXRs  act  upon the retinoic  acid  signaling  pathway remains  to  be clarified;  however  it  could  be  
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hypothesized  that  SHP  (small  heterodimeric  partner,  NR0B2),  a  non-canonical  orphan  nuclear 

receptor, could play a major role as shown by Volle et al. [44, 45] by studying SHP-deficient mice. 

Indeed, SHP has been described to be a negative regulator of a number of nuclear receptors such as  

LXRs and RARs [46]. 

Phenotypic  analysis  of  lxr-/- mice  has  thus  shown  that  cooperation  between  LXRα  and  LXRβ 

maintains both testis structure and function. In human, Chen et al. [47] identified and characterized 

two alternative spliced transcript variants of LXRα. LXRα2, which has a shorter N-terminal domain a 

reduced transcriptional activity, was found highly expressed in testis. The physiological role of the  

shorter form remains to be defined in man. Since ablation of LXRs impairs the fertility of aging mice, 

a putative defect in LXR-signaling cannot be excluded in the premature loss of fertility observed in  

some men. 

3. LXR-DEFICIENT MICE PRESENT ABNORMAL FEATURES OF THE EPIDIDYMIS

As described above, lxrα;β−/− male mice become completely infertile when the animals reach the age 

of 9 months. The infertility arises from the association of testicular alterations [36] with an epididymal  

destructuration [48] observed in the two first segments of the organ (for a schematic representation see 

figure 5), which functions in regulation of the cholesterol homeostasis and maturation of spermatozoa. 

The phenotype observed in the lxrα;β−/− mice is characterized by an enlargement of the tubule lumen, 

with the presence of an amorphous substance in the lumen and shrinkage of the epithelial height.  

Interestingly a 15-day supplementation with androgens could not reverse the phenotype.  Oil-red-O 

staining  of  caput epididymidis  cryosections  reveals  lipid  accumulation  in  the  peritubular  and 

interstitial tissues and the epithelium of lxrα;β-/- male mice. The amorphous substance in the tubule 

lumen was not  stained,  thus indicating that  it  was not  composed of neutral  lipids.  Many isolated  

spermatozoa  heads  and  flagella  were  observed  when  sperm  were  retrieved  from  the  cauda 

epididymidis,  revealing  that  the  gametes  were fragile,  probably as  a  result  of  both  testicular  and 

epididymal dysfunctions [48]. The expression levels of genes regulating the fatty acid metabolism also 

seemed to be affected since quantitative real time RT-PCR showed that  srebp-1c,  scd-1 and  scd-2 
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mRNAs were decreased in lxrα;β-/- male caput epididymidis compared to wild-type mice. However, 

the impact of these down regulations was moderate as they do not influence fatty acid compositions of 

separated phospholipid and neutral  lipid fractions  in  lxrα;β-/- animals  [49].  Further  investigations 

revealed that cholesterol trafficking was a LXR-regulated mechanism in mouse caput epididymidis, in 

a segment- and cell-specific manner [50]. In LXRα- and LXRβ-deficient animals, apical cells present 

in the two first caput segments had their cytoplasm filled with cholesteryl-ester droplets, in association 

with a loss of ABCA1 in the apical membrane of the apical cells (figure 5). The level of apoptotic  

apical cells was also increased in lxrα;β-/- compared to wild-type mice. ABCA1 was thus confirmed 

to be an important factor in the male reproductive tract, as male mice invalidated for this gene were  

previously shown to have a 21% fertility decrease over their lifespan. Both expression and location of 

ABCG1 were different from ABCA1 and were not altered in the epididymis of LXR-deficient mice. 

ABCG1 was present at the apical pole of all epithelial cells in the proximal caput epididymal segments  

[50],  suggesting complementary functions for these two cholesterol  transporters in the epididymal 

epithelium.  These locations  raise  the  question how cholesterol  efflux could be involved in  sperm 

maturation.

Even though germ cells already presented abnormal lipid accumulation in the testis [36], alterations of 

cholesterol homeostasis may also be linked to sperm maturation defects along the epididymal duct and 

lead to impaired fertility.  In man,  dyslipidemia,  obesity and/or hypercholesterolemia  are generally 

associated with testicular defects and endocrine perturbations whereas defaults in epididymal sperm 

maturation are rarely investigated in these situations. Recent data showed that fertile three month-old 

lxrα;β-/- male mice became infertile when fed a 1.25% cholesterol containing diet during four weeks. 

An  atherosclerosis-like  process  was  observed  in  the  proximal  epididymis,  provoking  sperm 

morphological  abnormalities,  decreased  motility  and  viability  and  premature  acrosome  reaction 

(Ouvrier et al. submitted). This study brings forward the epididymis as an early target of cholesterol  

toxicity  in  a  dyslipidemic  mouse  model,  and shows that  post-testicular  sperm alterations  may be 

associated with male infertility under dyslipidemic conditions.
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4. PHYSIOLOGICAL ROLE OF LXRα AND LXRβ IN PROSTATE CANCER

Prostate cancer is the most frequently diagnosed cancer and the leading cause of death from cancer in  

men over 50 years old. Among the various genetic and environmental risk factors, epidemiological 

analyses have revealed a positive association between hypercholesterolemia and the development of 

prostate cancer [51, 52]. Indeed, epidemiological studies have shown that Chinese populations, with a 

low risk to develop prostate cancer, had an increased risk after migration to the United States. This  

environmental effect was attributed to the deleterious impact of lipid consumption on this cancer [53].  

Actually, cholesterol accumulation in tumors was first reported in the early 20th century [54] without 

any clear mechanistic explanation [55]. One of the various hypotheses was that rapidly proliferating  

cancer  cells  require  new  components  to  build  de  novo plasma  membrane.  Consistent  with  this 

hypothesis HMG-CoA reductase inhibitors that impede de novo synthesis of cholesterol block prostate 

cancer cell growth in vitro [56]. Statins and their derivatives have thus been suspected to have benefits  

in prostate cancer progression in patients undergoing long-term treatment [57-59]. Eventhough LXRs 

are  key-sensors  of  cholesterol  homeostasis,  their  role  in  prostate  physiology  remains  poorly 

understood.

4.1. Both LXRα and LXRβ modify the apoptosis/proliferation balance in prostate cancer cells.

Fukuchi  et  al.  [60] first  reported the control of  proliferation by LXRs on LNCaP human prostate 

carcinoma cell line, in vitro as well as in vivo. In their experiments, LXR agonist T0901317 decreased 

the percentage of cells in S-phase through an up regulation of p27kip1. The induction of expression of 

the cholesterol membrane transporter ABCA1 by T0901317 led to the assumption that ABCA1 was 

the key-regulator of the cell cycle in response to LXR activation [61]. Freeman and Solomon proposed  

that a critical cholesterol concentration in the membrane was required to allow raft coalescence [62].  

Sequestration of “oncogenic” signaling proteins in a restricted area through raft coalescence could  

enhance their activity by exclusion of negative regulators outside the rafts [63, 64]. Based on that 

hypothesis, we explored whether LXRs could modulate cholesterol concentration in rafts [65]. In vitro 

and in vivo analyses revealed that modulation of LXR activity triggered apoptosis of prostate cancer  
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cells. This effect involves both the increase of cholesterol efflux by ABC proteins and the disruption  

of lipid-rafts signaling activity. Schematically (Figure 6), LXRs first mediate upregulation of ABCG1 

that  stimulates  reverse  cholesterol  transport.  This  results  in  a  reduction  in  plasma  membrane 

cholesterol  steady  state  levels.  Then,  both  disruption  of  lipid-rafts  and  down-regulation  of  raft-

associated  signaling  in  prostate  cancer  cells  are  induced,  together  with  a  decrease  in  the 

phosphorylated fraction of raft-associated AKT. Cholesterol replenishment prevents entry of the cells 

into apoptosis in the presence of T0901317 demonstrating that cholesterol homeostasis regulation by 

LXRs  is  a  key-process  to  control  cell  death.  Consistent  with  this  mechanism,  chronic  T0901317 

treatment down regulates AKT and stimulates apoptosis of  LNCaP derived tumors  in xenografted  

mice [65]. These results pointed out that LXRα and LXRβ are important modulators of prostate cancer 

cell  survival.  Altogether,  these  findings  reinforce  the  idea  to  consider  LXR agonists  as  potential  

pharmacological agents in cancer prevention and anti-cancer therapy (for a review see [66]). Various 

studies indeed enlighten the anti-proliferative and pro-apoptotic effects of LXR-ligand on ovarian [67] 

and breast [68, 69] cancer models. 

4.2. LXRα and benign prostatic hyperplasia

Benign prostatic hyperplasia concerns 50% of men over the age of 50 years [70]. Symptoms include 

urinary  frequency,  urgency incontinence  (compelling  need  to  void  that  cannot  be  deferred),  and 

voiding at night (nocturia) [71]. Kim et al. [72] showed that LXRα-/- mice presented benign prostatic 

hyperplasia-like features on ventral prostate such as proliferative epithelial cells, multiple layers of 

dense stroma around the prostatic ducts and dilated prostatic ducts. These data suggest that LXRα 

agonists could also be useful in the treatment of this potentially harmful pathology since some patients 

may eventually progress to renal failure.

5. ARE LXR PROMISING PHARMACOLOGICAL TARGETS IN HUMAN DISEASES?
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The discovery of new regulated transcription factors has always opened several fields of investigation. 

From an academic point of view, it is elegant to identify novel  bona fide genes and associate the 

discovered factor to new physiological functions. The use of transgenic animals (fly, mouse, worm…) 

usually helps in linking abnormal features of the transcription factor (mutation or abnormal signaling 

pathway) to human diseases. At last, once this milestone is reached, chemists can synthesize thousands 

of new ligands in order to modulate the protein activity. However, the main concern for pharmacology 

researchers is to solve the pathological problem without opening Pandora’s box to optimize the ligands 

of therapeutical interest without inducing major side effects (for a review see [66]). 

Studies  on  mice  pointed  out  that  LXR-deficiency  could  be  associated  with  several  phenotypes 

resembling  putative  diseases  found  in  human  such  as  metabolic  disorders,  reproductive  failures, 

central  nervous system alterations,  or  various  types  of cancer [66].  Clinical  use of  LXR agonists  

should thus  theoretically  be useful  in  reducing  cholesterol  levels,  neural  degeneration,  parturition 

defects, cancer progression… Up to now the major side effect of LXRs is a hypertriglyceridemia due  

to their activity in the liver on the fatty acid synthase. In analogy with what was done for the estrogen 

receptors, it is likely that SLiMs (Selective Liver X Receptor Modulators) need to be developed [66].  

They should  have  tremendous  therapeutical  possibilities,  after  having  successfully  undergone  the 

extensive approval process. In a near future…
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Figure legends

Figure 1. Schematic representation of cholesterol synthesis and metabolism into androgens or 

bile acids. 3-hydroxy-3-methyl-glutaryl-CoA (HMGCoA) reductase is the rate-controlling enzyme of 

the mevalonate pathway that produces cholesterol and other isoprenoids. This synthesis could virtually 

occur in all  cells.  Androgens synthesis mainly takes place in Leydig cells,  bile acids synthesis in  

hepatocytes. Structures of the main sterols are indicated: lanosterol, cholesterol, T-MAS, 22(R)-OH-

cholesterol  and 7α-OH-cholesterol.  For more  details  about  the indicated enzymes  see text.  StAR, 

steroidogenic  acute  regulatory  protein;  CYP51,  14α-demethylase;  CYP7A1,  cytochrome  P450 

cholesterol 7α-hydroxylase;  CYP11A1, cytochrome P450 side chain cleavage; CYP17,  cytochrome 

P450 17α-hydroxylase/17,20-lyase; 3βHSD, 3β-hydroxysteroid dehydrogenase type 2.

Figure 2. Physiological roles of LXRs in male genital tract.  Three main organs are targeted by 

LXR-disruption in male  mice:  testis,  epididymis,  and prostate.  Schematically,  LXRs regulate lipid 

homeostasis in testis and epididymis, as well as apoptosis-proliferation equilibrium of spermatozoa 

(spz), testicular germ cells and prostate epithelium. For more details see text.

Figure 3. Proteins which accumulation is altered by LXR-deficiency in the testis tubule.

Schematically,  LXRs  regulate  lipid  homeostasis  in  testis,  as  well  as  apoptosis-proliferation 

equilibrium of spermatozoa (spz) and testicular germ cells. For clarity,  fibroblasts and myoid cells  

below  the  basal  lamina  have  been  omitted.  Likewise,  cytoplasmic  bridges  between  secondary 

spermatocytes and between early spermatids are not shown. Decreased accumulation is indicated in 

red; increased accumulation in indicated in green; ABC, ATP-binding cassette protein; Bad, Bcl-2  

associated  death  promoter  protein;  StAR,  steroidogenic  acute  regulatory  protein;  RAR,  all-trans 

retinoic acid receptor; RALDH, retinaldehyde dehydrogenase; SCD1, stearoyl Coenzyme A desaturase 

1; SREBP, sterol regulatory element binding protein; TNF, tumor necrosis factor. Adapted from [73].

http://en.wikipedia.org/wiki/Cholesterol
http://en.wikipedia.org/wiki/Mevalonate
http://en.wikipedia.org/wiki/Enzyme


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
22

Figure 4. Schematic representation of fatty acid synthesis in mammals.  Acetyl-CoA carboxylase 

(ACC) is the rate-limiting (committed) step in fatty acid synthesis. There are two major isoforms of  

ACC  in  mammalian  tissues;  FAS,  fatty  acid  synthase

; SCD1/2, Stearoyl CoA desaturase 1 or 2; ELOVL, elongation of very long chain. 

Figure 5. Schematic representation of the role of LXRs in the caput epididymidis. Epididymis is 

organized in three parts (caput, corpus and cauda). The main cells are indicated. The major phenotype 

of the LXR-deficient mice is observed in the segments I and II of the caput with the lack of ABCA1 

(indicated  in  red)  in  the  apical  membrane  of  the  apical  cells.  Latin  numerals  indicate  the  caput 

segments. 

Figure 6. Role of LXRs in apoptosis of prostate human cancer cells.

A). When the level of cholesterol is high, it accumulates in membranes within the lipid rafts, which 

allows  the  growth  factors  to  access  to  their  receptors.  Binding  of  these  peptides  increases  cell  

proliferation and inhibits cell death by apoptosis. B) Activation of LXRs by its ligand induces a higher  

production of ATP-binding cassettes (ABC) involved in cholesterol  efflux,  which destructures the 

lipid rafts.  Growth factors are less efficient  to maintain cell  proliferation,  which in turn increases  

apoptosis. Broken arrow indicates an inhibition.
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