
HAL Id: hal-00706519
https://hal.science/hal-00706519

Preprint submitted on 11 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Batch self-organizing maps based on city-block distances
for interval variables

Francisco de A. T. de Carvalho, Patrice Bertrand, Filipe M. de Melo

To cite this version:
Francisco de A. T. de Carvalho, Patrice Bertrand, Filipe M. de Melo. Batch self-organizing maps
based on city-block distances for interval variables. 2012. �hal-00706519�

https://hal.science/hal-00706519
https://hal.archives-ouvertes.fr

Batch self-organizing maps based on city-block distances for

interval variables

Francisco de A. T. de Carvalho1, Patrice Bertrand2, and Filipe M. de Melo3

1Universidade Federal de Pernambuco, Brazil
2Ceremade, Université Paris-Dauphine, France
3Universidade Federal de Pernambuco, Brazil

June 10, 2012

Abstract

The Kohonen Self Organizing Map (SOM) is an unsupervised neural network method
with a competitive learning strategy which has both clustering and visualization properties.
Interval-valued data arise in practical situations such as recording monthly interval temper-
atures at meteorological stations, daily interval stock prices, etc. Batch SOM algorithms
based on adaptive and non-adaptive city-block distances, suitable for objects described by
interval-valued variables, that, for a fixed epoch, optimizes a cost function, are presented.
The performance, robustness and usefulness of these SOM algorithms are illustrated with
real interval-valued data sets.

Keywords: Self-organizing maps, Interval-valued data, City-block distances, Adaptive
distances, Symbolic data analysis.

1 Introduction

Clustering is a popular task in knowledge discovery, and it is applied in various fields including
data mining, pattern recognition, computer vision, etc. Clustering methods aim at organizing a
set of items into clusters such that items within a given cluster have a high degree of similarity,
while items belonging to different clusters have a high degree of dissimilarity. The most popular
clustering techniques are hierarchical and partitional methods [14, 18]. K-means algorithm and
fuzzy c-means are the most famous partitional approaches.

The Kohonen Self Organizing Map (SOM) [17] is an unsupervised neural network method
with a competitive learning strategy which has both clustering and visualization properties.
Different from K-means, SOM uses the neighborhood interaction set to approximate lateral
neural interaction and discover the topological structure hidden in the data, and in addition to
the best matching referent vector (winner), its neighbors on the map are updated, resulting in
regions where neurons in the same neighborhood are very similar. It can be considered as an
algorithm that maps a high dimensional data space to lattice space which usually has a lower

1

dimension (typically, dimension two) and is called a map. This projection enables a partition
of the inputs into ”similar” clusters while preserving their topology. The map training can be
incremental or batch.

This paper gives batch SOM algorithms to manage individuals described by interval-valued
variables. Interval-valued variables are needed, for example, when an object represents a group
of individuals and the variables used to describe it need to assume a value which express the
variability inherent to the description of a group.

Interval-valued data arise in practical situations such as recording monthly interval tempera-
tures at meteorological stations, daily interval stock prices, etc. Another source of interval-valued
data is the aggregation of huge databases into a reduced number of groups, the properties of
which are described by interval-valued variables. Therefore, tools for interval-valued data anal-
ysis [3, 8] are very much required.

In [2, 9] it is presented incremental SOM algorithms that are able to manage interval-valued
data. More recently, batch SOM based on non-adaptive [6, 11] and adaptive Euclidean distances
[6] as well as non-adaptive city-block distances [12], have been presented.

This paper aims at proposing batch SOM algorithms based on adaptive and non-adaptive
city-block distances, suitable for objects described by interval-valued variables, that, for a fixed
epoch, optimizes a cost function. The performance, robustness and usefulness of these SOM
algorithms are illustrated with real interval-valued data sets, in comparison with batch SOM
algorithms based on adaptive and non-adaptive Euclidean distances.

2 Batch self-organizing maps based on city-block distances

This section presents batch SOM algorithms based on adaptive (ABSOM-L1) and non-adaptive
(BSOM-L1) city-block distances for interval-valued data. They are based on the batch SOM
algorithm based on the Euclidean distances for real-valued data [1].

Let E = {e1, . . . , en} be a set of n objects indexed by i and described by p interval-valued
variables indexed by j. An interval-valued variable X [3] is a correspondence defined from
E in ℑ such that for each ei ∈ Ω, X(ei) = [a, b] ∈ ℑ, where ℑ is the set of closed intervals
defined from ℜ. Each object ei is represented as a vector of intervals xi = (xi1, . . . , xip), where
xij = [aij , bij] ∈ ℑ = {[a, b] : a, b ∈ ℜ, a ≤ b}.

A basic assumption of the presented batch SOM algorithms is that a prototype wr of cluster
Pr (r = 1. . . . ,m) is also represented as a vector of intervals wr = (wr1, . . . , wrp), where wrj =
[αrj , βrj] ∈ ℑ (j = 1, . . . , p).

The IBSOM-L1 algorithm is an iterative two-step algorithm (representation and affectation
steps) in which the whole data set E is presented to the map before any adjustments are made.
The IBSOM-L1 algorithm minimizes the following cost function:

J =

n
∑

i=1

m
∑

r=1

KT (δ(fT (xi), r)) d(xi,wr) (1)

where f is the allocation function and fT (xi) stands for the neuron of the map that is associated
to the object xi, and δ(fT (xi), r)) is the distance on the map between a neuron r and the neuron
that is allocated to the object xi. Moreover, KT , that is parameterized by T (where T stands

2

for temperature), is the neighborhood kernel function that defines influence region around each
neuron r.

The generalized dissimilarity function between an input data xi and a prototype wfT (xi) is
given by:

dT (xi,wfT (xi)) =

m
∑

r=1

KT (δ(fT (xi), r)) d(xi,wr) (2)

where

d(xi,wr) =

p
∑

j=1

[|aij − αrj |+ |bij − βrj |] (3)

is a suitable city-block distance between vectors of intervals. This generalized distance is a
weighted sum of the city-block distances between xi and all the reference vectors of the neigh-
borhood of the neuron fT (xi). It takes into account all the neurons of the map.

The IABSOM-L1 algorithm is an iterative three-step algorithm (representation, weighting
and affectation steps) in which the whole data set E is also presented to the map before any
adjustments are made. The cost function of the IABSOM-L1 algorithm is given by:

J =
n

∑

i=1

m
∑

r=1

KT (δ(fT (xi), r)) dλr
(xi,wr) (4)

The generalized dissimilarity function between an input data xi and a prototype wfT (xi) is
given by:

dT

Λ(xi,wfT (xi)) =
m

∑

r=1

KT (δ(fT (xi), r)) dλr
(xi,wr) (5)

where

dλr
(xi,wr) =

p
∑

j=1

λrj [|aij − αrj |+ |bij − βrj |] (6)

is an adaptive city-block distance parameterized by the vector of weights on the variables λr =
(λr1, . . . , λrp) and Λ= (λ1, . . . , λm).

Note that the weight vectors λr (r = 1, . . . ,m) change at each iteration, i.e., they are not
determined absolutely, and are different from one neuron to another.

When T is kept fixed, for IBSOM-L1 algorithm, the minimization of J is performed iteratively
in two steps (representation and allocation), whereas for IABSOM-L1, the minimization of J is
performed iteratively in three steps (representation, weighting and affectation).

During the representation step of IBSOM-L1, the allocation function is kept fixed. The
cost function J is minimized with respect to the prototypes. During the representation step of
IABSOM-L1, the allocation function and the vectors of weights are kept fixed. The cost function
J is also minimized with respect to the prototypes. For both algorithms, the components
wrj (j = 1, . . . , p) of the prototype wr (r = 1, . . . ,m) are such that they minimize

3

n
∑

i=1

KT (δ(fT (xi), r))[|aij − αrj |+ |bij − βrj |]

This problem brings to the minimization of
∑n

i=1 |yi − azi|, where yi = KT (δ(fT (xi), r)) aij

(or, equivalently, yi = KT (δ(fT (xi), r)) bij), zi = KT (δ(fT (xi), r)) and a = αrj (or, equivalently,
a = βrj). The solution of this problem is known and to solve it the following algorithm can be
used [15, 16]:

1. Determining ui = yi/zi (i = 1, . . . , n);

2. Rearrange the zi’s according to ascending order of ui’s and get z̃1, . . . , z̃n;

3. Minimize
∑r

l=1 |z̃l| −
∑n

l=r+1 |z̃l| regarding r;

4. If the minimum is negative, take a = ur. If the minimum is positive, take a = ur+1.
Finally, if the minimum is equal to zero, take a = (ur + ur+1)/2.

Theorem 2.1. The boundaries of the intervals wrj = [αrj , βrj] (r = 1, . . . ,K; j = 1, . . . , p) are
such that αrj ≤ βrj.

Proof. The proof is given in appendix. �

During the weighting step of IABSOM-L1, the reference vectors (prototypes) and the allo-
cation function are kept fixed. The cost function J is minimized with respect to the vectors of
weights. The computation of these vectors of weights in this algorithm is also inspired from the
approach used to compute a weight for each variable in each cluster in the dynamic clustering
algorithm based on adaptive distances [7].

The vectors of weights λr = (λr1, . . . , λrp) (r = 1, . . . ,m), under λrj > 0 and
∏p

j=1 λrj = 1,
have their weights λrj (j = 1, . . . , p) calculated according to the following expression:

λrj =
{∏p

h=1

∑n
i=1 KT (δ(fT (xi), h))[|aij − αrh|+ |bij − βrh|]}

1

p

∑n
i=1 KT (δ(fT (xi), r))[|aij − αrj |+ |bij − βrj |]

(7)

During the affectation step of IBSOM-L1, the reference vectors (prototypes) are kept fixed.
The cost function J is minimized with respect to the allocation function and each individual xi

is assigned to its nearest neuron:

c = fT (xi) = arg min
1≤r≤m

dT (xi,wr) (8)

During the affectation step of IABSOM-L1, the reference vectors (prototypes) and the vectors
of weights are kept fixed. The cost function J is minimized with respect to the allocation function
and each individual xi is assigned to its nearest neuron:

c = fT (xi) = arg min
1≤r≤m

dT

Λ(xi,wr) (9)

The batch SOM algorithm based on adative and non-adaptive city-block distances for interval-
valued can be summarized as follows.

4

Algorithm 2.1.

Batch self-organizing algorithm for interval-valued data based on city-block distances.

Step 1 Initialization
Fix the number m of neurons (clusters); Fix δ; Fix the kernel fuction KT ; Fix the number
of iterations Niter; Fix Tmin, Tmax; Set T ← Tmax; Set t← 0;

Randomly select m distinct prototypes w
(0)
c ∈ E (c = 1, . . . ,m); Set the map L(m,W0),

where W
0 = (w

(0)
1 , . . . ,w

(0)
m); For IABSOM-L1 algorithm, set λrj = 1 (r = 1, . . . ,m; j =

1, . . . , p)
For IBSOM-L1 algorithm, assign each object xi to the closest neuron (cluster) according
to equation (8); For IABSOM-L1 algorithm, assign each object xi to the closest neuron
(cluster) according to equation (9);

Step 2 Representation

Set T = Tmax(Tmin

Tmax
)

t
Niter−1 ;

Compute wrj (j = 1, . . . , p), components of the prototypes wr = (wr1, . . . , wrp) (r = 1, . . . ,m),
according to the algorithm given by [15, 16].

Step 3 Weighting
Skip this step for IBSOM-L1 algorithm;
For IABSOM-L1 algorithm, compute the components λrj of the vectors of weights λr (r =
1, . . . ,m; j = 1, . . . , p) according to equation (7);

Step 4 Affectation
For IBSOM-L1 algorithm, assign each object xi to the closest neuron (cluster) according
to equation (8); For IABSOM-L1, algorithm, assign each object xi to the closest neuron
(cluster) according to equation (9);

Step 5 Stopping criterion
If T = Tmin then STOP; otherwise set t = t + 1 and go to Step 2 (Representation).

3 Experimental results

To evaluate the performance of these SOM algorithms, two applications with a car models and a
freshwater fish species interval-valued data set are considered. Our aim is to achieve a comparison
of the batch SOM algorithms based on adaptive and non-adaptive city-block distances with the
batch SOM algorithms based on adaptive (hereafter named IABSOM-L2) and non-adaptive
(hereafter named IBSOM-L2) Euclidean distances [6, 11] between vectors of intervals. Then,
the usefulness of these batch SOM algorithms will be illustrated with an application concerning
a city temperatures interval-valued data set.

As pointed out by [1] the performance of these algorithms strongly depend on the parameters
of the minimization algorithms. The most important important are Tmax, Tmin, Niter and the
cooled schedule. Table 1 gives the parameters for the batch SOM algorithms. They were fixed
after several tests with these algorithms.

5

Parameters
Interval-valued data sets NIter Number of neurons m Tmin Tmax

Car models 30 9 (3 × 3 grid) 0.3 6.5
Freshwater fish species 30 6 (2 × 3 grid) 0.3 6.5

City temperatures 30 9 (3 × 3 grid) 0.3 6.5

Table 1: Parameters List

Moreover, in this paper δ is the Euclidean distance and the neighborhood kernel function is

KT (δ(c, r) = exp

(

−(δ(c, r))2

2T 2

)

Intitially, each interval-valued variable on these data sets were normalized by means of a
suitable dispersion measure [5]. Let Dj = {x1j , . . . , xnj} be the set of observed intervals xij =
[aij , bij] on variable j (j = 1, . . . , p). The dispersion of the jth variable is defined as s2

j =
∑n

i=1 dj(xij , gj), where gj = [αj , βj] is the “central” interval computed from Dj and dj(xij , gj) =
|aij − αj | + |bij − βj | (if the comparison between intervals uses the city-block distance), or
dj(xij , gj) = (aij − αj)

2 + (bij − βj)
2 (if the comparison between intervals uses the Euclidean

distance).
The central interval gj = (αj , βj)

T has its bounds computed from
∑n

i=1 dj(xij , gj) → Min.
They are αj = 1

n
aij and βj = 1

n
bij . Each observed interval xij = [aij , bij] (i = 1, . . . , n) is

normalized as x̃ij = [ãij , b̃ij], where ãij =
aij√
(s2

j)
and b̃ij =

bij√
(s2

j)
(if the comparison between

intervals uses the Euclidean distance) or ãij =
aij

s2

j

and b̃ij =
bij

s2

j

(if the comparison between

intervals uses the city-block distance). One can easily show that s̃2
j = 1, where α̃j = 1

n
ãij and

β̃j = 1
n
b̃ij . Now, all the normalized interval-valued variables have the same dispersion s̃2

j = 1.
In order to compare the results given by the batch SOM algorithms applied on the interval-

valued data sets considered in this paper, an external index the corrected Rand index (CR)
[13] and the overall error rate of classification (OERC) [4].

3.1 Performance of the batch SOM algorithms

The car model data set concerns 33 car models described by 8 interval-valued variables. These
car models are grouped in four a priori classes of unequal sizes: Utilitarian (size 10), Berlina
(size 8), Sporting (size 7) and Luxury (size 8). The interval-valued variables are: Price, Engine
Capacity, Top Speed, Acceleration, Step, Length, Width and Height.

The freshwater fish species concerns 12 species of freshwater fish, each specie being described
by 13 symbolic interval variables. These species are grouped into four a priori classes of unequal
sizes acoording to diet: two classes (Carnivorous and Detritivorous) of size 4 and two clusters
of size 2 (Omnivorous and Herbivorous). The symbolic interval variables are: Length, Weight,
Muscle, Intestine, Stomach, Gills, Liver, Kidneys, Liver/Muscle, Kidneys/Muscle, Gills/Muscle,
Intestine/Muscle and Stomach/Muscle.

6

Each batch SOM algorithm was run 50 times on these datasets and the best result, according
to the adequacy criterion, was selected. The cluster partitions obtained with these clustering
methods were compared with the 4-class partition known a priori. Table 2 shows the results.

Car models data set Freshwater fish species data set
Comparison indexes Comparison indexes

Clustering algorithms CR OERC Clustering algorithms CR OERC

IBSOM-L1 0.329 0.242 IBSOM-L1 0.496 0.083
IABSOM-L1 0.477 0.152 IABSOM-L1 0.423 0.167
IBSOM-L2 0.444 0.212 IBSOM-L2 -0.013 0.417

IABSOM-L2 0.570 0.152 IABSOM-L2 0.209 0.333

Table 2: Comparison between the batch SOM algorithms on the car models and freshwater fish
species interval-valued data sets

For the car models data set, the batch SOM algorithms with adaptive distances outperformed
the batch SOM with non-adaptive distances. Moreover, the batch SOM algorithms with Eu-
clidean distances outperformed the batch SOM algorithms with city-block distances. Finally, the
batch SOM algorithms with adaptive Euclidean distances had the best performance whereas the
worst performance was presented by the batch SOM algorithm based on non-adaptive city-block
distances.

For the freshwater fish species data set, the batch SOM algorithms with city-block distances
outperformed the batch SOM with Euclidean distances. Moreover, the batch SOM algorithms
with non-adaptive city-block distances had the best performance and the batch SOM algorithms
with non-adaptive Euclidean distances had the worst performance.

3.2 Robustness of the batch SOM algorithms

Theoretical studies indicate that city-block based models are more robust than those based on
Euclidean distances. In order to evaluate the robustness of these batch SOM algorithms, we
introduces 4 outliers on the car models and 1 outlier on the freshwater fish species data sets
in the following way: the boundaries of the interval-valued variables describing, repectively, 1
individual of the the freshwater fish species and 4 individuals of the car models (one individual
by each a priori class) were multiplied by 10 (configuration 1), by 100 (configuration 2) and by
1000 (configuration 3).

The batch SOM algorithms have been applied on these modified data sets. The cluster
partitions obtained with these clustering methods were compared with the 3-class partition
known a priori. Again, the comparison indexes used were the CR and ERC. These indexes
were also calculated for the best result. Table 3 shows the results.

It can be observed that all the batch SOM algorithms were affected by the introduction of
outiliers. However, those based on Euclidean distance were more affected than those based on
city-block distances.

7

Car models interval-valued data set Freshwater fish species interval-valued data set
Clustering algorithms Clustering algorithms

Conf. IBSOM-L1 IABSOM-L1 Conf. IBSOM-L1 IABSOM-L1
CR OERC CR OERC CR OERC CR OERC

1 0.297 0.394 0.423 0.364 1 0.304 0.167 0.163 0.333
2 0.320 0.424 -0.007 0.667 2 0.160 0.250 0.119 0.500
3 0.320 0.424 -0.007 0.667 3 0.186 0.333 0.390 0.167

Clustering algorithms Clustering algorithms
Conf. IBSOM-L2 IABSOM-L2 Conf. IBSOM-L2 IABSOM-L2

CR OERC CR OERC CR OERC CR OERC

1 -0.013 0.667 -0.009 0.667 1 0.166 0.333 0.233 0.333
2 -0.013 0.697 -0.009 0.667 2 0.007 0.583 0.007 0.583
3 -0.013 0.697 -0.009 0.667 3 0.007 0.583 0.007 0.583

Table 3: Comparison between the batch SOM algorithms

3.3 Application: city temperatures interval-valued data set

City temperature interval-valued data set [10] gives the minimum and the maximum monthly
temperatures of cities in degrees centigrade. This data set consists of a set of 37 cities described
by 12 interval-valued variables. Table 4 shows part of this interval-valued data set. In this
application, the 12 interval-valued variables have been considered for clustering purposes.

January February . . . November December

Amsterdam [−4, 4] [−5, 3] . . . [1, 10] [-1, 4]

.

Mauritius [22, 28] [22, 29] . . . [19, 27] [21, 28]

.

Zurich [−11, 9] [−8, 15] . . . [0, 19] [−11, 8]

Table 4: City temperature interval-valued data set with 12 interval variables

The ABSOM-L1 batch SOM algorithm was run 50 times on the city temperature interval-
valued data set and the best result, according to the adequacy criterion, was selected. Figure 1
gives the self-organizing map of this interval-valued data set.

Table 5 gives the description of the cluster prototypes according to the minimum and the
maximum monthly temperatures.

In Figure 1, the cities in bold are the most similar to the prototype of the cluster that they
belong. It can be observed that the grid is coherent with the latitude location and temperature
ranges of the cities. Latitude location grows from left to right and from bottom to top on the
grid. Temperature ranges grows from right to left and from top to bottom on the grid.

Table 6 gives the relevance weights of the interval-valued variabels into the clusters.
It can be observed, for example, that in cluster 2 (Frankfurt and Zurich), the variable

8

Athens, Lisbon Frankfurt, Zurich Amsterdam, Copenhagen
Rome, San Francisco (47 : 22o N–50 : 06o N) Geneva, Moscow

Tehran, Tokyo Munich, Stockholm
(35 : 41o N–41 : 54o N) Toronto, Vienna

(43 : 42o N–59 : 19o N)

Bahrain, Cairo Madrid, Seoul London, New York
Dubai, Hong Kong (37 : 33o N–40 : 23o N) Paris

NewDelhi (40 : 39o N–51 : 30o N)
(22 : 16o N–30 : 29o N)

Bombay, Calcutta, Mauritius Mexico City, Nairobi

Colombo, Kuala Lumpur (20 : 10o S) Sydney
Madras, Manila (33 : 51o S–19 : 26o N)

Singapore
(01 : 17o N–22 : 56o N)

Figure 1: Final grid of the city temperature interval-valued data set

Var. Cluster prototypes

1 2 3 4 5 6 7 8 9

JAN 6.2:11.6 -9.8:8.9 -3.5:0.8 12.5:19.7 0.8:8.9 0.8:6.2 20.6:29.6 21.5:27.8 11.6:25.1

FEB 5.7:12.5 -7.7:15.4 -4.8:2.8 11.5:22.1 0.9:11.5 0.9:6.7 22.1:29.8 22.1:28.9 15.4:26.0

MAR 7.5:16.1 -4.3:17.2 -1.0:7.5 15.0:24.7 3.2:16.1 2.1:9.6 22.5:31.1 21.5:29.0 17.2:24.7

APR 11.2:17.5 0:21.3 2.5:12.5 18.8:28.8 6.2:18.8 5.0:15.0 23.8:32.6 21.3:27.5 16.3:23.8

MAY 13.3:23.6 2.9:26.6 7.3:17.7 22.1:32.5 11.8:23.6 7.3:19.2 25.1:32.5 19.2:25.1 13.3:22.1

JUN 17.9:27.7 6.54:29.4 11.4:21.2 24.5:34.3 16.3:29.4 11.4:21.2 24.5:32.7 17.9:24.5 11.4:21.2

JUL 22.6:31.3 10.4:31.3 13.9:24.4 26.1:36.6 17.4:31.3 13.9:24.4 24.4:29.6 17.4:22.6 10.4:20.9

AUG 22.3:30.9 8.5:25.7 13.7:22.3 25.7:34.3 15.4:29.1 13.7:20.6 25.7:29.1 17.1:22.3 10.3:20.6

SEP 18.8:26.6 4.7:23.5 10.9:18.8 25.0:34.4 12.5:28.2 10.9:20.3 25.0:29.7 17.2:23.5 10.9:23.5

OCT 14.5:21.2 2.6:22.5 6.6:13.2 21.2:30.4 7.9:23.8 7.9:15.9 23.8:30.4 18.5:25.1 13.2:23.8

NOV 8.7:17.5 0:14.2 1.0:6.5 17.5:26.2 6.5:18.5 5.4:9.8 22.9:29.5 18.5:27.3 14.2:25.1

DEC 6.4:13.7 -8.2:8.2 -1.8:2.7 13.7:21.0 0.9:9.1 0.9:6.4 22.0:30.2 21.0:28.4 12.8:22.9

Table 5: Cluster prototypes: minimum and the maximum monthly temperatures

“temperature of June” has the greatest relevance weight because in these cities the temperature
in this month ranges very similarly, respectively, [3 : 27] and [6 : 30]. On contrary, the variable
“temperature of November” has the smallest relevance weight in this cluster because in these
cities the temperature in this month ranges more diferently, respectively, [−3 : 14] and [0 : 19].

4 Conclusion

The main contributions of this paper are the introduction of batch SOM algorithms based on
adaptive and non-adaptive city-block distances, suitable for objects described by interval-valued
variables, that, for a fixed epoch, optimizes a cost function. These SOM algorithms combine

9

Var. Clusters
1 2 3 4 5 6 7 8 9

JAN 0.62 1.38 0.48 0.76 1.01 0.75 0.50 0.66 0.40

FEB 0.92 1.39 0.54 0.75 0.60 0.70 0.59 0.79 0.67

MAR 1.53 0.65 0.51 0.77 0.42 1.23 0.91 0.92 2.01

APR 2.06 0.77 0.87 0.86 1.43 1.83 1.21 1.05 1.52

MAY 1.24 2.25 1.22 0.95 1.11 1.03 0.81 1.10 1.13

JUN 0.87 2.58 1.75 1.23 0.91 0.80 1.24 1.16 0.71

JUL 0.64 1.35 1.86 1.51 1.33 0.74 1.39 1.19 0.83

AUG 0.62 0.73 2.00 1.36 2.02 0.84 1.37 1.21 0.95

SEP 0.96 0.96 1.61 1.51 1.44 0.99 1.42 1.23 1.20

OCT 1.76 1.05 1.42 1.14 0.58 0.91 2.00 1.13 2.16

NOV 1.45 0.37 0.74 0.86 0.53 1.97 0.99 1.05 1.50

DEC 0.49 0.46 0.62 0.71 2.19 0.89 0.54 0.71 0.47

Table 6: City temperature data set: relevance weights of the interval-valued variabels into the
clusters

the best visualization and clustering characteristics provided by SOM neural networks with the
flexibility offered by adaptive distances in the recognition of classes with different shapes and
sizes and the robustness of the city-block distances.

The performance of these batch SOM algorithms based on adaptive and non-adaptive city-
block distances were evaluated in comparison with batch SOM algorithms based on adaptive and
non-adaptive Euclidean distances on car models and freshwater fish species interval-valued data
sets. The accuracy of the results furnished by these algorithms was assessed by the corrected
Rand index (CR) and the overall error rate of classification (OECR).

Overall, the batch SOM algorithms with adaptive (city-block and Euclidean) distances out-
performed the batch SOM algorithms with non-adaptive distances on the original car models
and freshwater fish species data sets. Moreover, all the batch SOM algorithms were affected by
the introduction of outiliers. However, those based on Euclidean distance were more affected
than those based on city-block distances.

Finally, the application of the batch SOM algorithm based on city-block distances on the
city temperatures interval-valued data sets illustrated the usefulness of the presented SOM
algorithms.

Acknowledgement

The authors would like to thanks CNPq and FACEPE (Brazilian agencies) for their finacial
support.

10

References

[1] Badran, F., Yacoub, M. and Thiria, S. (2005) Self-organizing maps and unsupervised clas-
sification. in Neural Networks: methodology and applications, G. Dreyfus (Ed.), Springer,
379–442.

[2] Bock, H.-H. (2002) Clustering algorithms and Kohonen maps for symbolic data. Journal of
the Japanese Society of Computational Statistics, 15, 1–13.

[3] Bock, H-.H. and Diday, E. (2000) Analysis of Symbolic Data, Exploratory methods for
extracting statistical information from complex data. Springer.

[4] Breiman, L., Friedman, J., Stone, C.J. and Olshen, R.A. (1984) Classification and Regres-
sion Trees, Chapman and Hall/CRC, Boca Raton, 1984

[5] Chavent, M. and Saracco, J. (2008) On central tendency and dispersion measures for inter-
vals and hypercubes. Communications in Statistics Theory and Methods, 37, 1471–1482.

[6] De Carvalho, F.A.T and Pacifico, L.D.S. (2011) Une version batch de l’algorithme SOM pour
des données de type intervalle. Actes des XVIIIème Rencontres de la Société Francophone
de Classification (SFC- 2011), 99–102.

[7] Diday, E. et Govaert, G. (1977). Classification Automatique avec Distances Adaptatives.
R.A.I.R.O. Informatique Computer Science, 11, 329–349.

[8] Diday, E. and Noirhomme-Fraiture, M. (2008) Symbolic Data Analysis and the Sodas Soft-
ware. Wiley.

[9] D’Urso, P. and De giovanni, L. (2011) Midpoint radius self-organizing maps for interval-
valued data with telecommunications application. Applied Soft Computing, 11, 3877–3886

[10] Guru, D.S., Kiranagi, B.B. and Nagabhushan, P. (2004) Multivalued type proximity mea-
sure and concept of mutual similarity value useful for clustering symbolic patterns. Pattern
Recognition Letters, 25, 1203–1213

[11] Hajjar, C. and Hamdan, H. (2011)Self-organizing map based on L2 distance for interval-
valued data. Proceedings of the 6th IEEE International Symposium on Applied Computa-
tional Intelligence and Informatics (SACI-2011), 317–322.

[12] Hajjar, C. and Hamdan, H. (2011)Self-organizing map based on city-block distance for
interval-valued data. in Complex sytems desing & management. Proceedings of the sec-
ond international conference oncomplex systems & design (CSDM2-2011), Hammami, O.,
Krob, D. and Voirin, J-L (Eds.), Springer, 181–292.

[13] Hubert, L. and Arabie, P. (1985) Comparing partitions. Journal of Classification, 2, 193–
218.

[14] Jain, A. K., Murty, M. N. and Flynn, P. J. (1999) Data clustering: a review. ACM Comput.
Surveys, 31, 264–233.

11

[15] Jajuga, K. (1991) L1-norm based fuzzy clustering. Fuzzy Sets and Systems, 39, 43–50.

[16] Karst, O. J. (1958) Linear curve fitting using least deviations. Journal of the American
Association,]textbf53, 118–132.

[17] Kohonen, T. (1995) Self-Organisation Maps. Springer.

[18] Xu, R. and Wunsch, D.I.I. (2005) Survey of clustering algorithms. IEEE Trans. Neural
Networks, 16, 645–678.

Appendix

A Proof of Theorem 2.1

Recall that the important issue is here the minimisation of
∑n

i=1 |yi − azi|, and that we

denoted ui =
yi

zi

for each i = 1, . . . , n. Then it is equivalent to minimise
∑n

i=1 zi|ui − a | with

respect to the value of a. Recall also that by definition we have zi ∈]0, 1[. Thus, given an
arbitrary sequence of n reals, denoted z = (z1, z2, . . . , zn), we may associate with any sequence
u = (u1, u2, . . . , un) of n reals a function φ by:

φ(x, u) =

n
∑

i=1

zi | ui − x | ,

where we will suppose that zi ∈]0, 1[for each i ∈ {1, . . . , n}. With these notation and hypothesis,
and assuming that the terms of u are increasingly ordered, i.e.:

u1 ≤ u2 ≤ . . . ≤ un,

it was proved (see [15, 16]) that the set argminx∈R φ(x ; u) is an interval of the form [ui, uj] where
j ∈ {i, i + 1}, for some i ∈ {1, . . . , n − 1}. In other words, there exist i ∈ {1, . . . , n − 1} such
that argminx∈R φ(x ;u) is an interval that is either reduced to {ui} or equal to [ui, ui+1].

Notation A.1 In order to simplify our notations, we will write opt (u) in place of argminx∈R φ(x ;u).
Moreover, given an increasing sequence u of n reals, opt (u) is then of the form [ui, uj] where
j ∈ {i, i + 1}, for some i ∈ {1, . . . , n− 1}. Based on these notations, opt⋆(u) will designate the

real defined as opt⋆(u) =
ui + uj

2
(see the the algorithm presented hereabove before Theorem

2.1).

Notation A.2 Let u and v be any two finite sequences of n reals, and α and β be any two reals.
The notation α u + β v will denote the sequence defined by:

α u + β v = (α u1 + β v1, . . . , α ui + β vi, . . . , α un + β vn).

In addition, given an integer n > 0, we define the sequence ek of n reals as follows:

∀i ∈ {1, . . . , n}, ek
i =

{

1, if i = k,
0, otherwise.

12

In the rest of this section, we aim to compare the sets opt (u) and opt (v) when u and v satisfy
ui ≤ vi for all i ∈ {1, . . . , n}. We begin with the next lemma.

Lemma A.3 Consider a sequence u of n reals together with z1, z2, . . . , zn ∈]0, 1[. Given any
real h > 0 and any integer k ∈ {1, . . . , n}, denote v = u + h ek.
If (a, b) ∈ [opt (u)× opt (v)] \ [opt (v)× opt (u)], then a ≤ b.

Proof. Let (a, b) ∈ [opt (u)× opt (v)] \ [opt (v)× opt (u)], where we have denoted v = u + h ek.
Then it results:

{

φ(b, v)− φ(a, v) ≤ 0 and φ(b, u)− φ(a, u) ≥ 0,
one at least of these two inequalities being strict.

(10)

Since uk < vk = uk + h, all the possible cases, w.r.t. to a, are as follows:

a ≤ uk, uk < a ≤ vk and vk < a.

Suppose that b < a.

Case 1: a ≤ uk. Therefore b < a ≤ uk < vk. For each x ∈ R, we have:

φ(x, v) = φ(x, u)− zk(uk − x) + zk(vk − x)

φ(x, v) = zk(vk − uk) + φ(x, u)

Thus:

φ(a, v) = zk(vk − uk) + φ(a, u),

φ(b, v) = zk(vk − uk) + φ(b, u).

This leads to:

φ(b, v)− φ(a, v) = φ(b, u)− φ(a, u) (11)

Observe that (11) contradicts the fact that, by (10), either φ(b, v) − φ(a, v) ≤ 0 or φ(b, u) −
φ(a, u) ≥ 0 is a strict inequality.

Case 2: uk < a ≤ vk.

Subcase 2-1: b ≤ uk. Then b ≤ uk < a ≤ vk. The following equalities are straightforward. The
first of them is proved as in Case 1:

φ(b, v) = zk(vk − uk) + φ(b, u),

φ(a, v) = zk(vk − a)− zk(a− uk) + φ(a, u),

φ(a, v) = zk(vk + uk − 2a) + φ(a, u).

Then φ(b, v) − φ(a, v) = 2zk(a − uk) + φ(b, u) − φ(a, u) > φ(b, u) − φ(a, u) ≥ 0. Thus φ(b, v) −
φ(a, v) > 0, which contradicts the definition of b.

13

Subcase 2-2: uk < b < a. Then uk < b < a ≤ vk. The following equalities are easily checked:
the third of them is proved as in Subcase 2-1:

φ(b, v) = zk(vk − b)− zk(b− uk) + φ(b, u),

φ(b, v) = zk(vk + uk − 2b) + φ(b, u),

φ(a, v) = zk(vk + uk − 2a) + φ(a, u).

Thus φ(b, v) − φ(a, v) = 2zk(a − b) + φ(b, u) − φ(a, u) > φ(b, u) − φ(a, u) ≥ 0. We deduce that
φ(b, v)− φ(a, v) > 0, which contradicts again the definition of b.

Case 3: vk < a.

Subcase 3-1: b ≤ uk. Then b ≤ uk < vk < a. The following equalities hold clearly, the first of
them being proved as in Case 1:

φ(b, v) = zk(vk − uk) + φ(b, u),

φ(a, v) = zk(a− vk − (a− uk)) + φ(a, u),

φ(a, v) = zk(uk − vk) + φ(a, u).

Then φ(b, v)− φ(a, v) = 2zk(vk − uk) + φ(b, u)− φ(a, u) > φ(b, u)− φ(a, u) ≥ 0. Since vk > uk,
it results that φ(b, v)− φ(a, v) > 0, which again contradicts the definition of b.

Subcase 3-2: uk < b < vk. Then uk < b < vk < a. The following equalities hold, the third of
them being proved as in Subcase 3-1:

φ(b, v) = zk(vk − b)− zk(b− uk) + φ(b, u),

φ(b, v) = zk(vk + uk − 2b) + φ(b, u),

φ(a, v) = zk(uk − vk) + φ(a, u).

Thus φ(b, v) − φ(a, v) = 2zk(vk − b) + φ(b, u) − φ(a, u). Since vk > b, we deduce that φ(b, v) −
φ(a, v) > 0, which contradicts again the definition of b.

Subcase 3-3: vk ≤ b < a. Then uk < vk ≤ b < a. The following equalities hold, the third of
them being established as in Subcase 3-2:

φ(b, v) = zk(b− vk)− zk(b− uk) + φ(b, u),

φ(b, v) = zk(uk − vk) + φ(b, u),

φ(a, v) = zk(uk − vk) + φ(a, u).

Thus φ(b, v)− φ(a, v) = φ(b, u)− φ(a, u). This contradicts the fact that, by (10), at least one of
the inequalities φ(b, v)− φ(a, v) ≤ 0 and φ(b, u)− φ(a, u) ≥ 0 is strict.

We conclude that b < a leads to a contradiction in any case, so that a ≤ b holds, as required.

Proposition A.4 Let u be any sequence of n real numbers, h > 0, k ∈ {1, . . . , n} and
{z1, z2, . . . , zn} ⊆]0, 1[. Then opt⋆(u) ≤ opt⋆(u + h ek).

14

Proof. Let v = u + h ek. Since opt (u) and opt (v) are intervals that may be reduced to
singletons, we denote opt (u) = [a1, a2] and opt (v) = [b1, b2] with a1 ≤ a2 and b1 ≤ b2. If
b1 < a1, then (a1, b1) ∈ opt (u) × opt (v) with b1 ∈ opt (v) \ opt (u), which is contradictory
by Lemma 1. Therefore a1 ≤ b1. Similarly, if b2 < a2, then (a2, b2) ∈ opt (u) × opt (v) and
a2 ∈ opt (u) \ opt (v), which is again contradictory by Lemma 1. Therefore a2 ≤ b2. It results
that

opt⋆(u) =
a1 + b1

2
≤ a2 + b2

2
= opt⋆(v),

which proves that the result of the proposition holds true.

Then, Theorem 2.1 is an immediate consequence of the next Proposition A.5.

Proposition A.5 Let u and v be two sequence of n real numbers such that u ≤ v, i.e. ui ≤ vi

for each i ∈ {1, . . . , n}. Then opt⋆(u) ≤ opt⋆(v).

Proof. Let K = {k ∈ {1, . . . , n} : uk < vk} and L = |K |. Denote hk = vk − uk for each k ∈ K,
and denote by σ an arbitary bijection from {1, . . . , L} onto set K. It results:

v = u +
L

∑

l=1

hσ(l)e
σ(l). (12)

For each l ∈ {0, 1, . . . , L}, define the sequence w(l) as follows:

w(l) =











u, if l = 0,

u +
l

∑

j=1

hσ(j)e
σ(j), otherwise.

Notice that w(L) = v according to (12). Moreover, for each l ∈ {0, 1, . . . , L− 1}, we have:

w(l+1) = w(l) + hσ(l+1)e
σ(l+1).

Since for each k ∈ K, we have hk > 0, it results from Proposition A.4 that:

∀l ∈ {0, 1, . . . , L− 1}, opt⋆(w(l)) ≤ opt⋆(w(l+1)).

As a consequence, we obtain:

opt⋆(w(0)) ≤ opt⋆(w(1)) ≤ . . . ≤ opt⋆(w(L)),

and thus opt⋆(u) = opt⋆(w(0)) ≤ opt⋆(w(L)) = opt⋆(v), as required.

15

