Francisco De A T De Carvalho

Patrice Bertrand

Filipe M De Melo

Batch self-organizing maps based on city-block distances for interval variables

Keywords: Self-organizing maps, Interval-valued data, City-block distances, Adaptive distances, Symbolic data analysis

The Kohonen Self Organizing Map (SOM) is an unsupervised neural network method with a competitive learning strategy which has both clustering and visualization properties. Interval-valued data arise in practical situations such as recording monthly interval temperatures at meteorological stations, daily interval stock prices, etc. Batch SOM algorithms based on adaptive and non-adaptive city-block distances, suitable for objects described by interval-valued variables, that, for a fixed epoch, optimizes a cost function, are presented. The performance, robustness and usefulness of these SOM algorithms are illustrated with real interval-valued data sets.

Introduction

Clustering is a popular task in knowledge discovery, and it is applied in various fields including data mining, pattern recognition, computer vision, etc. Clustering methods aim at organizing a set of items into clusters such that items within a given cluster have a high degree of similarity, while items belonging to different clusters have a high degree of dissimilarity. The most popular clustering techniques are hierarchical and partitional methods [START_REF] Jain | Data clustering: a review[END_REF][START_REF] Xu | Survey of clustering algorithms[END_REF]. K-means algorithm and fuzzy c-means are the most famous partitional approaches.

The Kohonen Self Organizing Map (SOM) [START_REF] Kohonen | Self-Organisation Maps[END_REF] is an unsupervised neural network method with a competitive learning strategy which has both clustering and visualization properties. Different from K-means, SOM uses the neighborhood interaction set to approximate lateral neural interaction and discover the topological structure hidden in the data, and in addition to the best matching referent vector (winner), its neighbors on the map are updated, resulting in regions where neurons in the same neighborhood are very similar. It can be considered as an algorithm that maps a high dimensional data space to lattice space which usually has a lower 1 dimension (typically, dimension two) and is called a map. This projection enables a partition of the inputs into "similar" clusters while preserving their topology. The map training can be incremental or batch.

This paper gives batch SOM algorithms to manage individuals described by interval-valued variables. Interval-valued variables are needed, for example, when an object represents a group of individuals and the variables used to describe it need to assume a value which express the variability inherent to the description of a group.

Interval-valued data arise in practical situations such as recording monthly interval temperatures at meteorological stations, daily interval stock prices, etc. Another source of interval-valued data is the aggregation of huge databases into a reduced number of groups, the properties of which are described by interval-valued variables. Therefore, tools for interval-valued data analysis [START_REF] Bock | Analysis of Symbolic Data, Exploratory methods for extracting statistical information from complex data[END_REF][START_REF] Diday | Symbolic Data Analysis and the Sodas Software[END_REF] are very much required.

In [START_REF] Bock | Clustering algorithms and Kohonen maps for symbolic data[END_REF][START_REF] D'urso | Midpoint radius self-organizing maps for intervalvalued data with telecommunications application[END_REF] it is presented incremental SOM algorithms that are able to manage interval-valued data. More recently, batch SOM based on non-adaptive [START_REF] De Carvalho | Une version batch de l'algorithme SOM pour des données de type intervalle[END_REF][START_REF] Hajjar | Self-organizing map based on L2 distance for intervalvalued data[END_REF] and adaptive Euclidean distances [START_REF] De Carvalho | Une version batch de l'algorithme SOM pour des données de type intervalle[END_REF] as well as non-adaptive city-block distances [START_REF] Hajjar | Self-organizing map based on city-block distance for interval-valued data[END_REF], have been presented.

This paper aims at proposing batch SOM algorithms based on adaptive and non-adaptive city-block distances, suitable for objects described by interval-valued variables, that, for a fixed epoch, optimizes a cost function. The performance, robustness and usefulness of these SOM algorithms are illustrated with real interval-valued data sets, in comparison with batch SOM algorithms based on adaptive and non-adaptive Euclidean distances.

Batch self-organizing maps based on city-block distances

This section presents batch SOM algorithms based on adaptive (ABSOM-L1) and non-adaptive (BSOM-L1) city-block distances for interval-valued data. They are based on the batch SOM algorithm based on the Euclidean distances for real-valued data [START_REF] Badran | Self-organizing maps and unsupervised classification[END_REF].

Let E = {e 1 , . . . , e n } be a set of n objects indexed by i and described by p interval-valued variables indexed by j. An interval-valued variable X [START_REF] Bock | Analysis of Symbolic Data, Exploratory methods for extracting statistical information from complex data[END_REF] is a correspondence defined from E in ℑ such that for each e i ∈ Ω, X(e i) = [a, b] ∈ ℑ, where ℑ is the set of closed intervals defined from ℜ. Each object e i is represented as a vector of intervals x i = (x i1 , . . . , x ip), where

x ij = [a ij , b ij] ∈ ℑ = {[a, b] : a, b ∈ ℜ, a ≤ b}.
A basic assumption of the presented batch SOM algorithms is that a prototype w r of cluster P r (r = 1. . . . , m) is also represented as a vector of intervals w r = (w r1 , . . . , w rp), where

w rj = [α rj , β rj] ∈ ℑ (j = 1, . . . , p).
The IBSOM-L1 algorithm is an iterative two-step algorithm (representation and affectation steps) in which the whole data set E is presented to the map before any adjustments are made. The IBSOM-L1 algorithm minimizes the following cost function:

J = n i=1 m r=1 K T (δ(f T (x i), r)) d(x i , w r) (1
)
where f is the allocation function and f T (x i) stands for the neuron of the map that is associated to the object x i , and δ(f T (x i), r)) is the distance on the map between a neuron r and the neuron that is allocated to the object x i . Moreover, K T , that is parameterized by T (where T stands for temperature), is the neighborhood kernel function that defines influence region around each neuron r.

The generalized dissimilarity function between an input data x i and a prototype w f T (x i) is given by:

d T (x i , w f T (x i)) = m r=1 K T (δ(f T (x i), r)) d(x i , w r) (2)
where

d(x i , w r) = p j=1 [|a ij -α rj | + |b ij -β rj |] (3)
is a suitable city-block distance between vectors of intervals. This generalized distance is a weighted sum of the city-block distances between x i and all the reference vectors of the neighborhood of the neuron f T (x i). It takes into account all the neurons of the map. The IABSOM-L1 algorithm is an iterative three-step algorithm (representation, weighting and affectation steps) in which the whole data set E is also presented to the map before any adjustments are made. The cost function of the IABSOM-L1 algorithm is given by:

J = n i=1 m r=1 K T (δ(f T (x i), r)) d λ r (x i , w r) (4)
The generalized dissimilarity function between an input data x i and a prototype w f T (x i) is given by:

d T Λ (x i , w f T (x i)) = m r=1 K T (δ(f T (x i), r)) d λ r (x i , w r) (5)
where

d λ r (x i , w r) = p j=1 λ rj [|a ij -α rj | + |b ij -β rj |] (6)
is an adaptive city-block distance parameterized by the vector of weights on the variables λ r = (λ r1 , . . . , λ rp) and Λ= (λ 1 , . . . , λ m). Note that the weight vectors λ r (r = 1, . . . , m) change at each iteration, i.e., they are not determined absolutely, and are different from one neuron to another.

When T is kept fixed, for IBSOM-L1 algorithm, the minimization of J is performed iteratively in two steps (representation and allocation), whereas for IABSOM-L1, the minimization of J is performed iteratively in three steps (representation, weighting and affectation).

During the representation step of IBSOM-L1, the allocation function is kept fixed. The cost function J is minimized with respect to the prototypes. During the representation step of IABSOM-L1, the allocation function and the vectors of weights are kept fixed. The cost function J is also minimized with respect to the prototypes. For both algorithms, the components w rj (j = 1, . . . , p) of the prototype w r (r = 1, . . . , m) are such that they minimize

n i=1 K T (δ(f T (x i), r))[|a ij -α rj | + |b ij -β rj |]
This problem brings to the minimization of n i=1 |y i -az i |, where

y i = K T (δ(f T (x i), r)) a ij (or, equivalently, y i = K T (δ(f T (x i), r)) b ij), z i = K T (δ(f T (x i), r)
) and a = α rj (or, equivalently, a = β rj). The solution of this problem is known and to solve it the following algorithm can be used [START_REF] Jajuga | L1-norm based fuzzy clustering[END_REF][START_REF] Karst | Linear curve fitting using least deviations[END_REF]:

1. Determining u i = y i /z i (i = 1, . . . , n); 2.
Rearrange the z i 's according to ascending order of u i 's and get z1 , . . . , zn ;

3. Minimize r l=1 |z l | -n l=r+1 |z l | regarding r;
4. If the minimum is negative, take a = u r . If the minimum is positive, take a = u r+1 . Finally, if the minimum is equal to zero, take a = (u r + u r+1)/2.

Theorem 2.1. The boundaries of the intervals

w rj = [α rj , β rj] (r = 1, . . . , K; j = 1, . . . , p) are such that α rj ≤ β rj .
Proof. The proof is given in appendix.

During the weighting step of IABSOM-L1, the reference vectors (prototypes) and the allocation function are kept fixed. The cost function J is minimized with respect to the vectors of weights. The computation of these vectors of weights in this algorithm is also inspired from the approach used to compute a weight for each variable in each cluster in the dynamic clustering algorithm based on adaptive distances [START_REF] Diday | Classification Automatique avec Distances Adaptatives[END_REF].

The vectors of weights λ r = (λ r1 , . . . , λ rp) (r = 1, . . . , m), under λ rj > 0 and p j=1 λ rj = 1, have their weights λ rj (j = 1, . . . , p) calculated according to the following expression:

λ rj = { p h=1 n i=1 K T (δ(f T (x i), h))[|a ij -α rh | + |b ij -β rh |]} 1 p n i=1 K T (δ(f T (x i), r))[|a ij -α rj | + |b ij -β rj |] (7)
During the affectation step of IBSOM-L1, the reference vectors (prototypes) are kept fixed. The cost function J is minimized with respect to the allocation function and each individual x i is assigned to its nearest neuron:

c = f T (x i) = arg min 1≤r≤m d T (x i , w r) (8)
During the affectation step of IABSOM-L1, the reference vectors (prototypes) and the vectors of weights are kept fixed. The cost function J is minimized with respect to the allocation function and each individual x i is assigned to its nearest neuron:

c = f T (x i) = arg min 1≤r≤m d T Λ (x i , w r) (9)
The batch SOM algorithm based on adative and non-adaptive city-block distances for intervalvalued can be summarized as follows.

. , p)

For IBSOM-L1 algorithm, assign each object x i to the closest neuron (cluster) according to equation (8); For IABSOM-L1 algorithm, assign each object x i to the closest neuron (cluster) according to equation (9);

Step 2 Representation Set T = T max (T min Tmax)

t N iter -1 ; Compute w rj (j = 1, . . . , p), components of the prototypes w r = (w r1 , . . . , w rp) (r = 1, . . . , m), according to the algorithm given by [START_REF] Jajuga | L1-norm based fuzzy clustering[END_REF][START_REF] Karst | Linear curve fitting using least deviations[END_REF].

Step 3 Weighting Skip this step for IBSOM-L1 algorithm; For IABSOM-L1 algorithm, compute the components λ rj of the vectors of weights λ r (r = 1, . . . , m; j = 1, . . . , p) according to equation (7);

Step 4 Affectation For IBSOM-L1 algorithm, assign each object x i to the closest neuron (cluster) according to equation (8); For IABSOM-L1, algorithm, assign each object x i to the closest neuron (cluster) according to equation (9);

Step 5 Stopping criterion If T = T min then STOP; otherwise set t = t + 1 and go to Step 2 (Representation).

Experimental results

To evaluate the performance of these SOM algorithms, two applications with a car models and a freshwater fish species interval-valued data set are considered. Our aim is to achieve a comparison of the batch SOM algorithms based on adaptive and non-adaptive city-block distances with the batch SOM algorithms based on adaptive (hereafter named IABSOM-L2) and non-adaptive (hereafter named IBSOM-L2) Euclidean distances [START_REF] De Carvalho | Une version batch de l'algorithme SOM pour des données de type intervalle[END_REF][START_REF] Hajjar | Self-organizing map based on L2 distance for intervalvalued data[END_REF] between vectors of intervals. Then, the usefulness of these batch SOM algorithms will be illustrated with an application concerning a city temperatures interval-valued data set.

As pointed out by [START_REF] Badran | Self-organizing maps and unsupervised classification[END_REF] the performance of these algorithms strongly depend on the parameters of the minimization algorithms. The most important important are T max , T min , N iter and the cooled schedule.

K T (δ(c, r) = exp - (δ(c, r)) 2 2T 2
Intitially, each interval-valued variable on these data sets were normalized by means of a suitable dispersion measure [START_REF] Chavent | On central tendency and dispersion measures for intervals and hypercubes[END_REF]. Let D j = {x 1j , . . . , x nj } be the set of observed intervals x ij = [a ij , b ij] on variable j (j = 1, . . . , p). The dispersion of the jth variable is defined as

s 2 j = n i=1 d j (x ij , g j), where g j = [α j , β j] is the "central" interval computed from D j and d j (x ij , g j) = |a ij -α j | + |b ij -β j | (if the comparison between intervals uses the city-block distance), or d j (x ij , g j) = (a ij -α j) 2 + (b ij -β j) 2 (

if the comparison between intervals uses the Euclidean distance).

The central interval g j = (α j , β j) T has its bounds computed from n i=1 d j (x ij , g j) → M in. They are α j = 1 n a ij and

β j = 1 n b ij . Each observed interval x ij = [a ij , b ij] (i = 1, . . . , n) is normalized as xij = [ã ij , bij], where ãij = a ij √ (s 2 j)
and bij = (if the comparison between intervals uses the city-block distance). One can easily show that s2 j = 1, where αj = 1 n ãij and βj = 1 n bij . Now, all the normalized interval-valued variables have the same dispersion s2 j = 1. In order to compare the results given by the batch SOM algorithms applied on the intervalvalued data sets considered in this paper, an external index the corrected Rand index (CR) [START_REF] Hubert | Comparing partitions[END_REF] and the overall error rate of classification (OERC) [START_REF] Breiman | Classification and Regression Trees[END_REF].

Performance of the batch SOM algorithms

The car model data set concerns 33 car models described by 8 interval-valued variables. These car models are grouped in four a priori classes of unequal sizes: Utilitarian (size 10), Berlina (size 8), Sporting (size 7) and Luxury (size 8). The interval-valued variables are: Price, Engine Capacity, Top Speed, Acceleration, Step, Length, Width and Height.

The freshwater fish species concerns 12 species of freshwater fish, each specie being described by 13 symbolic interval variables. These species are grouped into four a priori classes of unequal sizes acoording to diet: two classes (Carnivorous and Detritivorous) of size 4 and two clusters of size 2 (Omnivorous and Herbivorous). The symbolic interval variables are: Length, Weight, Muscle, Intestine, Stomach, Gills, Liver, Kidneys, Liver/Muscle, Kidneys/Muscle, Gills/Muscle, Intestine/Muscle and Stomach/Muscle. Each batch SOM algorithm was run 50 times on these datasets and the best result, according to the adequacy criterion, was selected. The cluster partitions obtained with these clustering methods were compared with the 4-class partition known a priori. Table 2 For the car models data set, the batch SOM algorithms with adaptive distances outperformed the batch SOM with non-adaptive distances. Moreover, the batch SOM algorithms with Euclidean distances outperformed the batch SOM algorithms with city-block distances. Finally, the batch SOM algorithms with adaptive Euclidean distances had the best performance whereas the worst performance was presented by the batch SOM algorithm based on non-adaptive city-block distances.

For the freshwater fish species data set, the batch SOM algorithms with city-block distances outperformed the batch SOM with Euclidean distances. Moreover, the batch SOM algorithms with non-adaptive city-block distances had the best performance and the batch SOM algorithms with non-adaptive Euclidean distances had the worst performance.

Robustness of the batch SOM algorithms

Theoretical studies indicate that city-block based models are more robust than those based on Euclidean distances. In order to evaluate the robustness of these batch SOM algorithms, we introduces 4 outliers on the car models and 1 outlier on the freshwater fish species data sets in the following way: the boundaries of the interval-valued variables describing, repectively, 1 individual of the the freshwater fish species and 4 individuals of the car models (one individual by each a priori class) were multiplied by 10 (configuration 1), by 100 (configuration 2) and by 1000 (configuration 3).

The batch SOM algorithms have been applied on these modified data sets. The cluster partitions obtained with these clustering methods were compared with the 3-class partition known a priori. Again, the comparison indexes used were the CR and ERC. These indexes were also calculated for the best result. Table 3 shows the results.

It can be observed that all the batch SOM algorithms were affected by the introduction of outiliers. However, those based on Euclidean distance were more affected than those based on city-block distances.

Application: city temperatures interval-valued data set

City temperature interval-valued data set [START_REF] Guru | Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns[END_REF] gives the minimum and the maximum monthly temperatures of cities in degrees centigrade. This data set consists of a set of 37 cities described by 12 interval-valued variables. The ABSOM-L1 batch SOM algorithm was run 50 times on the city temperature intervalvalued data set and the best result, according to the adequacy criterion, was selected. Figure 1 gives the self-organizing map of this interval-valued data set.

Table 5 gives the description of the cluster prototypes according to the minimum and the maximum monthly temperatures.

In Figure 1, the cities in bold are the most similar to the prototype of the cluster that they belong. It can be observed that the grid is coherent with the latitude location and temperature ranges of the cities. Latitude location grows from left to right and from bottom to top on the grid. Temperature ranges grows from right to left and from top to bottom on the grid.

Conclusion

The main contributions of this paper are the introduction of batch SOM algorithms based on adaptive and non-adaptive city-block distances, suitable for objects described by interval-valued variables, that, for a fixed epoch, optimizes a cost function. These SOM algorithms combine The performance of these batch SOM algorithms based on adaptive and non-adaptive cityblock distances were evaluated in comparison with batch SOM algorithms based on adaptive and non-adaptive Euclidean distances on car models and freshwater fish species interval-valued data sets. The accuracy of the results furnished by these algorithms was assessed by the corrected Rand index (CR) and the overall error rate of classification (OECR).

Overall, the batch SOM algorithms with adaptive (city-block and Euclidean) distances outperformed the batch SOM algorithms with non-adaptive distances on the original car models and freshwater fish species data sets. Moreover, all the batch SOM algorithms were affected by the introduction of outiliers. However, those based on Euclidean distance were more affected than those based on city-block distances.

Finally, the application of the batch SOM algorithm based on city-block distances on the city temperatures interval-valued data sets illustrated the usefulness of the presented SOM algorithms.

In the rest of this section, we aim to compare the sets opt (u) and opt (v) when u and v satisfy u i ≤ v i for all i ∈ {1, . . . , n}. We begin with the next lemma.

Lemma A.3 Consider a sequence u of n reals together with z 1 , z 2 , . . . , z n ∈]0, 1[. Given any real h > 0 and any integer k ∈ {1, . . . , n},

denote v = u + h e k . If (a, b) ∈ [opt (u) × opt (v)] \ [opt (v) × opt (u)], then a ≤ b. Proof. Let (a, b) ∈ [opt (u) × opt (v)] \ [opt (v) × opt (u)],
where we have denoted v = u + h e k . Then it results:

φ(b, v) -φ(a, v) ≤ 0 and φ(b, u) -φ(a, u) ≥ 0, one at least of these two inequalities being strict.

Since u k < v k = u k + h, all the possible cases, w.r.t. to a, are as follows:

a ≤ u k , u k < a ≤ v k and v k < a. Suppose that b < a. Case 1: a ≤ u k . Therefore b < a ≤ u k < v k . For each x ∈ R, we have: φ(x, v) = φ(x, u) -z k (u k -x) + z k (v k -x) φ(x, v) = z k (v k -u k) + φ(x, u) Thus: φ(a, v) = z k (v k -u k) + φ(a, u), φ(b, v) = z k (v k -u k) + φ(b, u).
This leads to:

φ(b, v) -φ(a, v) = φ(b, u) -φ(a, u)

Observe that [START_REF] Hajjar | Self-organizing map based on L2 distance for intervalvalued data[END_REF] contradicts the fact that, by [START_REF] Guru | Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns[END_REF], either φ(b, v) -φ(a, v) ≤ 0 or φ(b, u)φ(a, u) ≥ 0 is a strict inequality.

For each l ∈ {0, 1, . . . , L}, define the sequence w (l) as follows:

w (l) =      u, if l = 0, u + l j=1
h σ(j) e σ(j) , otherwise.

Notice that w (L) = v according to [START_REF] Hajjar | Self-organizing map based on city-block distance for interval-valued data[END_REF]. Moreover, for each l ∈ {0, 1, . . . , L -1}, we have: w (l+1) = w (l) + h σ(l+1) e σ(l+1) .

Since for each k ∈ K, we have h k > 0, it results from Proposition A.4 that:

∀l ∈ {0, 1, . . . , L -1}, opt ⋆ (w (l)) ≤ opt ⋆ (w (l+1)).

As a consequence, we obtain:

opt ⋆ (w (0)) ≤ opt ⋆ (w (1)) ≤ . . . ≤ opt ⋆ (w (L)), and thus opt ⋆ (u) = opt ⋆ (w (0)) ≤ opt ⋆ (w (L)) = opt ⋆ (v), as required.

Algorithm 2. 1 .

 1 Batch self-organizing algorithm for interval-valued data based on city-block distances.Step 1 InitializationFix the number m of neurons (clusters); Fix δ; Fix the kernel fuction K T ; Fix the number of iterations N iter ; Fix T min , T max ; Set T ← T max ; Set t ← 0; Randomly select m distinct prototypes w (0) c ∈ E (c = 1, . . . , m); Set the map L(m, W 0), where W 0 = (w (0) 1 , . . . , w (0) m); For IABSOM-L1 algorithm, set λ rj = 1 (r = 1, . . . , m; j = 1, . .

Case 2 :+ b 1 2 ≤ a 2 + b 2 2 =

 222 u k < a ≤ v k . Subcase 2-1: b ≤ u k . Then b ≤ u k < a ≤ v k .The following equalities are straightforward. The first of them is proved as in Case 1:φ(b, v) = z k (v k -u k) + φ(b, u), φ(a, v) = z k (v k -a) -z k (a -u k) + φ(a, u), φ(a, v) = z k (v k + u k -2a) + φ(a, u). Then φ(b, v) -φ(a, v) = 2z k (a -u k) + φ(b, u) -φ(a, u) > φ(b, u) -φ(a, u) ≥ 0. Thus φ(b, v)φ(a, v) > 0, which contradicts the definition of b. Proof. Let v = u + h e k .Since opt (u) and opt (v) are intervals that may be reduced to singletons, we denote opt(u) = [a 1 , a 2] and opt (v) = [b 1 , b 2] with a 1 ≤ a 2 and b 1 ≤ b 2 . If b 1 < a 1 , then (a 1 , b 1) ∈ opt (u) × opt (v) with b 1 ∈ opt (v) \ opt (u), which is contradictory by Lemma 1. Therefore a 1 ≤ b 1 . Similarly, if b 2 < a 2 , then (a 2 , b 2) ∈ opt (u) × opt (v) and a 2 ∈ opt (u) \ opt (v), which is again contradictory by Lemma 1. Therefore a 2 ≤ b 2 . It results that opt ⋆ (u) = a 1 opt ⋆ (v),which proves that the result of the proposition holds true.Then, Theorem 2.1 is an immediate consequence of the next Proposition A.5.Proposition A.5 Let u and v be two sequence of n real numbers such that u ≤ v, i.e. u i ≤ v i for each i ∈ {1, . . . , n}. Then opt ⋆ (u) ≤ opt ⋆ (v).Proof. Let K = {k ∈ {1, . . . , n} : u k < v k } and L = | K |. Denote h k = v k -u k for each k ∈ K,and denote by σ an arbitary bijection from {1, . . . , L} onto set K. It results:v = u + L l=1h σ(l) e σ(l) .

Table 1 :

 1 Table 1 gives the parameters for the batch SOM algorithms. They were fixed after several tests with these algorithms. Parameters Interval-valued data sets N Iter Number of neurons m T min T max Parameters List Moreover, in this paper δ is the Euclidean distance and the neighborhood kernel function is

	Car models Freshwater fish species City temperatures	30 30 30	9 (3 × 3 grid) 6 (2 × 3 grid) 9 (3 × 3 grid)	0.3 0.3 0.3	6.5 6.5 6.5

Table 2 :

 2 shows the results. Comparison between the batch SOM algorithms on the car models and freshwater fish species interval-valued data sets

	Car models data set		Freshwater fish species data set
		Comparison indexes		Comparison indexes
	Clustering algorithms CR	OERC	Clustering algorithms	CR	OERC
	IBSOM-L1	0.329	0.242	IBSOM-L1	0.496	0.083
	IABSOM-L1	0.477	0.152	IABSOM-L1	0.423	0.167
	IBSOM-L2	0.444	0.212	IBSOM-L2	-0.013	0.417
	IABSOM-L2	0.570	0.152	IABSOM-L2	0.209	0.333

Table 3 :

 3 Comparison between the batch SOM algorithms

	Car models interval-valued data set	Freshwater fish species interval-valued data set
			Clustering algorithms			Clustering algorithms
	Conf.	IBSOM-L1	IABSOM-L1	Conf.	IBSOM-L1	IABSOM-L1
		CR	OERC	CR	OERC		CR OERC	CR	OERC
	1	0.297	0.394	0.423	0.364	1	0.304	0.167	0.163	0.333
	2	0.320	0.424	-0.007	0.667	2	0.160	0.250	0.119	0.500
	3	0.320	0.424	-0.007	0.667	3	0.186	0.333	0.390	0.167
			Clustering algorithms			Clustering algorithms
	Conf.	IBSOM-L2	IABSOM-L2	Conf.	IBSOM-L2	IABSOM-L2
		CR	OERC	CR	OERC		CR OERC	CR	OERC
	1	-0.013	0.667	-0.009	0.667	1	0.166	0.333	0.233	0.333
	2	-0.013	0.697	-0.009	0.667	2	0.007	0.583	0.007	0.583
	3	-0.013	0.697	-0.009	0.667	3	0.007	0.583	0.007	0.583

Table 4 :

 4 Table 4 shows part of this interval-valued data set. In this application, the 12 interval-valued variables have been considered for clustering purposes. City temperature interval-valued data set with 12 interval variables

		January February . . . November December
	Amsterdam	[-4, 4]	[-5, 3]	. . .	[1, 10]	[-1, 4]

	Mauritius	[22, 28]	[22, 29]	. . .	[19, 27]	[21, 28]

	Zurich	[-11, 9]	[-8, 15] . . .	[0, 19]	[-11, 8]

Table 6

 6 Final grid of the city temperature interval-valued data set

		Athens, Lisbon	Frankfurt, Zurich	Amsterdam, Copenhagen
		Rome, San Francisco	(47 : 22 o N-50 : 06 o N)	Geneva, Moscow
		Tehran, Tokyo			Munich, Stockholm
		(35 : 41 o N-41 : 54 o N)				Toronto, Vienna
							(43 : 42 o N-59 : 19 o N)
		Bahrain, Cairo	Madrid, Seoul		London, New York
		Dubai, Hong Kong	(37 : 33 o N-40 : 23 o N)	Paris	
			NewDelhi				(40 : 39 o N-51 : 30 o N)
		(22 : 16 o N-30 : 29 o N)					
		Bombay, Calcutta,	Mauritius	Mexico City, Nairobi
		Colombo, Kuala Lumpur	(20 : 10 o S)		Sydney	
		Madras, Manila			(33 : 51 o S-19 : 26 o N)
			Singapore						
		(01 : 17 o N-22 : 56 o N)					
	Figure 1: Var.		Cluster prototypes		
		1	2	3	4	5	6	7	8	9
	JAN	6.2:11.6	-9.8:8.9	-3.5:0.8	12.5:19.7	0.8:8.9	0.8:6.2	20.6:29.6 21.5:27.8 11.6:25.1
	FEB	5.7:12.5	-7.7:15.4	-4.8:2.8	11.5:22.1	0.9:11.5	0.9:6.7	22.1:29.8 22.1:28.9 15.4:26.0
	MAR	7.5:16.1	-4.3:17.2	-1.0:7.5	15.0:24.7	3.2:16.1	2.1:9.6	22.5:31.1 21.5:29.0 17.2:24.7
	APR 11.2:17.5	0:21.3	2.5:12.5	18.8:28.8	6.2:18.8	5.0:15.0	23.8:32.6 21.3:27.5 16.3:23.8
	MAY 13.3:23.6	2.9:26.6	7.3:17.7	22.1:32.5 11.8:23.6	7.3:19.2	25.1:32.5 19.2:25.1 13.3:22.1
	JUN	17.9:27.7 6.54:29.4 11.4:21.2 24.5:34.3 16.3:29.4 11.4:21.2 24.5:32.7 17.9:24.5 11.4:21.2
	JUL	22.6:31.3 10.4:31.3 13.9:24.4 26.1:36.6 17.4:31.3 13.9:24.4 24.4:29.6 17.4:22.6 10.4:20.9
	AUG 22.3:30.9	8.5:25.7	13.7:22.3 25.7:34.3 15.4:29.1 13.7:20.6 25.7:29.1 17.1:22.3 10.3:20.6
	SEP	18.8:26.6	4.7:23.5	10.9:18.8 25.0:34.4 12.5:28.2 10.9:20.3 25.0:29.7 17.2:23.5 10.9:23.5
	OCT 14.5:21.2	2.6:22.5	6.6:13.2	21.2:30.4	7.9:23.8	7.9:15.9	23.8:30.4 18.5:25.1 13.2:23.8
	NOV	8.7:17.5	0:14.2	1.0:6.5	17.5:26.2	6.5:18.5	5.4:9.8	22.9:29.5 18.5:27.3 14.2:25.1
	DEC	6.4:13.7	-8.2:8.2	-1.8:2.7	13.7:21.0	0.9:9.1	0.9:6.4	22.0:30.2 21.0:28.4 12.8:22.9

gives the relevance weights of the interval-valued variabels into the clusters. It can be observed, for example, that in cluster 2 (Frankfurt and Zurich), the variable

Table 5 :

 5 Cluster prototypes: minimum and the maximum monthly temperatures "temperature of June" has the greatest relevance weight because in these cities the temperature in this month ranges very similarly, respectively, [3 : 27] and[6 : 30]. On contrary, the variable "temperature of November" has the smallest relevance weight in this cluster because in these cities the temperature in this month ranges more diferently, respectively, [-3 : 14] and [0 : 19].

Table 6 :

 6 City temperature data set: relevance weights of the interval-valued variabels into the clusters the best visualization and clustering characteristics provided by SOM neural networks with the flexibility offered by adaptive distances in the recognition of classes with different shapes and sizes and the robustness of the city-block distances.

	Var.				Clusters				
	1	2	3	4	5	6	7	8	9
	JAN 0.62 1.38 0.48 0.76 1.01 0.75 0.50 0.66 0.40
	FEB 0.92 1.39 0.54 0.75 0.60 0.70 0.59 0.79 0.67
	MAR 1.53 0.65 0.51 0.77 0.42 1.23 0.91 0.92 2.01
	APR 2.06 0.77 0.87 0.86 1.43 1.83 1.21 1.05 1.52
	MAY 1.24 2.25 1.22 0.95 1.11 1.03 0.81 1.10 1.13
	JUN 0.87 2.58 1.75 1.23 0.91 0.80 1.24 1.16 0.71
	JUL 0.64 1.35 1.86 1.51 1.33 0.74 1.39 1.19 0.83
	AUG 0.62 0.73 2.00 1.36 2.02 0.84 1.37 1.21 0.95
	SEP 0.96 0.96 1.61 1.51 1.44 0.99 1.42 1.23 1.20
	OCT 1.76 1.05 1.42 1.14 0.58 0.91 2.00 1.13 2.16
	NOV 1.45 0.37 0.74 0.86 0.53 1.97 0.99 1.05 1.50
	DEC 0.49 0.46 0.62 0.71 2.19 0.89 0.54 0.71 0.47

Acknowledgement

The authors would like to thanks CNPq and FACEPE (Brazilian agencies) for their finacial support.

Appendix

A Proof of Theorem 2.1

Recall that the important issue is here the minimisation of n i=1 |y i -az i |, and that we denoted u i = y i z i for each i = 1, . . . , n. Then it is equivalent to minimise n i=1 z i | u i -a | with respect to the value of a. Recall also that by definition we have z i ∈]0, 1[. Thus, given an arbitrary sequence of n reals, denoted z = (z 1 , z 2 , . . . , z n), we may associate with any sequence u = (u 1 , u 2 , . . . , u n) of n reals a function φ by:

where we will suppose that z i ∈]0, 1[for each i ∈ {1, . . . , n}. With these notation and hypothesis, and assuming that the terms of u are increasingly ordered, i.e.:

it was proved (see [START_REF] Jajuga | L1-norm based fuzzy clustering[END_REF][START_REF] Karst | Linear curve fitting using least deviations[END_REF]) that the set argmin x∈R φ(x ; u) is an interval of the form [u i , u j] where j ∈ {i, i + 1}, for some i ∈ {1, . . . , n -1}. In other words, there exist i ∈ {1, . . . , n -1} such that argmin x∈R φ(x ; u) is an interval that is either reduced to {u i } or equal to [u i , u i+1].

Notation A.1 In order to simplify our notations, we will write opt (u) in place of argmin x∈R φ(x ; u). Moreover, given an increasing sequence u of n reals, opt (u) is then of the form [u i , u j] where j ∈ {i, i + 1}, for some i ∈ {1, . . . , n -1}. Based on these notations, opt ⋆ (u) will designate the real defined as opt ⋆ (u) = u i + u j 2 (see the the algorithm presented hereabove before Theorem

2.1).

Notation A.2 Let u and v be any two finite sequences of n reals, and α and β be any two reals. The notation α u + β v will denote the sequence defined by:

In addition, given an integer n > 0, we define the sequence e k of n reals as follows:

The following equalities are easily checked: the third of them is proved as in Subcase 2-1:

We deduce that φ(b, v) -φ(a, v) > 0, which contradicts again the definition of b.

The following equalities hold clearly, the first of them being proved as in Case 1:

The following equalities hold, the third of them being proved as in Subcase 3-1:

we deduce that φ(b, v)φ(a, v) > 0, which contradicts again the definition of b.

The following equalities hold, the third of them being established as in Subcase 3-2:

Thus φ(b, v) -φ(a, v) = φ(b, u) -φ(a, u). This contradicts the fact that, by [START_REF] Guru | Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns[END_REF], at least one of the inequalities φ(b, v) -φ(a, v) ≤ 0 and φ(b, u) -φ(a, u) ≥ 0 is strict.

We conclude that b < a leads to a contradiction in any case, so that a ≤ b holds, as required.

Proposition A.4 Let u be any sequence of n real numbers, h > 0, k ∈ {1, . . . , n} and {z 1 , z 2 , . . . , z n } ⊆]0, 1[. Then opt ⋆ (u) ≤ opt ⋆ (u + h e k).