N
N

N

HAL

open science

An Approach for Evolution-Driven Method Engineering
Jolita Ralyte, Colette Rolland, Mohamed Ben Ayed

» To cite this version:

Jolita Ralyte, Colette Rolland, Mohamed Ben Ayed. An Approach for Evolution-Driven Method En-
gineering. John Krogstie, Terry A. Halpin, Keng Siau. Information Modeling Methods and Method-

ologies, Idea Group, pp.80 - 101, 2005. hal-00706382

HAL Id: hal-00706382
https://hal.science/hal-00706382

Submitted on 16 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00706382
https://hal.archives-ouvertes.fr

An Approach for Evolution-Driven Method
Engineering

Jolita Ralyté, Colette Rolland , Mohamed Ben Ayed

" Université de Genéve, CUI, Rue de Général Dufodir, 2
CH-1211 Geneve 4, Switzerland
ralyte@cui.unige.ch

™ Université Paris 1 Sorbonne, CRI, 90, rue de Talbia
75634 Paris cedex 13, France
rolland@univ-parisl.frmohamed.benayed@malix.univ-parisl.fr

Abstract. This work considers the evolutionary perspectifemethod
engineering. It presents an approach for methotheagng based on the
evolution of an existing method, model or meta-nidd® a new one
satisfying a different engineering objective. Thapproach proposes
several different strategies to evolve from theiahiparadigm to a new
one and provides guidelines supporting these giesteThe approach has
been evaluated in the Franco-Japanese researdttpanpund the Lyee
methodology. A new model called Lyee User Requirgsidiodel has
been obtained as an abstraction of the Lyee SdftviRequirements
Model. The paper illustrates this evolution case.

INTRODUCTION

To manage the increasing complexity of InformatBystems (IS), IS engineers
ask for new methods taking into account specifitiagions of each IS
development project. This problem is consideredthsy Situational Method
Engineering (SME) discipline. Instead of lookingr foniversally applicable
methods that was the idea of traditional Method iBeeying (ME), SME
proposes to develop project-specific methods oradapt existing ones to
specific project situations (Kumar and Welke, 199Zherefore, each IS
development project starts with the definition tsf proper method that best fits
its situation. It is clear that traditional methodnstruction techniques are too
expensive and time-consuming and are not well apa@d to tackle project-
specific method construction. As a consequenceaitmeof SME is to provide
fast and simple method construction and adaptationniques and tools. In the
next section we survey the research achievemeititgsidlomain.

In this work we consider method engineering frora #volutionary point of
view. In other words, we look for an approach suppg evolution of an
existing method, model or meta-model in order tdaimba new one better
adapted to a given engineering situation and /disfgig a different

engineering objective. We consider such a methadugen as situation-driven
and relate our work to the area of SME.

The approach that we propose in this article ietham some initial modelling
idea expressed as a model or a meta-model thaialv¢he ‘paradigm model’

and supports the evolution of this paradigm modéd ia brand-new model
satisfying another engineering objective. That isywve call this approach
Evolution-Driven Method Engineering. We embeddedtlins approach our

method engineering experience and especially irotleewe gained in the meta-
modelling domain. The hypothesis of this approacthiat a new method is
obtained either by abstracting from an existing etaat by instantiating a meta-
model.

We have evaluated our approach in the Franco-Japaswlaborative research
project Lyeé. The aim of this project was to develop a methogglsupporting
software development in two steps: requirementsineeging and code
generation. The latter was already supported by ltheeAll CASE tool
[NegoroOla,b] in order to generate programs, pexvid set of well-formatted
software requirements are given. Thgee Software Requirements Model
(LSRM) expresses these requirements in rather émetlterms such as screen
layouts and database accesses. Moreover they fareniced by the LyeeALL
internals such as the Lyee identification policy mfogram variables, the
generated program structure and the Lyee programacu¢on control
mechanism. Experience with LyeeAll has shown thedrm® acquire software
requirements from relatively high level user-cemtrequirements. For this
reason, we have decided to make the Lyee methogeeglve. We have used
the existing LSRM as a baseline paradigm modelttier more abstradtyee
User Requirements Mod@lURM) construction.

In the next section we review the existing SME apphes in order to better
situate our approach. Then, we outline our prooesdel for Evolution-Driven
ME and detail theAbstraction strategfor method product model construction
and the Pattern-basedstrategy for method process model definition. Both
strategies are illustrated by the LURM product gmdcess models creation
respectively. Finally, we end this paper by somactgsions and discussions
about our future work.

RELATED RESEARCH

A number of SME approaches have been already pedpos the literature.
Most of them use aassemblytechnique based on the reuse of existing method

! Lyee, which stands for GovernmentalethodologY for SoftwarE Providenck is a
methodology for software development used for thlémentation of business
software applications. Lyee was invented by Fumegdio.

parts in the construction of new methods or inghkancement of existing ones.
The main preoccupations of such approaches aredefiaition of reusable
method components, the construction of repositof@stheir storage, the
definition of guidelines for their selection andembly, and the development of
Computer-Aided Method Engineering (CAME) tools sopimg the assembly
process. For this purpose, Harmsen, Brinkkempet, Qe (1994) introduce the
notion of method fragmenés a reusable part of a method. They propose two
kinds of fragments: product and process fragment®rder to capture the
corresponding method perspectives. Pliebral, (1998) propose the notion of
method chunkvhich is refined in (Rolland, Plihon and Ralyt®98; Ralyté and
Rolland 2001a). In the contrary to the method fragtna method chunk couple
method product and process perspectives into thee saodule in order to
emphasise its coherency and autonomy. Both of theens,method fragment
and methodchunk, represent the basic blocks for constructong the fly’
methods. Van Slooten and Hodes (1996) combinesaddthgments intooute
maps A complete route map represents a system developmethod.

It is not always simple to extract reusable meticothponents from existing
methods. Ralyté and Rolland (2001b) propose a psoceodel for method
reengineering into collection of method chunks whmould be stored in a
method repository. Different method repositories given in (Saeki, Iguchi,
Wen-yin and Shinohara, 1993; Van Slooten and Benkger, 1993, Harmsen,
1997; Ralyté, 1999).

Following assembly-based approaches, new methodsbeaconstructed by
selecting method fragments/chunks from a methodsiggry in such a way that
they fit project method requirements. Van Slootewl &lodes (1996) specify
project situations by using a set of contingenagtdes, Punter and Lemmen
(1996) use a specific framework to characteriseblpra situations whereas
Ralyté (2002) provides a process model for metheglirements definition
which has the form of a requirements map.

Most of assembly-based SME approaches provide uéde for the non-

overlapping method fragments assembly (Brinkkem@zeki and Harmsen,
1998; Punter and Lemmen, 1996) whereas Ralyté alidri? (2001a) enrich

the assembly process by a new strategy allowingasgemble overlapping
method chunks that have similar objectives but jieuifferent manners to

fulfil them. Song (1997) proposes a slightly diffat method assembly approach
advising two kinds of method components integratimction-driven and

quality-driven. The first one is similar to the eswly-based approaches
introduced above and is based on the integratiorconfiponents providing

complementary functionalities for system modellwpereas the second one
helps to improve the existing method quality by ingdnew properties,

principles, notations, metrics etc., borrowed frotimer methods.

CAME environments, such as Decamerone (Harmserh) 188:taEdit+ (Kelly,
Lyytinen and Rossi, 1996) and MViews (Grundy anchafae, 1996) provide
support for method engineering process. They usehade engineering
languages, as MEL (Brinkkemper et al., 1998; Saekip3) and CoCoA
(Venable, 1993) for method fragments/chunks spzatifin.

An other kind of SME approaches uses generic cdnakpatterns for method
construction and extension. Rolland and Plihon §899and Rolland and
Prakash (1996b) introduce the notionneéthod construction pattertio capture

generic laws governing the construction of differént similar methods. A
patter models a common behaviour in method construdDecision making

patterns capturing the best practices in enterprise mauglire proposed by
Rolland, Nurcan and Grosz (2000) to support enisggmowledge development
process. Deneckere and Souveyet (1998) proposeid@mecific patterns for

exiting method extension.

In 1998, Tolvanen proposed an approachiferemental method engineering
based on existing method refinement. The principlethis approach is to
capture experience of method practice in differerdjects and to refine its
meta-model and corresponding tool if some probldmage been detected in
method use or if it is required by the new progtiation.

A generic product model to construct methods féfedént application domains
is provided in Prakash and Bhatia (2002). Ralytnézkere and Rolland (2003)
propose a generic process model for SME allowingambine different SME
approaches.

Theevolution-drivenME approach that we propose in this work is sintitathe
Tolvanen’sincrementalME approach as it also allows to improve an exggsti
model or meta-model and to adapt it to a giveresim. But our approach is not
limited to such kind of evolution, it also helpsdonstruct other models or meta-
models satisfying different engineering objectitkan the one of the initial
paradigm model.

PROCESSMODEL FOR EVOLUTION-DRIVEN METHOD
ENGINEERING

We use the Map formalism proposed in (Rolland, &hkand Benjamen, 1999)
to express the process model of our approach faluBwn-Driven Method
Engineering. Map provides a representation systdlowiag to combine
multiple ways of working into one complex processdel. It is based on a non-
deterministic ordering of two fundamental conceiptentionsand strategies.
An intention represents a goal that can be achidyethe performance of the
process. It refers to a task (activity) that isaat pf the process and is expressed
at the intentional level. A strategy representsrtaner in which the intention
can be achieved. Therefore, thepis a directed labelled graph with nodes

representing intentions and labelled edges exprgssirategies. The directed
nature of the map identifies which intention candome after a given one. A
map includes two specific intentionStart and Stop to begin and end the
process respectively. There are several paths 8tart to Stopin the map for
the reason that several different strategies carmproposed to achieve the
intentions. A map therefore includes several preogesdels that are selected
dynamically when the process proceeds, dependingecurrent situation. An
intention achievement guideling associated to every triplesgurce intention,
target intention, strategy providing advice to fulfil the target intention
following the strategy given the source intentiomshbeen achieved.
Furthermore, this guideline can be refined as ditfeemap at a lower level of
granularity.

Our approach for Evolution-Driven ME use®eta-modellingas its underlying
method engineering technique. Meta-modelling isvkmcas a technique to
capture knowledge about methods. It is a basiufolerstanding, comparing,
evaluating and engineering methods. One of thelteesbtained by the meta-
modelling community is the definition of any methasl composed of a product
model and a process model [Prakash99]. A produaieindefines a set of
concepts, their properties and relationships that rreeded to express the
outcome of a process. A process model comprise$ af goals, activities and
guidelines to support the process goal achieverardtthe action execution.
Therefore, method construction following the metadelling technique is
centred on the definition of these two models. Tikigeflected in the map
representing the process model for Evolution-Drilé (Figure 1) by two core
intentions (the nodes of the ma@pnstruct a product modeind Construct a
process model

Adaptation
strategy

Instantiation

. trategy Utilisation
Abstraction strategy

strategy

Construct a
product model

Simple strateg

Pattern-

Context-driven driven

Construct a
process modg

Completeness
strategy

Figure 1. Process M odel for Evolution-Driven M ethod Engineering.

A number of product meta-models [Grundy96, Hofs@&dd’rakash02, Saeki94,
Plihon96] as well as process meta-models [JarkB88and95, Rolland99] are
available and our approach is based on some of.tlbkis is shown in Figure 1
by several different strategies (the labelled efigesachieve each of the two
core intentions.

The construction of the product model depends efNMie goal that could be to
construct a method:

* by raising (or lowering) the level of abstractidnacgiven model,

* by instantiating a selected meta-model,

* by adapting a meta-model to some specific circuntets,

¢ by adapting a model.

Each of these cases defines a stratedyaiostruct a product modehamely the
Abstraction Instantiation AdaptationandUtilisation strategies. Each of them is
supported by a guideline that consists in definagious product model
elements such as objects, links and propertiegfferent manner.

In our example, we use the Lyee Software Requir¢sridiodel (LSRM) model

as a baseline paradigm model for the more abskygme User Requirements
Model (LURM) construction. In this case, tidstraction strategys the more
appropriate one t€onstruct a product models the ME goal is to rise the level
of abstraction of the LSRM~or this reason, in the next section we detail and
illustrate the guideline supporting product modehstruction following the
Abstraction strategy This guideline is based on the abstraction ofedint
elements from the paradigm model (product and/ocgss model) into elements
in the new product model and the refinement ofdb&ined elements until the
new product model became satisfactory.

Process model must conform to the product modelcd?s steps, activities,
actions always refer to some product model partsrdler to construct, refine or
transform them. This is the reason why in the miapigure 1 the intention to
Construct a process mod#llows the one tdConstruct a product modeWe
know that a process model can take multiple diffedferms. It could be a
simple informal guideline, a set of ordered actiongctivities to carry out, a set
of process patterns to be followed, etc. In ourl&@on-Driven process model
(Figure 1) we propose four strategi®&mple Context-driven Pattern-driven
andStrategy-driverto Construct a process model

* The Simplestrategy is useful to describe a uncomplicatectgs® model
that can be expressed as a textual descriptiorser af actions to execute.

* The Context-drivenprocess model is based on the NATURE process
modelling formalism [Jarke99, Rolland95]. Accorditmthis formalism, a
process model can be expressed as a hierarchprméxts A context is
viewed as a couplssituation, intention> Thesituationrepresents the part

of the product undergoing the process andittentionreflects the goal to
be achieved in this situation.

» Process model obtained following thattern-drivenstrategy takes the
form of aCatalogueof Patterns Each pattern identifies a generic problem,
which could occur quite often in the product modeinstruction, and
proposes a generic solution applicable every tingepgroblem appears. A
generic solution is expressed as set of steps ialipwo resolve the
corresponding problem.

» Finally, theStrategy-driverprocess model, also called the Map [Rolland99,
Benjamen99] (see the introduction of this papegrnpts to combine
several process models into one complex procesglmod

The process model of the LURM was defined followithg Pattern-driven
strategy. A set of patterns has been defined to take intowtt different
situations in the user requirements definition.HEpattern provides an advice to
capture and formulate requirements. The sectionresgmts in detail and
illustrates the guideline supporting tRattern-drivenstrategy for the process
model construction.

ABSTRACTION-BASED PRODUCT MODEL CONSTRUCTION

The Abstraction strategyor product model construction consists in defina
new product model representing the level of abstladigher than the one of
its paradigm model. As a consequence, the objeaivéhe corresponding
guideline is to support the construction of a paiduodel as an abstraction of
an other model (product or process or both of thefhjs guideline is also
expressed by a map shown in Figure 2.

Product-driven

) abstraction
Process-drive

abstraction Linking strategy

Decomposition

Top-down ‘
mapping Define strategy
product elemen
Aggregation
Specialisatio strategy
strategy

Generalisation Completena

strategy strategy

Figure 2. Abstraction-Based Product Model Construction.

As the product model construction consists in tleéiniion of its elements
(objects, properties, links), there is only oneecottention in this map called
Define product elementhe achievement of this intention is supportedalset
of strategies. Two strategies namicbduct-driven abstractiorand Process-
driven abstractionare provided to start the construction proces® flist one
deals with the paradigm product model whereas ¢icersl one is based on the
paradigm process model. TReoduct-driven abstractiorconsists in analysing
the paradigm product model, identifying elementt tould be represented in a
more abstract form in the new model and definireséhabstract elements. The
Process-driven abstractioproposes to analyse the paradigm process model and
to abstract some of its activities into the upgsel ones. The product elements
referenced by these more abstract activities meishtegrated into the product
model under construction. The concepts obtainddviithg this strategy have to
match concepts (or a collection of concepts) ofgdieadigm product model. The
Top-down mapping strategyan be applied to assure it. TReneralisation
SpecialisationAggregationand Decompositiorstrategies are used to refine the
model under construction whereas Lieking strategy helps to connect different
elements of this model obtained by applying différgbstraction strategies.

In order to illustrate the abstraction-based prodmodel construction we
present first our paradigm model, which is the Lygaftware Requirements
Model depicted in Figure 3.

PNTR|| PNTN . " -
- - L ogical Unit Domain Word
InterSF \V LogicallD it
L3 — condition
Conditio Device L4 —formula
Name
Word Domain
Routing Word
PNTD || PNTM g %4 WordID

NextpalletID

PRD m Action Word K
PRDName| - .
1 Word in
- Pallet [Pera][Perz][PBOX]
Scenario W PWTL
Function Rall=ti
SFID

Figure 3. The Lyee Softwar e Requirements Model (LSRM).

The central concept in the LSRM is calledMord A Word corresponds to a
program variable: input words represent valuesuwraptfrom the external world
whereas output words are produced by the systemapplying specific
formulae. Lyee Software Requirements processing hadsm applies a
formulae to obtain output word from the given inputrds. The execution of
formulae is controlled by thd’rocess Route Diagram (PRDA PRD is

composed oBcenario FunctiongSF), composed oPalletswhich are made of
Vectors In order to carry out the generated program cbntthe function

PoP1]

generates its owklVords such as théction wordsand Routing words Action
words are used to control physical Input/Output exchangea Lyee program,
they implement application actions such as readisgreen, submitting a query
to a database, opening or closing a file, Btmuting wordsare used to distribute
the control over variouSFsof aPRD.

In order to comply with the LSRM paradigm, the LURMould be centred on a
notion that abstracts from the conceptVébrd ObviouslyWordsrequired by
the Lyee processing mechanism are not relevartistievel. On the contrary,
the concern is only witibomain words.For that reason, the LSRM concept
Domain wordis abstracted into LURM conceftem following the Product-
driven abstraction strategyThe Specialisation strategis applied in order to
specialise thétem into Outputandinputto match the LSRM, which makes the
difference between input and output words usedsirpiocessing mechanism.
An Outputis produced by the system whereas liqgut is captured from the
user. In the same manner, tiput is specialised intéctive and Passive The
former triggers the system actions whereas therlatpresents values captured
from the user.

Next we analyse the LSRM process model. The pamagigocess model deals
with the generation of the Lyee program structdree result of the obtained
program execution must fit user’s requirementsotimer words, it must allow
the user to satisfy one of its goals. For that geasn the upper user
requirements level we need to reason with concaldsving to identify these
user goals and express how the user interactstinétBystem in order to achieve
them. TheProcess-driven abstraction strategifows us to define the notion of
Interactionrepresenting the exchanges between the user arsystem from the
user’s view point. An interaction is goal driventire sense that the user asks the
system to achieve the goal he/she has in mind witkwowing how the system
will do it. As a result, we associate bBreraction goalto eachinteraction The
complexity of the interaction goal defines the céewjty of the corresponding
interaction. If the interaction goal can be decosgubinto several atomic goals,
the corresponding interaction can also be decontboS€®nsequently, we
specialise the interaction infdomicandCompoundhanks to th&pecialisation
strategy.

Lyee User Requirements Model

1
[I []
l | Wilnputl |Wo|utpu1| | eresult” \Nlend |

—

<> Compound|| Atomic

| Begin || End || Intermediatefﬁ Defined Item
7| Name ‘ﬁ Name
. D i
N Type 1 omain
A
NodelD o source ,—l(complete, or}
o.-HENER Output | Input |

A
L. Condition Condition
élk {complete, or} Formula {complete, or]
[| l Passive| | Active
| DupIeX||Continuousi Multiplex I—,

PNTR || PNTN - - .
PNTA [EX L ogical Unit Domain Word
PNTE InterSF N LogicallD L3 — condition
Condition| IntraSF Device L4 —formula
PNTC 47 Name
Word Domain
[PNTD][PNTM] | Routing Word > oD
NextpalletiD Action Word POPll
PRD 3
PRDName| L.]
Word in
Z 1x 1 | Pallet/Unit [Pcri][Pcre] [PBOX] [PWT1]
Scenario Functiol Pallet
SFID Palletl .
Lyee Software Requirements Model

Figure 4. Lyee Product Modelsfor Software Requirements and for User
Requirements.

Now we need to define how tHateraction concept could be mapped to the
concepts defined at the lower LSRM product modely Af the LSRM concepts
does not correspond theteraction of the LURM directly. However, th&op-
down mappingstrategy suggests that amteraction could be expressed as a
combination oftemsthat match the LSRNDomain wordconcept.

An Atomic interactiondelineates a number of input and output data:uther
provides some input and receives the output thatesponds the expected
result. Therefore, thédecomposition strateghelps us to decompose every
Interactioninto four kinds ofitemsthat we call Wiou, Woutpus Wresur @nd Weng
Each of them represents:

* Wiy the input provided in the interaction,

e W, the result of the goal achievement,

* Wouput the output displayed to the user,

* W, the item to end the interaction.

10

Then we consider the concept lafgical unit (from LSRM) that represents a
coherent set of words used in the same processaagliig or writing) and
constrained by the same physical device (databidsescreens, etc.) used by
the program. The concept Diefinedabstracts this notion in order to aggregate
logically related Iltems processed together and constrained by the same
conceptual device. OnPefined can be specialised into one or mamegical
units. For example, on®efined corresponding to a conceptual screen can be
implemented by two physical screens requiring foogical units To sum up,

the Product-driven abstractiostrategy followed by theinking strategy allows

us to create thBefinedconcept and to connect it with themscomposing it.

Similarly, the concept odPSG thePrecedence Succedence Grapas obtained
by abstraction of th€®RD concept from the paradigm product modelPSG
specifies the ordering conditions betwdzgfinedsas thePRD do it withWords
The Decomposition strategyas applied to represent the structure ofRB&as
a graph composed dfinks and Nodes Following the Top-down mapping
strategy we recognize that tténk matches the LSRMnterSF concept that
captures different links between tBeenario Functiongn a PRD whereas the
Node corresponds th8cenario Functiorconcept Thanks to theSpecialisation
strategy thelink was specialised int@uplex Continuous and Multiplex
whereas theNode was specialised int@egin End and Intermediate Every
Definedis an intermediate link in at least oR&G Figure 4 summarizes the
abstraction process from the lower LSRM into udpggrRM.

PATTERN-BASED PROCESS MODEL CONSTRUCTION

The Pattern-basegrocess model construction strategy is based emrdhcept
of pattern, which has been introduced by Alexander architecture
[Alexander77] and borrowed by IT engineers to ceptsoftware design
knowledge [Gamma94, Coad96, Coplien95, Fowler97]wedl as method
engineers to capture reusable method knowledgeldRi96, Deneckere98].
According to Alexander, a pattern refers to ‘a peat which occurs again and
again in our environment and describes the cotbesolution to that problem,
in such a way that you can use this solution aigniltimes over, without ever
doing it the same way twice’. The key idea of atquat is thus, to associate a
problemto itssolutionin a well identifiedcontext

Figure 5 shows the pattern meta-model. Phablemrefers to thesituationin
which pattern can be applied and thpeal to achieve in this situation. The
situation is characterised by a set of product etgm Thesolution is
represented by a set stiepsto realise in order to resolve the problem. A gratt
can besimpleor compound The solution of a compound pattern contains steps
which call other patterns and are nanpadtern stepsn the contrary testand
alone stepsvhich are executed.

11

Product
element

Application example|

| | = I Product Structure |

1 1| Simple || Complex 1%
1| solution || solution \/_| Step
1
<> | ’L‘ calls]
\—1“*{ Stand alone steH Pattern step}*—

Figure 5. Pattern meta-model.

The process model for pattern construction is @efiby a map based on two
core intentionddentify a patterrandConstruct a patterifFigure 6). Tddentify

a pattern means to identify a generic problem. As shown igufe 6, the
problem identification can be based on the disopeéra typical situation or a
generic goal in the method context. The two casesespectively supported by
two strategies:Situation-baed and Goal-driven. The Aggregation strategy
allows to combine several patterns into a compooné in order to propose
solutions for complex problems whereas Becomposition strateggleals with
the identification of sub-problems, which couldaalse considered as generic
ones. The identification of a new pattern situataatvises us to consider that
there must be another pattern creating this s@nafThis case is supported by
the Precedence strategy

To Construct a patterrmeans to formalise its problem (the situation amel t
goal), to define the solution to its problem astdf steps to execute, to define
its template and to give some examples of its apfidin. Two strategies named
Product-drivenand Goal-drivenare provided for this purpose (Figure 6). The
guideline supporting thBroduct-driven strategys based on the transformation
of the product elements from the pattern situafimio the product element
defined as the pattern target (pattern goal targég Goal-drivenstrategy deals
with the pattern goal reduction into a set of atmitions to be carried out in
order to achieve this goal. TH&uccedence strategyonsiders that the result
product obtained by applying an already definedepatcan be considered as a
potential situation for the definition of an ottpattern.

12

Situation-based

Goal-drive strategy

strategy
Precedencg
strate) Aggregation
ay Identify strategy
a pattern
Succedence
strategy Product-driven Decomposition
strategy strategy

Construct

a pattern Goal-driven

strategy

Completeness
strategy

Figure 6. Pattern-based process model construction.

In order to define the patterns supporting LURM staiction, we need to
identify typical situationstfie problen) in the Lyee user requirements capture
(the contexj and to define the corresponding guideling olution) assisting
in the requirements elicitation and formulation. #f®own in Figure 6, we can
start the pattern identification process followioge of two strategiesGoal-
driven or Situation-based The guidelines supporting these two strategies
supplement each other and there is no pre-estellishder to realise them. In
our case, we start the pattern identification psecillowing theGoal-driven
strategy and we consider the core LURM objective define user
requirements’ As stated in the previous section, the LURM dedinuser
requirements as user-system interactions. Therefegefounded our reasoning
on the notion of atomic interaction and investigtte possibility to identify
generic activities for requirements capture witthirs context. We deduce that
the requirements capture related to an atomic daotem comprises four
activities that can be considered as four poteptéern goals:

e to start the interaction (Formulai® Startrequirements),

e to perform the action (Formulaie Actrequirements),

e to prepare the output (Formuldte Outputrequirements) and,

« to end the interaction (Formulai® Endrequirements).

Each of these activities is linked to titem typology introduced in section 0 as
each activity is associated to one typétefit
« theFormulateTo Start requirementdeals with the capture of ¥y,
« the Formulate To Act requirementss concerned by the calculation of
Wresulb
« theFormulateTo Output requirementshall help eliciting and defining
Woutpuﬁ
« finally, the FormulateTo End requirementsonsiders W4

13

Each requirement activity is concerned with theigltion and definition of
theseltems their grouping inDefinedsand the positioning of those in the
interactionPSG

Next, we select th8ituation-basedtrategy tddentify a pattern(Figure 6) and
consider the possible situations in which thesdsgaee relevant. For instance,
we distinguish two different situations dealing lwihe capture of W, either
the input value does not exist and is directly oegad from the user or it exists in
a database or a file and is captured from thisaioet. As a consequence, we
identify two patterns having the same gbafmulateTo Start requiremeniut
dealing with different situationsput capture from the usexndInput capture
form the internal deviceNe call these two patterns respectivetynediate Start
andPrerequisite for Start

In the same manner we identify two generic situstidor each of the four
generic goals and identify so eight generic pastefrable 1 characterises the
discovered patterns. Each of these 8 patterns #etidsone single requirement
activity whereas to get the complete set of reauinets for a given problem, the
requirements engineer has to perform one of egah @y activity. The complete
set of requirements requires that each of the vatig be performed onceTo
start’, ‘To Act’, ‘To Output’and ‘To End’. To obtain advice on this, a new
pattern, Pattern P9, is introduced thanks tdQbmposition strategy

The Succedence stratedgr pattern identification suggests us to thinkabthe
construction of a compound interaction that cowddbsed on the iteration of an
atomic interaction creation guided by the pattetn & a result, we identify a
new pattern for a compound interaction formulatibat we callP10 Complex
Composition(Table 1).

Goal Situation Characterisation Pattern name
Formulate To Start W input @re captured directly from the user. P2 Immediate
requirements Start
Formulate To Start Winput are retrieved from a database or a file. P3 Puisig
requirements for Start
Formulate To Act W, esurare calculated by a simple formulae) P1 Simple
requirements which does not require the calculation of th&/ord

intermediate words.

Formulate To Act
requirements

W esurare calculated by a complex formulge?8 Complex

which requires the calculation of the

intermediate words and possibly the access

to the data in a file or a database.

Word

Formulate To Output | There is no obstacle neither in the captureg 8% Single
requirements Winput NOr in the production of Waue Output
Formulate To Output | A number of different cases of output P7 Multiple
requirements production shall be considered due to Output

possible obstacles either in the capture of
Winput OF in the production of Wau

14

Formulate To End The interaction ends normally without P4 Simple End
requirements additional internal activity.

Formulate To End Some internal activity shall be performed | P5 Compound
requirements such as storing part or the totality ofMWus | End

Formulate requirementsThe interaction goal is atomic. P9 Simple
for an atomic Composition
interaction

Formulate requirementsThe interaction goal is compound. P10 Comple
for a compound Composition
interaction

Table 1. Characterisation of theidentified patterns.

Let’s illustrate now the construction of a pattesiution. In our example, the
pattern solution takes the form of a sequence tdsriio be applied by the
engineer. Each of them mentions an action to perfdike ‘construct a
hierarchy of intermediate words involved in thectddtion of the result word
Most of these actions are identifying a requiremeat referring to an element
of the meta-model (LURM)Defined, Item, NodandLink in the PSG as for
example introduce a defined of type screen

Pattern P2 : Inmediate Start

Problem:
< goal: Formulate ‘To Start’ Requirement >
< situation: W,,<= Capturg,,() >

Solution:

Create DefinedS,,, of typescreen. Determine its name

Elicit Itemsaccociated to \, ,

Link thesdtemsto theDefined.Determine for eacttemits nameanddomain
TypeltemsasInputandPassive

Create #SGwith the DefinedasIntermediate nodand link from theStart nodewith a

Continuous link

aprowbdpE

Product Structure: T 1
1T i
Defined i--- P~
PS
= Name
PsgName Type
¢<<bind>>
! (Type = Screen)

- source - target -] -
Begin Continuous <Null> 1 Intermediat S input Defined ‘? Passive
Nodel Condition Node2 Name

Domain

Figure7. Pattern P2 : Immediate Start.

As an example we propose the construction of theepaP2 following the
Product-drivenstrategy. The objective of this pattern is to pirepa user-system
interaction. TheProduct-drivenstrategy advises to instantiate the meta-model
elements necessary to achieve the pattern goakhith case we need to
instantiate the meta-model elemenBBefined Item and PSG which are

15

necessary for the input values capture. As a cargseg, the actions to perform
should be:

« to create th®efinedfor the necessary input values capture,

« to define aritemto each input value,

¢ to link theltemsto theDefined

* to typeltemsasinput andPassiveand

* to create the relevant part of tA8G

Next we need to define the pattern product strectdthe pattern product
structure is an instance of the meta-model repteggnhe configuration of
concepts to be instantiated in any applicationthi case of the pattern P2, a
PSG must be created containing Begin node a Continuous link an
Intermediate nodeorresponding to th@efined of type screen (calledinf)
composed of the elicitettems Figure 7 shows the pattern P2, its problem,
solution and template.

In the same manner we construct all the pattewnms 1 to P8. The pattern P9
can be constructed following th&oal-driven strategy, which advises to
decompose the principal goal into sub-goals uhgl atomic actions had been
obtained. Thus, the objective of the pattern P@rmulate requirement for an
atomic interactiohcan be decomposed into four sub go&lsrmulate To Start
requirement’, ‘Formulate To Act requirement”, ‘Rowlate To Output
requirement’, ‘Formulate To End requirement’this order. As there are always
two patterns that are candidate to help achievirg doal, it is necessary to
examine the situation first. As pattern situatians exclusive, the choice of the
relevant pattern to apply is easy. The obtainetepais a compound one. It is
shown in Figure 8.

Pattern P9 : Simple Composition

Problem:
< goal: Formulate requirement for an atomic intgcec>
< situation: The interacion goal is atomic >

Solution: Formulate requirementl for an atomic interaction
{ ‘ ‘ \ \
1. Formulate 2. Formulate 3. Formulate 4. Formulate
To Startequirement To Actrequirement To Outputrequirement To Endrequirement
Determine Apply Determine Apply Determine Apply Determine Apply
the situation pattern the situation pattern the situation pattern the situation pattern

to Star%\ to Act/\ to Oumu/\ to En%

Apply P2 Apply P3 Apply P1 Apply P8 Apply P6 Apply P7 Apply P1 Apply P8

Figure 8. Pattern P9: Simple Composition.

Finally, the pattern P10 deals with the compouneéraction. The goal to be
achieved is to get a complete and coherent reqeimerformulation for a

16

compound interaction. This pattern should give dwvice on how to decompose
a compound interaction into atomic interactionsvtich the pattern P9 should
be applied. In fact, the pattern helps in recoggighat the interaction is not an
atomic one in the first place.

Each of ten patterns captures a requirement Stuaind guides the formulation
of the requirement in compliance with the requirammeta-model. The ten
patterns will be applied again and again in théedét software projects using
Lyee. Even though actual situations are differeammf one project to another,
each of them should match one pattern situationtbedattern will bring the
core solution to the requirements capture problgised by this situation.

CONCLUSION

In this paper we propose an approach for evolutiGven method engineering.
Evolution in this case means that we start methgineering with an existing
paradigm model (model or meta-model) and we obdaiew model (or meta-
model) by abstracting, transforming, adapting ostantiating this paradigm
model. Our process model for evolution-driven MBptoses these various
evolution ways as different strategies to create gloduct part of the model
under construction. The corresponding process [partstruction is also
supported by a set of strategies the selectionteélwdepends on the process
nature and complexity. Every strategy is suppoftgda guideline assisting
method engineer in his or her method evolution.task

The flexibility offered by the map formalism thatewuse to express our
Evolution-Driven ME process model allows us to ut# other ways for method
evolution in a rather simple manner. They can biegirated as different
strategies to satisfy the intenti@onstruct a product modelnd Construct a
process model

In this paper we present the evaluation of our epghm by the LURM
construction as evolution of the LSRM. TAbstraction strateghave been used
to Construct a product mod&bhile the Pattern-driven strategyvas applied to
Construct a process modéh this paper we present these two strategiesare
detail and illustrate their application. Our futyseeoccupation is to evaluate
other proposed method evolution strategies as agelb validate it through real
projects.

REFERENCES
Alexander, C., Ishikawa, S., Silverstein, M., Jamf M., Fiksdahl-King, 1.,

Angel, S. (1977). A Pattern Languagaxford University PressNew
York.

17

Benjamen, A. (1999)Une Approche Multi-démarches pour la modélisaties d
démarches méthodologiquesnpublished doctoral dissertation,
University of Paris 1 — Sorbonne.

Brinkkemper S., Saeki, M. & Harmsen, F. (1998). éxably Techniques for
Method Engineering. Proceedings of the 10th International
Conference on Advanced Information Systems Engimger
CAISE'98.Pisa Italy.

Coad, D., North, D. & Mayliefd, M. (1996)Object Models — Strategies,
patterns and applications’ourdon Press Computing Series, 1996.

Coplien, J.0. & Schmidt, D.O. (Eds.). (199®%)atron Languages of Program
Design Addison-Wesley, Reading, MA.

Deneckere, R. & Souveyet, C. (1998). Patterns Xtereling an OO model with
temporal featuresProceedings of the International Conference on
Object-Oriented Information Systems, OOI$S'@Bpringer-Verlag,
Paris (France).

Fowler, M. (1997).Analysis Patterns: reusable objects mogdetsidison-
Wesley.

Gamma, E., Helm, R., Johnson, R. & Vlissides, 994). Design Patterns :
Elements of Reusable Object-Oriented Softwadzlison-Wesley.

Grundy, J.C. & Venable, J.R. (199@Jpwards an Integrated Environment for
Method Engineeringln Chelenges and Strategies for Research in
Systems Development. W.W. Cotterman and J.A. SExs.], John
Wiley & Sons. Chichester, pp.45-62.

Harmsen A.F., Brinkkemper, S. & Oei, H. (1994). ugttonal Method
Engineering for Information System Projedts.Olle T.W. and A.A.
Verrijn Stuart (Eds.), Mathods and Associated Todéis the
Information Systems Life CyclByoc. of the IFIP WG8.1 Working
Conference CRIS'94, pp. 169-194, North-Holland, ferdam.

Harmsen, A.F. (1997Bituational Method Engineering/ioret Ernst & Young.

Hofstede, A.H.M. Ter. (1993)nformation modelling in data intensive domains
Dissertation, University of Nijimegen, The Netheidis.

Jarke M., Rolland, C., Sutcliffe, A. & Domges, R1909). The NATURE
requirements Engineeringhaker Verlag, Aachen.

Kumar, K. & Welke, R.J. (1992)Method Engineering, A Proposal for
Situation-specific Methodology Constructioin Systems Analysis
and Design : A Research Agendzotterman and Senn (eds), Wiley,
pp257-268, 1992.

Negoro, F. (2001a). Methodology to Determine Sofewan a Deterministic
Manner.Proceedings of ICHBeijing, China.

Negoro, F. (2001b). A proposal for Requirement Begiing.Proceedings of
ADBIS Vilnius, Lithuania, 2001.

Plihon, V., Ralyté, J., Benjamen, A., Maiden, N\VA. Sutcliffe, A., Dubois,
E., Heymans, P. (1998). A Reuse-Oriented Appro&mh the
Construction of Scenario Based MethodBroceedings of the

18

International Software Process Association's 5thtedmational
Conference on Software ProcddSSP'98), Chicago, lllinois, US.

Plihon, V. (1996). Un environnement pour lingénierie des méthodes
Unpublished doctoral dissertation, University ofi®d — Sorbonne.

Prakash, N. & Bhatia, M. P. S. (2002). Generic Msd®r Engineering
Methods of Diverse Domain®roc. of CAISE'02 Toronto, Canada,
LNCS Volume 2348, pp. 612., 2002.

Prakash, N. (1999). On Method Statics and Dynanlitfrmation Systems
Vol.34 (8), pp 613-637.

Punter H.T. & Lemmen, K. (1996). The MEMA model owards a new
approach for Method Engineering. Information and ftBare
Technology, 38(4), pp.295-305.

Ralyté, J. & Rolland, C. (2001a). An Assembly PsxéModel for Method
Engineering.Proceedings of the 13th International Conference on
Advaced Information Systems Engineering, CAISEIdierlaken,
Switzerland.

Ralyté, J. & Rolland, C. (2001b). An approach foethod reengineering.
Proceedings of the 20th International Conference Gwnceptual
Modeling ER2001, Yokohama, Japan.

Ralyté, J. (1999).Reusing Scenario Based Approaches in Requirement
Engineering Methods: CREWS Method Ba®eoc. of the First
International Workshop on the Requirements EngingeProcess -
Innovative Techniques, Models, Tools to support Rie Process,
Florence, Italy, September.

Rolland C., Plihon, V. & Ralyté, J. (1998). Spgiuifj the reuse context of
Scenario Method Chunksroceedings of the 10th International
Conference on Advanced Information System Engimgeri
(CAISE'98), Pisa, Italy.

Rolland, C. & Prakash, N. (1996). A proposal fomtaxt-specific method
engineering. Proceedings of the IFIP WG 8.1 Comiggeon Method
Engineering, Chapman and Hall, pp 191-208, Atlarf@&rorgie,
USA.

Rolland, C., Prakash, N. & Benjamen, A. (1999). AultilModel Vew of
Process ModellingRequirements Engineering Journalol. 4 (4),
ppl69-187.

Rolland, C., Souveyet, C. & Moreno, M. (1995). Amppkoach for Defining
Ways-of-Working,Information Systems Journdl995.

Saeki, M. & Wen-yin, K. (1994). Specifying Softwaspecification and Design
Methods.Proceedings of the International Conference on Adda
Information Systems Engineering;AISE'94, LNCS 811, Springer
Verlag, pp 353-366, Berlin, 1994

Saeki, M., Iguchi, K., Wen-yin, K., Shinohara, ML.9983). A meta-model for
representing software specification & design meth&doc. of the
IFIP"'WG8.1 Conference on Information Systems Devetnt
Process Come, pp 149-166.

19

Song, X. (1997).Systematic Integration of DesigntiMds. IEEE Software,
1997.

Van Slooten K. & Brinkkemper, S. (1993). A Methoddieering Approach to
Information Systems Developmentln Information Systems
Development procesN. Prakash, C. Rolland, B. Pernici (Eds.),
Elsevier Science Publishers B.V. (North-Holand).

Van Slooten, K. & Hodes, B. (1996). CharacterisiBgdevelopment project.

Proceedings of the IFIP WG 8.1 Conference on Method
Engineering, Chapman and Hall, pp 29-44.

20

