
HAL Id: hal-00706333
https://hal.science/hal-00706333

Submitted on 10 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A distributed plateform of high interaction honeypots
and experimental results (extended version)

Ivan Studnia, Vincent Nicomette, Mohamed Kaâniche, Eric Alata

To cite this version:
Ivan Studnia, Vincent Nicomette, Mohamed Kaâniche, Eric Alata. A distributed plateform of high
interaction honeypots and experimental results (extended version). Privacy Security Trust (PST
2012), Jul 2012, Paris, France. 8p. �hal-00706333�

https://hal.science/hal-00706333
https://hal.archives-ouvertes.fr


A distributed platform of high interaction honeypots

and experimental results (Extended Version)

Ivan Studnia1,2, Vincent Nicomette1,3, Mohamed Kaâniche1,2, Eric Alata1,3

1CNRS, LAAS, 7 Avenue du colonel Roche, F-31400 Toulouse, France,
2Univ. Toulouse, LAAS, F-31400 Toulouse, France

3Univ. Toulouse, INSA, LAAS, F-31400 Toulouse, France

Email: {studnia,nicomett,kaaniche,ealata}@laas.fr

Abstract—The increase of various malicious activities spread-
ing on the Internet network are today a crucial problem. In
order to understand the motivations and operating modes of
the attackers, it is necessary to collect data characterising these
malicious activities. Their analysis enables to better face these
attacks, anticipate new threats and better adpat the correspond-
ing protection mechanisms. This paper proposes a distributed
platform oh high interaction honeypots deployed for that pur-
pose. The paper describes 1) the design and implementation of
this platform, 2) the methodology used to collect and record data
characterising the malicious activities and 3) the first analyses
carried out on this data.

I. INTRODUCTION

The Internet fast paced development (about two billion users

in 2010 according to the Internet World Stats1) permitted the

emergence of many online services and many communities

of Internet users. This network is now so important that

rules and even laws have been created in order to ensure

its right behavior. Indeed, some people, through exploits of

hardware or software vulnerabilities, misuse computers for

malicious purposes, e.g. to obtain private information, take

over computers or spread some malware (worms, trojans. . . ).

Therefore, countermeasures have been designed in attempts

to fix these weaknesses and block the attacks, continuously

forcing the hackers to find new vulnerabilites and new ways

of using them. Thus, attackers and security experts are in a

never-ending attack-defense race[1].

Today, it is crucial to know the strategies currently used by

the attackers in order to efficiently counter incoming attacks

and to design new, adapted protection mechanisms. To do

so, one should collect the most recently available information

about hackers. There are currently different ways used to do

so. For example:

1) Collection and processing of the information issued by

networking and security devices like routers or fire-

walls23.

2) Setting up of “decoys” [2], in order to trap and monitor

attackers’ activities.

In this paper, we focus on the automation of the latter,

through the concept of honeypots. The common definition

1www.internetworldstats.com/stats.htm
2www.dshield.org
3www.symantec.com/about/profile/universityresearch/sharing.jsp

was given by L. Spitzner [3]: A honeypot is an information

system resource whose value lies in unauthorized or illicit

use of that resource. Here, this term refers to a computing

system, connected to the Internet, deliberately designed to be

vulnerable in order to be an attractive target for attacks so

that we can analyze their characteristics (protocols being used,

exploited weaknesses, executed programs. . . ). There are many

different ways to design a honeypot [4], [5]. They are usually

grouped within two categories: high (for example [6]) or low

(as in [7]) interaction, depending on the possibilities given to

an attacker, although new trends are appearing (like in [8], [9]

or [10]). We propose in this paper the description of a data

collection platform using various high interaction honeypots

set in different locations, along with our first analyses of

this data. This deployment follows a previous experiment

conducted with the same honeypot that was deployed at a

single location (cf. [11]). The objective is to check if the results

of our first experiment can be generalized.

This paper is arranged as follows. Section II presents an

overview of the high interaction honeypot that we conceived

and implemented within these experiments. Then the collected

data and the way it is stored and sorted are described in

section III. Section IV details the architecture of the distributed

honeypot platform and explains how it works. deployed for

this experiment. Section V presents the results of the first

analyses performed on the collected data. Finally, section VI

will conclude this work.

II. HIGH INTERACTION HONEYPOT

The design and implementation of our high interaction

honeypot is not the main contribution of this paper. As a

consequence, we only present its main characteristics in this

section. More detailed information can be found in [11].

Our high-interaction honeypot is especially designed to

record malicious activities carried out by human beings. How-

ever it is also able to record activites carried out by automatic

tools. For that purpose, we included vulnerabilities that can be

easily exploited by human beings. Our choice was to use the

GNU/Linux operating system and create user accounts with

weak passwords, accessible through the ssh service.

So as to obtain the highest interaction level possible, several

hosts can be accessed by the attackers. As “real” systems are



costly and complex to manage, we used virtual hosts. The

information recorded to analyse attack scenarios, is:

• The pairs (login/passowrd) tested by the intruder.

• The keystrokes typed by the intruder as well as the text

displayed on his/her terminal. These characters allow us

to reconstruct the commands entered by the intruder.

• The system calls generated by the activity of the attackers.

This can be useful if the capture of the keystrokes entered

by the intruder is not sufficient to identify the commands

executed by the attacker (use of shortcuts, or program

that calls other programs).

The kernel of each virtual machine is patched at two places.

We instrumented: 1) the functions of the tty driver that allow

us to record all the keystrokes and characters typed by the

intruder while he/she has successfully penetrated the system

and uses an interactive shell, and 2) the exec system call

that allows us to intercept each system call executed by the

intruder.

Additionally, in order to capture the usernames and the

passwords tested by the attackers, we created a new system

call in the kernel and modified the SSH server accordingly to

use this new system call. All this information is logged on a

dedicated area of the virtual host kernel memory. This choice

is motivated by the fact that most of the patched code runs

in privileged mode (ring 0) and has direct access to kernel

memory space.

This collected information is then periodically copied into

the real host: the content of the virtual host memory is directly

accessible from the real host. The main advantage of this

backup strategy is that it is difficult to identify by the attacker.

It is a simple copy of data from a memory region to the hard

disk of the real host and it is carried out only once a day at a

fixed date (this operation lasts less than one second). Finally,

the collected information is transferred to a database server

where the analyses can be performed.

Figure 1 presents the architecture of the honeypot.

Fig. 1. Honeypot architecture

III. DATA COLLECTION AND STORAGE

Data recorded by the honeypots is stored in a database and

sorted to ease future accesses and subsequent analyses.

The database structure is summed up in figure 2. We will

only describe here the most important tables used for our

analyses.

Fig. 2. Schema of the database corresponding to one honeypot

Table op_sshd_auth_password contains the data con-

cerning every connection attempt. The meaning of each field

is described hereafter:

• ip_address is the attacker’s source IP address.

• user is the attempted login.

• password is the attempted password.

• is_auth shows whether the connection succeeded or

not.

• end_id represents, in case of a successful connection,

the id of the latest recorded action during the correspond-

ing attack.

Table op_sshd_new_session is updated whenever

there is a successful connection. Quite similar to

op_sshd_auth_password, it only contains information

about the attacks during which a terminal has been opened.

Column tty_name shows which terminal was assigned to

the attacker. This information is used to link the data given by

the patched tty driver to the one given by the ssh server.

Table op_tty_read_write contains all the information

recorded by the tty driver. Each line includes the content

of the tty buffer and the name of the terminal to which it

belongs. When the data contains input typed by an attacker,

the buffer will only contain one character at a time. However,

if the input has been copied and pasted, the buffer will

contain several characters. It is therefore easy to make a first

observation about the attacker’s behaviour.

Table op_exec contains data related to the programs

executed by the host during an intrusion. Each line contains

the name of the executed program, the parameters it received

and the terminal in which it was run.

Once the database is filled, tables called sessions can

be created and updated. These tables store data resulting from

the grouping of ssh connections into attack sessions. Data is

regrouped as follows : close in time ssh connections from



the same IP are gathered into sessions4. in order to recreate

an attacker’s activities. We can distinguish three categories :

• The attacker succesfully logged in and commands have

been issued. These are called intrusions.

• No commands were issued, but a large amount of (lo-

gin/password) where tried in a short period of time. These

are called dictionnary attacks.

• All other cases fall into the others category. They proba-

bly correspond to misconfigurations of accidental errors.

sessions tables then consists of:

• beginning and end which are the ids of the starting

and ending events of a session.

• session_type which indicates whether the attack is

an intrusion, a dictionary attack or none of these.

• is_auth which is set to 1 if at least one connection

attempt succeeded during the session and which is set to

0 otherwise.

• ip_address which is the attack source IP.

• country which is the country this IP is from.

A graphical user interface for managing the base was

developped in order to ease the processing and the analyses

of the data recorded in this database.

IV. HONEYPOTS DISTRIBUTED PLATFORM

Our goal is to deploy honeypots into several places over

the world in order to compare the behaviours of different

attackers. Our aim is to check if some global trends emerge or

if activities are instead related to the location of the targeted

honeypot. For this experiment, we have had access to four

machines, each one with its own public IP address, located in

three different places: one in Toulouse, France, another one in

Rennes, France, another one in College Park, Maryland and

the last one at LAAS.

This section presents the architecture of our honeypot plat-

form.

A. Architecture

We had two different alternatives to deploy the high inter-

action honeypot on the different locations. A first possibility

is to replicate the architecture of the honeypots used during

our previous experiment and to install it on a computer

located in those different locations. However, this idea has

three major drawbacks. First, deploying a high interaction

honeypot remains a risky operation, because it lets an attacker

actually operate on the real system and possibly make damages

on this system. Therefore, deploying several honepots in

different remote sites imposes a lot of security constraints and

administration overhead, all the more as we do not control

the remorte network where the honeupots will be installed

and configured. Secondly, each honeypot must be deployed

under identical conditions because different parameters could

bias the comparative analyses. This is important and must be

taken into account when designing the platform. Finally, we

4This grouping is done according to a threshold for which we set the value
at 20s, after analyses we will not detail here (see [12])

do not want the networks hosting our honeypots to be infected.

This means that we do not allow an attacker to execute his

commands on computers that are not under our control. Our

system have to make an attacker believe he is connected on a

computer located in Toulouse, Rennes or College Park whereas

he actually interacts with one machine at LAAS.

Thus, we chose an approach in which an attacker’s con-

nections will be rerouted towards virtual machines installed

on one particular computer located at LAAS. This way we

can keep control on the honeypots, guaranteeing a sufficient

amount of security and more efficient ways to react to possible

threats. Moreover, this allows us to minimize the influence of

the hardware and the networks at the different locations by

using these remote machines only as relays to our local setup.

Figure 3 provides an overview of the deployed architecture.

We have three machines located into remote networks and one

set up at LAAS, each one with a public IP address. All act as

relays to our virtual machines, named VM1 to VM4. These

are installed on the same host which also simulates a local

network for each of those virtual machines. GRE (Generic

Routing Encapsulation, as described in RFC 27845) tunnels

are created between each relay and the host, which links each

virtual machine to its corresponding tunnel. We must however

ensure that the replies sent to the attackers by our virtual

machines will follow the same route that the requests they

recieved (that is, going back through the tunnels and the relay),

otherwise they could be blocked by some firewalls. Finally,

routing rules on the host and the relays enable some selected

part of the traffic targeting the relays public IPs to be rerouted

to the virtual machines.

Fig. 3. Honeypots distributed platform architecture

B. Traffic management

Connections are monitored by the relays and the host at

LAAS. Monitoring is done with iptables, allowing us

to write rules to filter incoming and outgoing packets of a

Linux system. The security policy enforced by the relays is as

follows:

• Incoming connections on port 22 are allowed. It is the

default port for ssh, and thus enables the attackers to

connect to this service.

5www.ietf.org/rfc/rfc2784.txt.



• Outgoing connections through ports 53 (dns) and 123

(ntp) are allowed, so our virtual machines can use these

services.

• An extra port plaas is opened only for machines with

LAAS owned IPs, for remote administration purposes.

• GRE protocol is allowed in both directions.

• Every other connection attempts are dropped.

The security policy concerning the machine at LAAS host-

ing the virtual machines is as follows : La politique de sécurité

au niveau de l’hôte des machines virtuelles est la suivante :

• GRE protocol is allowed in both directions.

• ssh connections on port plaas are allowed from

LAAS, for administration purposes.

• ssh connections on port 22 are allowed from the tunnels

to the virtual machines.

• dns and ntp are allowed from the virtual machines to

the tunnels.

V. EXPERIMENT AND DATA ANALYSIS

Our experiments were carried out in two steps. First, we

deployed our honeypots for a month without any account

created. This first step lasted from June 1
st to June 30

th.

Analyses of the data collected during this month gave an

overview of the login/password pairs tried by the attackers,

as well as their frequency. These results have been used to

create a list of accounts we knew to be often tried. The next

step started with the creation of the aforementioned accounts

on every honeypot. Thanks to these accounts, we hoped to

quickly observe some intrusions. This second step started on

July 1
st. In this section, we first give an overview of the

results obtained during these two steps, distinguishing them

if required. Then, we present some detailed analyses on this

data. We consider the data recorded up to December 1
st.

A. Observed activities

In this part, we analyze the results of the observations made

on the honeypots before any processing of the data. These

analyses concern both steps of our experiment.

1) ssh connections:

Honeypot Nb. connections Nb. successful connections Nb. distinct IPs

Toulouse 301948 58 385

Rennes 397462 119 387

College Park 10737 42 197

LAAS 150027 298 421

Total 860174 517 1207

TABLE I
DISTRIBUTION OF THE ssh CONNECTIONS OBSERVED ON THE

HONEYPOTS.

a) Overview: Table I shows how the observed connec-

tions are distributed between our honeypots on December 1
st.

Each one of these connections corresponds to a login/password

request sent to a ssh server.

The number of distinct addresses we get by considering all

the honeypots together (1207) being smaller than the sum of

the values obtained for each machine (1390), it appears that

some IPs connected on more than one machine. Therefore, we

will have to take these intersections into account during our

analyses.

Table II shows which pairs were the most tried on each hon-

eypot. Unsurprisingly, the root account (which is the admin-

istrator account on Linux) is the favorite target of the attacks,

no matter which honeypot we consider. For the rest, we can see

that the most tried pairs are quite simple, with a password often

identical to the login. This confirms the observations made

four years ago in [11]. We may then suppose that it is still

common practice to use such logins/passwords (an attacker

would have no interest in trying such combinations if they

were very unusual). Moreover, there seems to be an interest

for logins corresponding to default accounts usually created for

the needs of some programs (oracle, mysql, postgres,

nagios, etc.). Corresponding passwords are those initially

created during the installation of such applications. It would

be interesting to know if these programs are targeted only

because they are widespread or if the interest lies in obtaining

the files and the data they can use.

When we compare the results obtained on each honeypot,

we can see some variations between the rankings, although

some pairs appear in the first positions of every honeypot.

b) Calibration: At the end of the first phase, we identi-

fied the most tried combinations on each honeypot. Using this

data (excluding root), we established a list of login/password

pairs which has been used on all four honeypots. The pairs in

this list were chosen according to the following criteria :

• Pairs being among the most tried ones on one honeypot

but not on the others.

• Pairs often tried on every honeypot.

• Pairs in which the login differs from the password.

• Pairs in which the login is identical to the password.

• Pairs for which the login is related to software that could

be installed on the computer (apache, mysql, etc.).

Using these criteria, we created the accounts shown in

table III on every honeypot.

c) First connections: Let us call τ1 the duration between

the creation of an account and the first successful connection

attempt to this account, and τ2 the time spent since this

attempt until the first connection on the same account where

commands were entered. Values of τ1 and τ2 for every account

created on our honeypots are given in table IV. In two cases,

an attacker logged in with one of the 11 accounts succesfully

managed to obtain root privileges through exploiting a

system vulnerability. When this happened, we also give the

time spent between the account creation and this event.

The table shows much higher values for τ1 on the College

Park honeypot. There are several possible explanations for

this. First, the activity on this honeypot since the accounts

creation has been less intense than on the three other ones.

This could be due to the network configuration, which may

implement some form of rate limiting, during a dictionary

attack for example. Various tests indicate that this is not the

case here, as it was later confirmed by the sysadmin of the

corresponding site. We can also assume that the few seconds

delay resulting from the rerouting of the requests from the



Toulouse Rennes College Park LAAS

Order Pair Nb. Pair Nb. Pair Nb. Pair Nb.

ro
o
t

in
cl

u
d
ed 1 root 123456 347 root 123456 386 root 123456 70 root 123456 247

2 oracle oracle 282 root password 327 root root 61 root root 221

3 root password 271 oracle oracle 304 root password 58 root password 203

4 root qwerty 250 test test 297 root qwerty 47 root qwerty 201

5 test test 247 root root 282 test test 36 oracle oracle 174

ro
o
t

ex
cl

u
d
ed 1 oracle oracle 282 oracle oracle 304 test test 36 oracle oracle 174

2 test test 247 test test 297 oracle oracle 32 test test 150

3 mysql mysql 197 mysql mysql 257 admin admin 19 postgres postgres 140

4 postgres postgres 193 postgres postgres 251 postgres postgres 16 mysql mysql 120

5 test test123 159 user user 224 mysql mysql 13 admin admin 103

TABLE II
LIST OF THE 5 MOST TRIED PAIRS ON EACH HONEYPOT

Account login pass

C1 adam adam

C2 alex alex123

C3 apache apache

C4 cary cary

C5 eric eric

C6 michael michael

C7 mysql mysql

C8 nagios 123456

C9 postgres postgres

C10 test test123

C11 user password

TABLE III
LIST OF THE CREATED ACCOUNTS

Account
Toulouse Rennes C.P. LAAS

τ1 τ2 τ1 τ2 τ1 τ2 τ1 τ2

C1 65h - 48h 81h 80d 61h 25d 40d

C2 61h - 48h 15d 81d 6h 14d 40d

C3 32h - 72h 15d 73d 8d 33h 37h

C4 - - 7d 14d - - 53d 30d

C5 65h - 72h 99h 82d - 6d 48d

C6 65h 70h 64h 7h 60d - 6d 11d

C7 50h 1h 72h 6d 71d - 55h 1h

C8 7d 19h 99h 99h 87d - 100h 10d

C9 65h 70h 72h 28h 23h 6h 60h 2h

C10 56h - 72h 9d 81d - 55h 1h

C11 65h - 72h 16d - - 7d 6d

root 6d - - 25d

TABLE IV
τ1 AND τ2 DURATIONS FOR EACH ACCOUNT AND EACH HONEYPOT

United States to France was big enough to discourage part of

the attackers. Finally, we can not rule out the hypothesis of

an attacker being able to unveil the honeypot, putting its IP

address on a “blacklist” of machines to be ignored.

We can see on this table that every account that has been

found was not necessarily attacked afterwards. This may be

due to several causes. First, as we deliberately chose to use

frequently tried combinations, several of them may be found in

one attack session (10 valid pairs were found during one single

dictionary attack targetting the honeypot located in Toulouse).

It happened that the attacker logged in with just one account

then changed the password of the other ones from there,

preventing other attackers from connecting afterwards. For

example, we observed an attacker who changed 6 passwords

in a row. Moreover, we had two cases where an attacker was

able to acquire root privileges. From there, he changed the

password of any account he could find on the machine. As

root, he possessed every privilege on the attacked machine,

thus he did not even need to know the original passwords

in order to change them. After that, the new passwords being

quite sophisticated, they were not found during later dictionary

attacks. This kind of specific behaviours will be described in

section V-C2.

The analyses of our results show that the discovery of our

accounts happened quickly (except in College Park and for

account C4), as expected, since in one week all but one logins

and passwords were found. However, the time before a first

intrusion on these accounts ranges from one hour to more than

two weeks.

2) Geographical distribution: The recorded connections

came from 1207 distinct IPs, originating from 78 countries.

Table V shows the 5 countries from which we have seen the

highest number of distinct IPs on each honeypot.

Rank Toulouse Rennes College Park LAAS

1 China 83 China 80 China 40 China 98

2 USA 50 USA 56 USA 39 USA 60

3 Germany 18 South Korea 37 Brazil 12 Romania 34

4 France 18 Germany 14 Japan 7 Russia 16

5 Netherlands 18 UK 13 UK 7 Germany 14

Nb. distinct

IPs 385 387 197 421

TABLE V
ORIGIN OF THE MOST OBSERVED ATTACKS ON EACH HONEYPOT

China and the United States are the two top ranked countries

on the four honeypots. Concerning the rest of the rankings, at

this scale, the differences are not important enough to allow

us to conclude.

Moreover, by comparing the IPs recorded by these four

honeypots with those recorded by the honeypot previously

installed at LAAS [11] (3230 distinct addresses recorded

between January 2006 and August 2010), only four of them

were seen during both experiments, and only on the honeypots

located in France. This emphasizes a first interesting conclu-

sion: it seems that the IP addresses used for these attacks have

a limited lifespan.

B. Dictionary attacks

1) Overview: We call dictionary attacks a session during

which at least 9 ssh connection attempts happened. This

allows us to rule out quite safely the cases where the observed

attempts actually correspond to connection mistakes. We ob-

tained a total of 1479 dictionary attacks. These originated from

825 distinct addresses, from 71 different countries.

2) Vocabularies:

a) Definition: We call vocabulary of a session the set

of login/password pairs used during this session. Each pair

forms a word of this vocabulary. We call dictionary a set of

vocabularies possessing common characteristics.

b) Observations: We created a global dictionary for each

honeypot, which is actually the union of all the vocabularies

observed on this honeypot. Thus, we call D1, D2, D3 and

D4 the global dictionaries from the honeypots respectively

located in Toulouse, Rennes, College Park and at LAAS. We

call D1
′, D2

′, D3
′ and D4

′ the dictionaries created from D1,



D2, D3 and D4 and containing the words appearing only in

these dictionaries :

Di′ = {m ∈ Di/∀j 6= i,m /∈ Dj}

These are called the exclusive parts of those dictionaries.

Table VI shows the amount of words those dictionaries have

in common.

Despite the big differences of size between the different

dictionaries, we can make some observations. First, one can

notice that a large enough basis of common pairs exists, even

if it changes within each honeypot. Indeed, the exclusive parts

of the dictionaries D1, D2, D3 and D4 consist in 57%, 62%,

14% and 44% of their respective sizes.

Dictionary Number Dictionary Nomber

of words of words

D1 127226 D1 ∩ D2 ∩ D3 3732

D2 142956 D1 ∩ D2 ∩ D4 29277

D3 5953 D1 ∩ D3 ∩ D4 3172

D4 76102 D2 ∩ D3 ∩ D4 3224

D1 ∩ D2 46893 D1 ∩ D2 ∩ D3 ∩ D4 3025

D1 ∩ D3 4218 D1
′ 72598

D1 ∩ D4 36673 D2
′ 89463

D2 ∩ D3 4546 D3
′ 825

D2 ∩ D4 35262 D4
′ 33348

D3 ∩ D4 3467

TABLE VI
INTERSECTIONS OF THE FOUR GLOBAL DICTIONARIES

In a similar way, let us call D0 the dictionary containing

every pair tried during the experiment described in [11],

and D0
′, its exclusive part regarding D1, D2, D3 and D4.

Table VII gives us an overview of the evolution of current

vocabularies compared to those observed during the previous

experiment. We note that about 40% of the content from the

recently observed dictionaries (except for D3, for which a

higher proportion, around 80%, was observed) is also in D0.

Considering the largest dictionaries, it seems that the content

of the vocabularies tends to evolve through time. Nevertheless,

it is early to generalize this conclusion due to the relatively

short duration of the second experiment.

Dictionary Number of words

D0 253287

D0 ∩ D1 56333 (44% D1)

D0 ∩ D2 51219 (36% D2)

D0 ∩ D3 4653 (78% D3)

D0 ∩ D4 33675 (44% D4)

D0 ∩ D1 ∩ D2 ∩ D3 ∩ D4 2720

D0
′ 172708

TABLE VII
COMPARISONS BETWEEN OLD AND NEW DICTIONARIES

3) Geographical distribution: Table VIII counts the IP

addresses having performed dictionary attacks on several ma-

chines. We note that only two addresses have attacked all

four honeypots. However, there is an important number of

addresses which attacked at least two honeypots in France

whereas a very few IPs were seen both in France and in the

United States. It should be noted that the IPs corresponding

to the French honeypots are quite close to one another but

farther from the College Park address. Moreover, the lists of

login/password pairs tried by a single address on several of our

honeypots are very similar, and sometimes identical. It seems

that machines dedicated to these attacks are given a range of

IPs to target instead of scanning the whole spectrum. They

then keep trying the same sequence of pairs on each machine

before proceeding to the next one, or even restarting at the

beginning of the range, as we witnessed several times.

Set Number of attacks Distinct IPs

Toulouse 358 297

Rennes 529 308

College Park 197 93

LAAS 395 225

Toulouse ∩ Rennes 120 54

Toulouse ∩ College Park 21 12

Toulouse ∩ LAAS 108 55

Rennes ∩ College Park 12 7

Rennes ∩ LAAS 84 37

College Park ∩ LAAS 9 6

Toulouse ∩ Rennes ∩ College Park 8 2

Toulouse ∩ Rennes ∩ LAAS 71 24

Toulouse ∩ College Park ∩ LAAS 6 2

TABLE VIII
DISTRIBUTION OF THE IPS INVOLVED IN DICTIONARY ATTACKS

C. Intrusions

This section is dedicated to the analysis of the successful

connections that included the execution of some commands

on the honeypot : the intrusions.

1) Identifying the attackers: We noted that almost half of

the 131 intrusions we recorded came from the same European

country P1 (62 intrusions). These results confirm what had

been noticed during the previous experiment [11]. However,

some of these addresses may actually be relays used by an

attacker to hide himself behind. Nevertheless, analysis of the

information given by the terminals used during the attacks

showed that those attackers often tried to download programs

on websites hosted in the same country. Besides, among the

programs that were actually executed, several diplayed some

text in the language from P1.

Moreover, we have seen in section V-A1a that some IP

addresses were seen on several honeypots. The results of the

analyses of the overlapping IPs presented in table IX show us

that intrusions on different locations are rarely carried out from

the same addresses. Indeed, only five IPs involved in intrusions

were seen on several honeypots, more specifically on the

French ones. Looking more in detail at what happened during

these intrusions, we noted that for four of them, that targeted

both the honeypots deployed in Toulouse and in Rennes, the

altered password used during the account takeover (cf V-C2a)

was always the same (the fifth address did not change the

password of the attacked account). We can conclude from

this observation that these four addresses therefore belong

to the same individual or group of individuals. Furthermore,

the number of distinct addresses is quite close to the number

of detected intrusions but much higher than the number of

attacked accounts, which means that most of the attackers do

not connect twice with the same address on an account. In the

case of accounts having been visited by several addresses, two



hypothesis (that do not exclude each other) can be considered

:

• The attacker changed his address on each connection to

hide his activities.

• There is actually a community of attackers sharing in-

formation about the machines they attacked, which for

example allows them to relay if one of them cannot take

over a machine due to a lack of technical skills.

Set Number Distinct Nb. of attacked

of intrusions IPs accounts

Toulouse 22 13 4 + root

Rennes 26 21 11

College Park 7 7 4

LAAS 76 51 11 + root

Toulouse ∩ Rennes 11 4 2 + 2

Rennes ∩ LAAS 3 1 1 + 1

TABLE IX
DISTRIBUTION OF THE IP ADDRESSES INVOLVED IN INTRUSIONS

2) Attackers’ activities:

a) General trends: During the 131 observed intrusions,

several behaviours common to a large number of attackers

were frequently noted:

• Concern for discretion: the attacker checks if he is

currently alone on the machine and often deletes the

history files.

• Exploring the machine: the attacker tries to obtain infor-

mation about the attacked machine : name and version of

the OS, processor characteristics, etc.

• Account takeover: during the first connection to an ac-

count, the attacker always changes his password for a

more sophisticated one in order to get control over the

account, but takes the risk of being detected in case the

legitimate user wants to use his machine.

• IP scan: the attacker installs an IP range scanning pro-

gram in order to find which remote hosts can be accessed

through ssh from the attacked computer.

• IRC client setup: this messenging protocol client is used

to receive and execute instructions sent by an attacker

from a remote server. The goal here seems to connect

the infected machine to a botnet, the server thus sending

its instructions to hundreds of compromised machines at

the same time.

• Attempts to acquire administrator privileges: some attack-

ers try to obtain administrator privileges in order to have

a complete control over the compromised machine. To

do so, they try to exploit security vulnerabilities thanks

to various dedicated programs like rootkits.

b) Analysis of the “root” intrusions: We observed that

two attackers successfully gained root access to the honeypot.

We present in this section a description of the operations they

ran once they obtained the root access.

Once the administrator privileges obtained, both the at-

tackers immediately changed the root pasword. Then they

installed customized software in order to get information about

the “legitimate” users of the computer and also to open a

new port so that they would be able to communicate with the

machine even if they happened to lose the access through port

22 (a so called backdoor).

The first attacker thus installed the rootkit SHV46. This

software installs an ssh server if there is not one already,

alters the ssh client executable to record the logins and

passwords tried during connections to other hosts and installs

several altered system executables which would normally

permit to detect its presence, allowing it to stay undetected.

This attacker likely wanted to easily find targets for his future

attacks. However, he also changed the passwords of every

account he had found on the machine thanks to his previous

dictionary attack, but also by listing the folders located in the

/home directory (but did not read the list of existing accounts,

located for example in /etc/passwd). It seems odd that

the attacker wanted to cover his activity and to collect the

passwords typed by the legitimate users while also preventing

the greatest possible amount of users from accessing their

accounts.

The second attacker also replaced the ssh client binary by

another version but we could not identify the changes actually

implemented in the modified version. He however did not

change the passwords of other existing accounts but created

a new one, named “backup” and possessing administrator

privileges. He then accessed again this account but did not

alter anything else yet. However, he kept using the “user”

account to install new IRC clients, probably because he could

not establish a link with those he previously installed due to

our network security policies.

VI. CONCLUSION

We have presented in this paper a distributed plateform for

deploying high interaction honeypots as well as our first results

regarding the analysis of the collected data.

These first results confirm, for most of them, the conclusions

we had drawn from a previous experiment carried out with

only one honeypot. These confirmed conclusions are: 1) the

specialisation of the IP addresses used by the attackers, either

used for dictionary attacks, or used for intrusions, but never

for both activities; 2) the main activities and goals of the

attackers when they interact with the honeypots and 3) the

main country which is at the origin of the intrusions. We

have also drawn new conclusions from this experiment: 1)

the IP addresses that are used by the intruders are almost

all renewed (only four IP addresses have been “seen” both

during this experiment and during this previous experiment

we carried out) and 2) the dictionaries used for the dictionary

attacks seem to evolve, from the previous experiment to this

new experiment. Of course, these analyses are still preliminary

and need to be confirmed by other sets of data that we go on

to collect.

REFERENCES

[1] B. McCarty, “The honeynet arms race,” IEEE Security and Privacy,
vol. 1, pp. 79–82, 2003.

6http://web.fhnw.ch/plattformen/ns/vorlesungsunterlagen-1/network-
analysis-tools/shv4-analysis



[2] B. Cheswick, “An evening with berferd in which a cracker is lured,
endured, and studied,” in Proceedings of the Winter 1992 USENIX

Conference, 1992, pp. 163–174.
[3] L. Spitzner, Honeypots: Tracking Hackers. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 2002.
[4] F. Maggi and S. Zanero, “Analysis of the state of the art,” WOMBAT

Project Worldwide Observatory of Malicious Behaviors and Attack

Threats, 2008, http://wombat-project.eu/workpackages/wp2-analysis-of-
state-of-the-a/.

[5] NOAH, “Do1.1: Survey on the state of the art,” Deliverable of

the European Network of Affined Honeypots, 2005, http://www.fp6-
noah.org/publications/deliverables/D0.1.pdf.

[6] E. Balas, “Know your enemy : Sebek,” The Honeynet Project, 2003,
www.honeynet.org/papers/.

[7] N. Provos, “A virtual honeypot framework,” Proceedings of the 13th

conference on USENIX Security Symposium, 2004.
[8] C. Leita, K. Mermoud, and M. Dacier, “Scriptgen: an automated script

generation tool for honeyd,” in Proceedings of the 21st Annual Computer

Security Applications Conference. IEEE, 2005.
[9] G. Wagener, R. State, A. Dulaunoy, and T. Engel, “Self adaptive high

interaction honeypots driven by game theory,” in SSS, ser. Lecture
Notes in Computer Science, R. Guerraoui and F. Petit, Eds., vol. 5873.
Springer, 2009, pp. 741–755.

[10] P. Baecher, M. Koetter, M. Dornseif, and F. Freiling, “The nepenthes
platform: An efficient approach to collect malware,” in In Proceedings

of the 9 th International Symposium on Recent Advances in Intrusion

Detection (RAID). Springer, 2006, pp. 165–184.
[11] V. Nicomette, M. Kâaniche, E. Alata, and M. Herrb, “Set-up and

Deployment of a High Iinterfaction Hhoneypot: Experiment and Lessons
Learned,” Journal in Computer Virology, vol. 7, no. 2, pp. 143–157, Mai
2011.

[12] I. Studnia, E. Alata, M. Kâaniche, and V. Nicomette, “Observation et
Aanalyse d’Attaques sur Internet,” LAAS CNRS, Tech. Rep. RL 1160,
2011.


