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This note is devoted to several inequalities deduced from a special form of the logarithmic Hardy-Littlewood-Sobolev, which is well adapted to the characterization of stationary solutions of a Keller-Segel system written in self-similar variables, in case of a subcritical mass. For the corresponding evolution problem, such functional inequalities play an important role for identifying the rate of convergence of the solutions towards the stationary solution with same mass.

Pour étudier le système parabolique-elliptique de Keller-Segel écrit en variables auto-similaires

∂n ∂t = ∆n + ∇ • (n x) -∇ • (n ∇c) , c = (-∆) -1 n , x ∈ R 2 , t > 0 , (1) 
on est amené à considérer une forme de l'inégalité logarithmique de Hardy-Littlewood-Sobolev qui s'écrit, sous réserve que M < 8 π, sous la forme

R 2 n log n n M dx + 1 4 π R 2 ×R 2
(n(x) -n M (x)) log |x -y| (n(y) -n M (y)) dx dy ≥ 0 [START_REF] Blanchet | Asymptotic behaviour for small mass in the twodimensional parabolic-elliptic Keller-Segel model[END_REF] et où (n M , c M ) est l'unique solution stationnaire, régulière, à symétrie radiale, de [START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF], donnée par

-∆c M = M e -1 2 |x| 2 +cM R 2 e -1 2 |x| 2 +c dx =: n M , x ∈ R 2 .
Exactement comme dans [START_REF] Carlen | Competing symmetries of some functionals arising in mathematical physics[END_REF][START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF][START_REF] Calvez | The parabolic-parabolic Keller-Segel model in R 2[END_REF][START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF], on montre par dualité de Legendre qu'à (2) correspond une nouvelle inégalité de type Onofri.

Théorème 1 Pour tout M ∈ (0, 8 π), pour toute fonction φ régulière à support compact, on a log

R 2 e φ dµ M - R 2 φ dµ M ≤ 1 2 M R 2 |∇φ| 2 dx .
Ici, dµ M := 1 M n M dx est une mesure de probabilité et comme dans [START_REF] Pino | The Euclidean Onofri inequality in higher dimensions[END_REF], on montre une inégalité de trou spectral en effectuant un développement autour de φ ≡ 1. Par densité, il est par ailleurs possible d'étendre l'inégalité à l'espace fonctionnel obtenu par complétion, pour la norme

φ 2 = R 2 |∇φ| 2 dx + ( R 2 φ dµ M ) 2 ,
de l'ensemble des fonctions régulières à support compact.

Dans sa forme linéarisée, le système de Keller-Segel s'écrit

∂f ∂t = 1 n M ∇ • n M ∇(f -g c M ) =: L f où g c M = (-∆) -1 (f n M ) . (3) 
On montre que le noyau de L est engendré par une fonction f 0,0 déterminée par -∆f 0,0 = f 0,0 n M . En effectuant un développement limité à l'ordre deux autour de n M , il est aisé de voir que

Q 1 [f ] := R 2 |f | 2 dµ M + 1 2 π R 2 ×R 2 f (x) log |x -y| f (y) dµ M (x) dµ M (y) ≥ 0 .
De plus Q 1 [f ] = 0 si et seulement si f est proportionnelle à f 0,0 . On montre alors le résultat suivant.

Théorème 2 Il existe κ > 1 tel que, pour tout f ∈ L 2 (R 2 , dµ M ), si R 2 f f 0,0 dµ M = 0, alors on a R 2 f 2 dµ M ≤ κ Q 1 [f ] .
Si l'on définit maintenant Q 2 [f ] := f, L f , on montre une dernière inégalité de trou spectral.

Théorème 3 Pour toute fonction f ∈ L 2 (R 2 , f µ M ) vérifiant R 2 f f 0,0 dµ M = 0, on a Q 1 [f ] ≤ Q 2 [f ] .
Il est alors facile d'en déduire que si f est une solution de (3), alors

Q 1 [f (t, •] ≤ Q 1 [f (0,
•] e -2t pour tout t ≥ 0. Pour une preuve détaillée des Théorèmes 2 et 3, on renverra à [START_REF] Campos | Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane[END_REF]. Au prix d'une estimation un peu plus compliquée basée sur la formule de Duhamel, on montre que cette estimation en temps grand s'applique aussi à f := (n -n M )/n M , où n est la solution de (1).

Introduction

In R 2 , the logarithmic Hardy-Littlewood-Sobolev has been established with optimal constants in [7] (also see [START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF]) and can be written as

R 2 n log n M dx + 2 M R 2 ×R 2 n(x) n(y) log |x -y| dx dy + M (1 + log π) ≥ 0 (1)
for any function n ∈ L 1 + (R 2 ) with M = R 2 n dx. As a consequence (see [START_REF] Dolbeault | Optimal critical mass in the two-dimensional Keller-Segel model in R 2[END_REF]), the free energy functional

F [n] := R 2 n log n dx + 1 2 R 2 |x| 2 n dx - 1 2 R 2 n c dx + K with c = (-∆) -1 n := - 1 2 π log | • | * n is bounded from below if M ∈ (0, 8 π].
Here K = K(M ) is a constant to be fixed later. We may observe that

F is not bounded from below if M > 8 π, for instance by considering λ → F [n λ ] where n λ (x) = λ 2 n(λ x)
for some given function n, and by taking the limit λ → ∞. See [START_REF] Dolbeault | The two-dimensional Keller-Segel model after blow-up[END_REF] for more details. Equality in ( 1) is achieved by

µ(x) := 1 π (1 + |x| 2 ) 2 ∀ x ∈ R 2 ,
which solves -∆ log µ = 8 π µ and can be inverted as (-∆) -1 µ = 1 8 π log µ + 1 8 π log π. Consider the probability measure dµ := µ dx. Written in Euclidean form, Onofri's inequality (see [START_REF] Onofri | On the positivity of the effective action in a theory of random surfaces[END_REF] for the equivalent version on the sphere) log

R 2 e φ dµ - R 2 φ dµ ≤ 1 16 π R 2 |∇φ| 2 dx (2) 
plays in dimension d = 2 the role of Sobolev's inequality in higher dimensions. The inequality holds for any smooth function with compact support and, by density, for any function φ in the space obtained by completion with respect to the norm given by:

φ 2 = R 2 |∇φ| 2 dx + ( R 2 φ dµ) 2 .
Onofri's inequality can be seen as the dual inequality of the logarithmic Hardy-Littlewood-Sobolev, cf [7,1,

The rescaled parabolic-elliptic Keller-Segel system reads

∂n ∂t = ∆n + ∇ • (n x) -∇ • (n ∇c) , c = (-∆) -1 n , x ∈ R 2 , t > 0 (3) Assume that the initial datum is n(0, •) = n 0 . If M = R 2 n 0 dx > 8 π, solutions blow-up in finite time. If n 0 ∈ L 1 + R 2 , (1 + |x| 2 ) dx , n 0 |log n 0 | ∈ L 1 (R 2
) and M < 8 π, solutions globally exists and it has been shown in [

3, Theorem 1.2] that lim t→∞ n(t, •) -n M L 1 (R 2 ) = 0 and lim t→∞ ∇c(t, •) -∇c M L 2 (R 2 ) = 0 ,
where (n M , c M ) is the unique, smooth and radially symmetric solution of

-∆c M = M e -1 2 |x| 2 +cM R 2 e -1 2 |x| 2 +c dx =: n M , x ∈ R 2 . ( 4 
) Notice that n M = M e cM -|x| 2 /2 / R 2 e cM -|x| 2 /2 dx with c M = (-∆) -1 n M .
The case M = 8 π has also been extensively studied, but is out of the scope of this note. Ineq. ( 2) and the Moser-Trudinger inequality have been repeatedly used to study the Keller-Segel system in bounded domains. In the whole space case, Ineq. (1) turns out to be very convenient, at least for existence issues. Ineq. (2) and Ineq. (1) correspond to the M = 8 π case. For M < 8 π, we will establish a new inequality of Onofri type, which is our first main result: see Theorem 2.1.

An important issue in the study of ( 3) is to characterize the rate of convergence of n towards n M . See [START_REF] Blanchet | Asymptotic behaviour for small mass in the twodimensional parabolic-elliptic Keller-Segel model[END_REF][START_REF] Calvez | Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities[END_REF]. For this purpose, it is convenient to linearize the Keller-Segel system (3) by considering

n(t, x) = n M (x) (1 + ε f (t, x)) and c(t, x) = c M (x) (1 + ε g(t, x))
and formally take the limit as ε → 0. At order O(ε), (f, g) solves

∂f ∂t = 1 n M ∇ • n M ∇(f -g c M ) =: L f and g c M = (-∆) -1 (f n M ) . (5) 
As we shall see in Section 3, several spectral gap inequalities (see Theorems 3.1 and 3.2) are related with (1) and involve the linear operator L. Detailed proofs and applications to the full Keller-Segel system (3) will be given in a forthcoming paper, [START_REF] Campos | Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane[END_REF], whose main result is that n(t,

•) -n M L 1 (R 2 ) = O(e -t ) as t → ∞.

Duality and stationary solutions of the Keller-Segel model in self-similar variables

For any M ∈ (0, 8 π), the function c M given by ( 4) can be characterized either as a minimizer of

G[c] := 1 2 R 2 n c dx -M log R 2 e -1 2 |x| 2 +c dx
where n and c are related through the Poisson equation, -∆c = n, or in terms of n, seen as a minimizer of the functional n → F [n]. Inspired by [START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF][START_REF] Calvez | The parabolic-parabolic Keller-Segel model in R 2[END_REF][START_REF] Carlen | Competing symmetries of some functionals arising in mathematical physics[END_REF][START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF], we can characterized the corresponding functional inequalities and observe that they are dual of each other. Let us give some details.

Consider the free energy

functional n → F [n] = F 1 [n] -F 2 [n]
(for an appropriate choice of the constant K) on the set X M of all nonnegative integrable functions with mass M > 0, where

F 1 [n] = R 2 n log n n M dx and F 2 [n] = 1 2 R 2 (n -n M ) (-∆) -1 (n -n M ) dx .
The free energy F is bounded from below by [START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF]. Since n M is a minimizer for F and F [n M ] = 0, we actually have the functional inequality

F 1 [n] ≥ F 2 [n]
for any n ∈ X M . This inequality can be rewritten as

R 2 n log n n M dx + 1 4 π R 2 ×R 2
(n(x) -n M (x)) log |x -y| (n(y) -n M (y)) dx dy ≥ 0 for any n ∈ X M with M < 8 π. By Legendre's duality, we have:

F * 1 [φ] ≤ F * 2 [φ] where F * i [φ] := sup n∈XM R 2 φ n dx -F i [n] , i = 1, 2, is defined on L ∞ (R 2 ). A straightforward computation shows that F * 1 [φ] = R 2 φ n dx -F 1 [n] if and only if log( n nM ) = φ -log R 2 e φ dµ M + log M , so that F * 1 [φ] = M log R 2 e φ dµ M -M log M .
Here dµ M is the probability measure

dµ M := µ M dx , with µ M := 1 M n M .
It is clear that we can impose at no cost that R 2 φ dµ M = 0. It is also standard to observe that

F * 2 [φ] = R 2 φ n dx -F 2 [n] if and only if φ = (-∆) -1 (n -n M ), so that F * 2 [φ] = 1 2 R 2 |∇φ| 2 dx . Notice that R 2 |∇φ| 2 dx is well defined as -∆φ = n-n M is integrable and such that R 2 (n -n M ) dx = 0. With c M = (-∆) -1 n M and φ = c -c M , we recover that G[φ + c M ] is equal to F * 2 [φ] -F * 1 [φ]
up to a constant. Replacing φ by φ -R 2 φ dµ M , we arrive at the following result in the space H M obtained by completion with respect to the norm given by:

φ 2 = R 2 |∇φ| 2 dx + ( R 2 φ dµ M ) 2 .
Theorem 2.1 For any M ∈ (0, 8 π), with n M defined as the unique minimizer of F , i.e. the unique solution n M given by (4), and n M dx = dµ M , with c M = (-∆) -1 n M , we have the following inequality:

log R 2 e φ dµ M - R 2 φ dµ M ≤ 1 2 M R 2 |∇φ| 2 dx ∀ φ ∈ H M . (6) 
As a consequence, if we consider the special case φ = 1 + ε ψ and consider the limit ε → 0 in [START_REF] Campos | Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane[END_REF], as in [START_REF] Pino | The Euclidean Onofri inequality in higher dimensions[END_REF],

we get an interesting spectral gap inequality.

Corollary 2.2 With the above notations, for any ψ ∈ H M , the following inequality holds

R 2 ψ -ψ 2 n M dx ≤ R 2 |∇ψ| 2 dx where ψ = R 2 ψ dµ M .

Linearized Keller-Segel model, spectral gap inequalities and consequences

Exactly as for Ineq. ( 6), we observe that

Q 1 [f ] := R 2 |f | 2 dµ M + 1 2 π R 2 ×R 2 f (x) log |x -y| f (y) dµ M (x) dµ M (y) = lim ε→0 1 ε 2 F [n M (1 + ε f )] ≥ 0 Notice that Q 1 [f ] = R 2 |f | 2 n M dx -R 2 |∇(g c M )| 2 dx if R 2 f dµ M = 0.
We also notice that f 0,0 := ∂ M log n M generates the kernel Ker(L) considered as an operator on L 2 (R 2 , dµ M ) and the functions f 1,i := ∂ xi log n M with i = 1, 2 and f 0,1 := x • ∇ log n M are eigenfunctions of L with eigenvalues 1 and 2 respectively; moreover they generate the corresponding eigenspaces (see [START_REF] Campos | Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane[END_REF] for details). It is remarkable that Q 1 [f ] = 0 if and only if f ∈ Ker(L) and this allows to establish a first spectral gap inequality.

Theorem 3.1 There exists κ > 1 such that

R 2 f 2 dµ M ≤ κ Q 1 [f ] ∀ f ∈ L 2 (R 2 , f µ M ) such that R 2 f f 0,0 dµ M = 0 .
The proof of Theorem 3.1 relies on spectral properties of Schrödinger operators. See [START_REF] Campos | Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane[END_REF] for details. Since Q 1 [f ] = 0 if and only if f ∈ Ker(L), that is if f is proportional to f 0,0 , we can define the scalar product •, • induced by the quadratic form Q 1 on the space D M orthogonal of f 0,0 in L 2 (R 2 , dµ M ). With this definition, we have Q 1 [f ] = f, f . On the space D M with scalar product •, • , the operator L is self-adjoint. Let Q 2 [f ] := f, L f . Then we have a second spectral gap inequality. Theorem 3.2 For any function f ∈ D M , we have

Q 1 [f ] ≤ Q 2 [f ] . Moreover, if f is a radial function, then we have 2 Q 1 [f ] ≤ Q 2 [f ].
The operator L has only discrete spectrum as a consequence of Persson's lemma, or as can be shown by direct investigation using the tools of the concentration-compactness method and the Sturm-Liouville theory. By rewriting the spectral problem for L in terms of cumulated densities, it is possible to prove that the eigenspace corresponding to the lowest non-zero eigenvalue is generated by f 1,i with i = 1, 2, which completes the proof. See [START_REF] Campos | Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane[END_REF] for details.

As a simple consequence, if f is a solution to [START_REF] Calvez | The parabolic-parabolic Keller-Segel model in R 2[END_REF] Estimates based on Duhamel's formula allow to prove that t → Q 1 [f (t, •)] is bounded uniformly with respect to t > 0 and

d dt Q 1 [f (t, •)] ≤ -Q 1 [f (t, •)] 2 -δ(t, ε) Q 1 [f (t, •)]) 1-ε 2-ε + Q 1 [f (t, •)]) 1 2+ε
.

for any ε > 0 small enough, for some continuous δ such that lim t→∞ δ(t, ε) = 0. This proves that lim t→∞ e 2t Q 1 [f (t, •)] is finite. Details will be given in [START_REF] Campos | Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane[END_REF].

  , then d dt f, f = -f, L f ≤ -2 f, f ,which shows the exponential convergence of f towards 0. The nonlinear Keller-Segel model (3) can be rewritten in terms of f := (n -n M )/n M and g := (c -c M )/c M as ∂f ∂t -L f = -1 n M ∇ • [f n M (∇(g c M ))] .
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